Serge Vaudenay (Ed.)

Advances in Cryptology -
EUROCRYPT 2006

24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
St. Petersburg, Russia, May/June 2006, Proceedings

LNCS 4004

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4004

Serge Vaudenay (Ed.)

Advances in Cryptology —
EUROCRYPT 2006

24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques

St. Petersburg, Russia, May 28 — June 1, 2006
Proceedings

@ Springer

Volume Editor

Serge Vaudenay

EPFL, 1&C, LASEC, Station 14

INF Building, 1015 Lausanne, Switzerland
E-mail: serge.vaudenay @epfl.ch

Library of Congress Control Number: 2006925895

CR Subject Classification (1998): E.3, F.2.1-2, G.2.1, D.4.6, K.6.5, C.2,J.1
LNCS Sublibrary: SL 4 — Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-34546-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34546-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© International Association for Cryptologic Research 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11761679 06/3142 543210

Preface

The 2006 edition of the Eurocrypt conference was held in St. Petersburg, Russia
from May 28 to June 1, 2006. It was the 25th Eurocrypt conference. Eurocrypt
is sponsored by the International Association for Cryptologic Research (IACR).
Eurocrypt 2006 was chaired by Anatoly Lebedev, and I had the privilege to chair
the Program Committee.

Eurocrypt collected 198 submissions on November 21, 2005. The Program
Committee carried out a thorough review process. In total, 863 review reports
were written by renowned experts, Program Committee members as well as
external referees. Online discussions led to 1,114 additional discussion messages
and about 1,000 emails. The review process was run using e-mail and the iChair
software by Thomas Baigneres and Matthieu Finiasz. Every submitted paper
received at least three review reports. The Program Committee had a meeting
in Lausanne on February 4, 2006. We selected 33 papers, notified acceptance or
rejection to the authors, and had a cheese fondue. Authors were then invited to
revise their submission. The present proceedings include all the revised papers.
Due to time constraints the revised versions could not be reviewed again.

We delivered a “Eurocrypt Best Paper Award.” The purpose of the award
is to formally acknowledge authors of outstanding papers and to recognize ex-
cellence in the cryptographic research fields. Committee members were invited
to nominate papers for this award. A poll then yielded a clear majority. This
year, we were pleased to deliver the Eurocrypt Best Paper Award to Phong Q.
Nguyen and Oded Regev for their brilliant paper “Learning a Parallelepiped:
Cryptanalysis of GGH and NTRU Signatures.”

The Program Committee invited two speakers: David Naccache and Kevin
McCurley. The current proceedings include papers about their presentation.

I would like to thank Anatoly Lebedev for organizing the conference. I would
like to thank the IACR Board for honoring me by asking me to chair the Program
Committee. The Program Committee and external reviewers worked extremely
hard. I deeply thank them for this volunteer work. Acknowledgments also go to
the authors of submitted papers, the speakers, and the invited speakers. I am
grateful to Thomas Baignéres and Matthieu Finiasz for their hard work developing
the iChair software and constantly adding features. I also thank Shai Halevi and
Amr Youssef, who participated in the software testing. Finally, I heartily thank
Christine and Emilien, my family, for letting me spend some time on Eurocrypt.

This year, we celebrated the 30th anniversary of the publication of the Diffie-
Hellman seminal paper “New Directions in Cryptography.” As cryptography was
becoming a new academic research area, this pioneer paper invented public-key
cryptography. My wish is that research in cryptography will lead us to 30 more
years of fun.

March 2006 Serge Vaudenay
Lausanne

Eurocrypt 06
May 28—June 1, 2006, Saint Petersburg, Russia

General Chair Program Chair
Anatoly Lebedev, LAN Crypto Serge Vaudenay, EPFL
Moscow, Russia Lausanne, Switzerland

Program Committee

Feng Bao Institute for Infocomm Research
Eli Bihamo Technion
Alex Biryukov Katholieke Universiteit Leuven
Alexandra Boldyreva Georgia Institute of Technology
Colin Boyd ...t Queensland University of Technology
Jean-Sébastien Coronl University of Luxembourg
Yevgeniy Dodis ... New York University
Matt Franklino i University of California Davis
Eiichiro Fujisakioo i NTT Laboratories
Juan Garay ... Bell Labs — Lucent Technologies
Martin Hirt ... ETH Zurich
Tetsu Iwata Ibaraki University
Pil Joong Lee Pohang University of Science and Technology
Antoine Joux DGA and University of Versailles
Jonathan Katz i i i University of Maryland
Arjen Lenstra ... Bell Labs — Lucent Technologies

and Technische Universiteit Eindhoven
Helger Lipmaa Cybernetica AS and University of Tartu
Javier Lopez ... University of Malaga
Stefan Lucks ... University of Mannheim
Philip MacKenzieo i DoCoMo USA Labs
Mitsuru Matsuiooiiiiii i Mitsubishi Electric
Alexander May ... University of Paderborn
WL MEIET ..ottt e e e e et e FH Aargau
ASUKO Miyaji «oovve it JAIST
Kaisa Nyberg Helsinki University of Technology and Nokia
Kenny Paterson Royal Holloway University of London
Greg ROSE ..ot Qualcomm
Berry Schoenmakers Technische Universiteit Eindhoven
Serge Vaudenay (Chair), EPFL
Michael Wienerottt Cryptographic Clarity

Robert Zuccherato Entrust, Inc.

VIII Organization

Michel Abdalla
Masayuki Abe
Carlisle Adams
Luis von Ahn
Koichiro Akiyama
Elena Andreeva
Kazumaro Aoki
Seigo Arita
Frederik Armknecht
Tomoyuki Asano
Gildas Avoine
Thomas Baigneres
Elad Barkan

Don Beaver
Zuzana Beerliova
Mihir Bellare
Vicente Benjumea
Dan Bernstein
John Black

Daniel Bleichenbacher
Johannes Blomer
Jean Christian Boileau
Xavier Boyen
Harry Buhrman
Jan Camenisch
Ran Canetti
Juyoung Cha
Liqun Chen

Rafi Chen
Kookrae Cho
Sherman Chow
Carlos Cid

Scott Contini
Yang Cui

Reza Curtmola
Ivan Damgard
Vanesa Daza

Alex Dent

Claus Diem

Yan Zong Ding
Martin Doéring
Orr Dunkelman
Stefan Dziembowski
Daniela Engelbert

External Reviewers

Nelly Fazio

Serge Fehr
Matthieu Finiasz
Marc Fischlin
Matthias Fitzi
Pierre-Alain Fouque
Felix Freiling

Jun Furukawa
Soichi Furuya
Martin Gagne
Steven Galbraith
David Galindo
Ran Gelles

Mark Gondree
Daniel Gottesman
Louis Goubin
Ignacio Gracia
Safuat Hamdy
Goichiro Hanaoka
Phil Hawkes
Ryotaro Hayashi
Javier Herranz
Florian Hess
Shoichi Hirose
Dennis Hofheinz
Thomas Holenstein

Nick Howgrave-Graham

Yong Ho Hwang
Yuval Ishai
Stanislaw Jarecki
Jorge Jiménez
Ellen Jochemsz
Pascal Junod
Senny Kamara
Akinori Kawachi
John Kelsey
Aggelos Kiayias
Joe Killian
Mehmet Kiraz
Kazukuni Kobara
Vladimir Kolesnikov
Chiu-Yuen Koo
Matthias Krause
Volker Krummel

Caroline Kudla
Ulrich Kiihn
Simon Kiinzli
Kaoru Kurosawa
Tanja Lange
Joseph Lano
Peeter Laud

Sven Laur

Jung Wook Lee
Reynald Lercier
Christina Lindenberg
Moses Liskov

Yi Lu

Christoph Ludwig
Anna Lysyanskaya
Greg Maitland
John Malone-Lee
Keith Martin
Sebastia Martin
Natsume Matsuzaki
Lorenz Minder
Serge Mister
Payman Mohassel
Jean Monnerat
Paz Morillo

Tim Moses

Siguna Mueller
Frederic Muller
Sean Murphy
Toru Nakanishi
Deholo Nali
Anderson Nascimento
Gregory Neven
Phong Nguyen
Antonio Nicolosi
Jesper Nielsen
Wakaha Ogata
Kazuo Ohta

Koji Okada
Takeshi Okamoto
Tatsuaki Okamoto
Rafail Ostrovsky
Raphael Overbeck
Michael Paddon

Carles Padro
Adriana Palacio
Saurabh Panjwani
Jung Hyung Park
Sylvain Pasini
Kun Peng

Rene Peralta
Adrian Perrig
Giuseppe Persiano
Krzysztof Pietrzak
Benny Pinkas
Bart Preneel
Bartosz Przydatek
Prashant Puniya
Carla Rafols
Dominik Raub
Omer Reingold
German Saez
Yasuyuki Sakai
Bagus Santoso
Hovav Schaham
Daniel Schepers
Katja Schmidt-Samoa
Jasper Scholten
Jae Woo Seo

Ji Sun Shin

Jong Hoon Shin
Tom Shrimpton
Andrey Sidorenko
Johan Sjodin

Nigel Smart

Adam Smith
Clayton Smith
Miguel Soriano
Masakazu Soshi
Martijn Stam
Heiko Stamer

Dirk Stegemann
Ron Steinfeld
Daisuke Suzuki
Koutarou Suzuki
Mitsuru Tada
Katsuyuki Takashima
Keisuke Tanaka
Lauri Tarkkala
Tamir Tassa

Isamu Teranishi
Stefano Tessaro
Toyohiro Tsurumaru
Pim Tuyls
Shigenori Uchiyama
Maribel Vasco

Organization X

Frederik Vercauteren
Jorge L. Villar
Ulrich Vollmer
Martin Vuagnoux
Shabsi Walfish
Johan Wallén
Guilin Wang
Yongge Wang
Bogdan Warinschi
Benne de Weger
Ralf-Philipp Weinmann
William Whyte
Christopher Wolf
Stefan Wolf
Yongdong Wu
Jiirg Wullschleger
Alex Yampolskiy
Ke Yang

Yeon Hyeong Yang
Yiqun Lisa Yin
Shoko Yonezawa
Dae Hyun Yum
Yunlei Zhao
Huafei Zhu

Table of Contents

Cryptanalysis

Security Analysis of the Strong Diffie-Hellman Problem
Jung Hee Cheon i

Cryptography in Theory and Practice: The Case of Encryption
in IPsec

Kenneth G. Paterson, Arnold K.L. Yau..........

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects
Jean-Charles Faugére, Ludovic Perret

Invited Talk I
Alien vs. Quine, the Vanishing Circuit and Other Tales from the

Industry’s Crypt
Vanessa Gratzer, David Naccache oo, ..

Cryptography Meets Humans

Hiding Secret Points Amidst Chaff
Ee-Chien Chang, Qiming Li.

Parallel and Concurrent Security of the HB and HB™ Protocols
Jonathan Katz, Ji Sun Shin

Polling with Physical Envelopes: A Rigorous Analysis of a

Human-Centric Protocol
Tal Moran, Moni Naor eaaa

Stream Ciphers

QUAD: A Practical Stream Cipher with Provable Security
Come Berbain, Henri Gilbert, Jacques Patarin.....................

How to Strengthen Pseudo-random Generators by Using Compression
Aline Gouget, Hervé Sibert,

XII Table of Contents

Efficient Computation of Algebraic Immunity for Algebraic and Fast
Algebraic Attacks
Frederik Armknecht, Claude Carlet, Philippe Gaborit, Simon Kiinzli,
Willi Meier, Olivier Ruatta

Hash Functions

VSH, an Efficient and Provable Collision-Resistant Hash Function
Scott Contini, Arjen K. Lenstra, Ron Steinfeld

Herding Hash Functions and the Nostradamus Attack
John Kelsey, Tadayoshi Kohno o ...

Oblivious Transfer

Optimal Reductions Between Oblivious Transfers Using Interactive
Hashing
Claude Crépeau, George Savvidescouuuiiniiennenen...

Oblivious Transfer Is Symmetric
Stefan Wolf, Jirg Wullschleger

Numbers and Lattices

Symplectic Lattice Reduction and NTRU
Nicolas Gama, Nick Howgrave-Graham, Phong Q. Nguyen

The Function Field Sieve in the Medium Prime Case
Antoine Joux, Reynald Lercier.

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures
Phong Q. Nguyen, Oded Regevccuiiiiiiiiininnon..

Foundations

The Cramer-Shoup Encryption Scheme Is Plaintext Aware in the
Standard Model
Alexander W. Dent

Private Circuits II: Keeping Secrets in Tamperable Circuits
Yuval Ishai, Manoj Prabhakaran, Amit Sahai,
David Wagner

Table of Contents XIII

Composition Implies Adaptive Security in Minicrypt
Krzysztof Pietrzak o 328

Perfect Non-interactive Zero Knowledge for NP
Jens Groth, Rafail Ostrovsky, Amit Sahai 339

Invited Talk I1

Language Modeling and Encryption on Packet Switched Networks
Kevin S. McCurley e 359

Block Ciphers

A Provable-Security Treatment of the Key-Wrap Problem
Phillip Rogaway, Thomas Shrimpton 373

Luby-Rackoff Ciphers from Weak Round Functions?
Ueli Maurer, Yvonne Anne Oswald, Krzysztof Pietrzak,
Johan SFOdin 391

The Security of Triple Encryption and a Framework for
Code-Based Game-Playing Proofs
Maihir Bellare, Phillip Rogaway 409

Cryptography Without Random Oracles

Compact Group Signatures Without Random Oracles
Xavier Boyen, Brent Waters 427

Practical Identity-Based Encryption Without Random Oracles
Craig Gentry e e 445

Sequential Aggregate Signatures and Multisignatures Without Random
Oracles

Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham,

Brent Waters 465

Multiparty Computation

Our Data, Ourselves: Privacy Via Distributed Noise Generation
Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry,
Ilya Mironov, Moni Naor i 486

XIV Table of Contents

On the (Im-)Possibility of Extending Coin Toss
Dennis Hofheinz, Jorn Miiller-Quade, Dominique Unruh 504

Efficient Binary Conversion for Paillier Encrypted Values
Berry Schoenmakers, Pim Tuyls 522

Information-Theoretic Conditions for Two-Party Secure Function
Evaluation
Claude Crépeau, George Savvides, Christian Schaffner,
Jirg Wullschlegero 538

Cryptography for Groups

Unclonable Group Identification
Ivan Damgadrd, Kasper Dupont, Michael Ostergaard Pedersen 555

Fully Collusion Resistant Traitor Tracing with Short Ciphertexts and
Private Keys
Dan Boneh, Amit Sahai, Brent Waters 573

Simplified Threshold RSA with Adaptive and Proactive Security
Jesis F. Almansa, Ivan Damgard, Jesper Buus Nielsen 593

Author Index 613

Security Analysis of the Strong Diffie-Hellman
Problem

Jung Hee Cheon

ISaC and Dept. of Mathematics, Seoul National University, Republic of Korea
jhcheon@snu.ac.kr
http://www.math.snu.ac.kr/~jhcheon

Abstract. Let g be an element of prime order p in an abelian group and
a € Zp. We show that if g,¢%, and go‘d are given for a positive divisor d
of p — 1, we can compute the secret @ in O(logp - (\/p/d +V/d)) group
operations using O(max{\/p/d, v/d}) memory. If g~ (i=0,1,2,...,d)
are provided for a positive divisor d of p + 1, a can be computed in
O(logp- (y/p/d + d)) group operations using O(max{/p/d, vd}) mem-
ory. This implies that the strong Diffie-Hellman problem and its related
problems have computational complexity reduced by O(v/d) from that
of the discrete logarithm problem for such primes.

Further we apply this algorithm to the schemes based on the Diffie-
Hellman problem on an abelian group of prime order p. As a result, we re-
duce the complexity of recovering the secret key from O(,/p) to O(\/ p/d)
for Boldyreva’s blind signature and the original ElGamal scheme when
p—1 (resp. p+ 1) has a divisor d < p/? (resp. d < pl/S) and d signature
or decryption queries are allowed.

Keywords: Discrete logarithm, Diffie-Hellman, strong Diffie-Hellman,
ElGamal encryption, blind signature.

1 Introduction

Let g be an element of prime order p in an abelian group and a € Z,. The

£-Strong Diffie-Hellman (¢-SDH) problem asks to find go‘prl given g, g%, ... ,gag.
Recently, many cryptographic schemes including encryption, signature, and key
management schemes are proposed on the basis of the Strong Diffie-Hellman
(SDH) problem [MSKO02, BB04e, BB04s|, or its variants such as the Bilinear
Diffie-Hellman problem [BBS04, DY05] and the Bilinear Diffie-Hellman Expo-
nent (BDHE) problem [BBG05, BGWO05]. A lower bound on the computational
complexity of the SDH problem or its variants for generic groups are known in
the sense of Shoup [Sho97], but it does not guarantee the security for specific
parameters.

In this paper, we analyze the security of the SDH problem. More precisely,
we show that if g, g® and go‘d are given for a positive divisor d of p — 1, the
secret o € Z,, can be computed in O(logp- (1/p/d++V/d)) group operations using
O(max{+/p/d,/d}) memory. If g* (i = 0,1,2,...,d) are provided for a positive

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 1-11, 2006.
© International Association for Cryptologic Research 2006

2 J.H. Cheon

divisor d of p+ 1, it can be computed in O(logp - (1/p/d + d)) group operations
using the same size of memory. This implies that the strong Diffie-Hellman prob-
lem and its related problems have computational complexity reduced by O(v/d)
from that of the discrete logarithm problem for such primes. Hence it is neces-
sary to increase by the size of d the key size of the cryptographic schemes based
on the ¢-SDH problem or its variants if the base group has such a prime as its
order.

We investigate some known elliptic curve parameters and find that either p—1
or p+ 1 has many small divisors for the largest prime divisor p of its order for
each elliptic curve in [NIST, BLS01, KM05, MIRACL]. For example, if we use
the curve E* over GF(31%%) [BLSO01] for the broadcast encryption [BGWO05], the
secret key can be computed in O(2°?) exponentiations (resp. O(24?) exponenti-
ations) when the number of users is 232 (resp. 264), rather than O(27%) group
operations.

Moreover, we apply this algorithm to the schemes based on the Diffie-Hellman
problem on an abelian group of prime order p. As a result, we show the com-
plexity of recovering the secret key is reduced from O(,/p) to O(\/ p/d) for
Boldyreva’s blind signatures [Bol03] when d signature or decryption queries are
allowed and p — 1 has a divisor d < p'/2 or p+ 1 has a divisor d < p'/3. Similar
results hold for the original ElGamal scheme [E1G85] with decryption oracles and
the conference keying protocol by Burmester-Desmedt [BD94| with key issuing
oracles.

The rest of the paper is organized as follows: In Section 2, we introduce the
SDH related problems and some schemes based on them. In Section 3, we present
our algorithms. In Section 4, we exploit our algorithms to attack several protocols
based on the Diffie-Hellman problem. In Section 5, we investigate some known
elliptic curve parameters in order to check if our algorithms are applicable for
these parameters. We conclude in Section 6.

2 Strong Diffie-Hellman Problems and Their Variants

Let G be an abelian group of prime order p and g a generator of G. The Discrete
Logarithm (DL) Problem in G asks to find a € Z, given g and g% in G. Many
cryptosystems are designed on the basis of the DL problem, but most of them
have the security equivalent to a weaker variant of the DL problem rather than
the DL problem itself. Two most important weaker variants are as follows:

The Computation Diffie-Hellman (CDH) Problem. Given (g, g, g°),
compute g°.

The Decisional Diffie-Hellman (DDH) Problem. Given (g, g%, ¢°, 9°),
decide whether ¢ = ab in Z,,.

Recently, some weakened variants of the CDH problem are introduced and
being used to construct cryptosystems for various functionalities or security
without random oracles. One characteristic of these problems is to disclose
g,9% ... ,gaé for the secret o and some integer /.

Security Analysis of the Strong Diffie-Hellman Problem 3

The (-weak Diffie-Hellman (/~-wDH) Problem. Given g and ¢* in G
fori=1,2,...,¢, compute g'/®. This problem was introduced by Mitsunari,
Sakai, and Kasahara for a traitor tracing scheme [MSKO02].

The (-Strong Diffie-Hellman (/~-SDH) Problem. Given g and ¢g* in
G fori=1,2,...,¢, compute gaHl. This problem is considered as a weaker
version of /~-wDH problem. It was first introduced by Boneh and Boyen to
construct a short signature scheme, that is provably secure in the standard

model (without random oracles) [BB04s], and later a short group signature
scheme [BBS04].

The SDH problem is generalized into a group with bilinear maps. We further
assume that e : G x G — G’ is an admissible bilinear map between two abelian
groups G and G’ with prime order p.

The /-Bilinear Diffie-Hellman Inversion (/-BDHI) Problem. Given
gand g® in G fori=1,2,...,¢ compute e(g,g)"/* € G'. This problem was
introduced by Boneh and Boyen to construct an identity-based encryption
that is secure in the standard model [BB04e]. It is also used to construct
verifiable random functions [DY05].

The (-Bilinear Diffie-Hellman Exponent (-BDHE) Problem. Given
g,h, and ¢* (i = 1,2,...,0 — 1,0 +1,...,2() in G, compute e(g,h)o‘l €
G’. This problem was introduced by Boneh, Boyen, and Goh [BBGO05] to
construct a hierarchical identity-based encryption scheme with constant size
ciphertext, and later used for a public key broadcast encryption scheme with
constant size transmission overhead [BGWO05].

Given two problem instances A and B, we denote by A > B if the problem B
can be solved in polynomial time with polynomially many queries to the oracle
to solve the problem A. Then we can easily deduce the following relations among
the DL related problems [BBGO5):

DL > CDH > DDH > ¢-wDH > ¢-SDH > ¢-BDHI, (¢ + 1)-BDHE.

3 Main Results

Theorem 1. Let g be an element of prime order p in an abelian group. Sup-
pose that d is a positive divisor of p — 1. If g, g1 := g% and gq = gad are
given, o can be computed in O(logp - (\/(p —1)/d + V/d)) group operations
using O(max{\/(p — 1)/d,Vd}) memory.

Proof. Note that Zj is a cyclic group with ¢(p — 1) generators, where ¢(-) is
the Euler totient function. Since a random element in Zj is a generator with
probability

¢p—1) 1

(p—1) = Gloglog(p—1)’

4 J.H. Cheon

which is large enough [MOV, p.162], we can easily take a generator of Zy. Let

*

»- Then we compute ¢ = Cg that is an element of order

(o be a generator of Z
(p—1)/din Zj.

Since (a?)P~1/4 = 1 and ¢ generates all (p — 1)/d-th roots of unity in Zy,
there exists a non-negative integer i less than (p — 1)/d such that a® = ¢*. If we

take di = [1/(p — 1)/d], we must have

(ad)cfu _ Cdlv
for some 0 < u,v < dy. It is equivalent to

g =g (1)
We compute and store the left-hand side terms and compare them with each of
right-hand side terms in Baby-Step Giant-Step style. Note that each of terms in
both sides can be computed by repeated exponentiations by either ¢! or (.
Thus we can find all non-negative integers u and v less than d; satisfying (1) in
O(d; - logp) group operations using O(dy) memory. For u and v which satisfies
(1) and u + dyv is smallest, we put kg = u + dyv. Then k¢ is a non-negative
integer less than (p — 1)/d.

Let a = (¥ for 0 < k < p— 1. Then we have dk = dkg mod (p — 1) and so
k = ko mod (p — 1)/d. There exists a non-negative integer j less than d such
that k = ko + j(p — 1)/d. If we take dy = [v/d], we must have

aly P/ chotdav(p-1)/d

for some 0 < u’,v’ < ds. It is equivalent to

—u/(p—1)/d
¢ (r—1)/

91 =9

C(’;o-%—dzv’(p—l)/d (2)
By the same method as above, we can find non-negative integers v’ and v’ less
than dy satisfying (2) in O(ds - log p) group operations and O(ds) memory. This
completes the proof. O

We remark that the memory requirement of the above algorithm can be reduced
by using Pollard’s lambda techniques [Pol78]. We use the notation of Theorem 1
to sketch the idea: First we consider a function F : Z, — Z, with F(z) = 2¢f(9")

for a pseudo-random function f : (9) — Z,—1)/q. For 8 € Z, and t > 1, gFt(B)
can be computed from g and ¢ in O(tlogp) group operations by using

Cf(gﬁ) i i—1 Cf(gFi_l(B))
PAC I and gF'® — (gF (ﬂ>) ifi> 2.

If we find u, v such that gF" (@) = ¢F"() we have F*(a?) = F*(1) in Z, and so

NI RV (U B0 MR ()

Security Analysis of the Strong Diffie-Hellman Problem 5

Hence if we store only distinguished points [Tes98], a? can be computed in
O(+/(p — 1)/d) exponentiations using small memory with some probability. The
second part to compute a from ¢® and a can be done using similar technique.

If we know ga(%wd for many small d, we can do even better:

Corollary 1. Let g be an element of prime order p in an abelian group. Suppose
that p—1 = didy - - - dy for pairwise prime d;’s. If g and gop—1y/q, := ga(p_l)/di for
1 <i <t are given, a can be computed in O(logp - 22:1 Vd;) group operations
using O(maxi<;<¢ \/d;) memory.

Proof. Let ¢ be a generator of Z} and o = ¢*. Since (aP~1/d)di = 1 there
must be a non-negative integer k; less than d; satisfying a®—1/di = (¢(p=1)/di)k:
Hence by checking

(C(P*l)/di)ki

9p-1)/d; = 9 for 0 < k; < d;

or
(C(P—l)/di)_""i (C(p—l)/di)[\/dﬂvi

(g(pfl)/di) =g for 0 < Uiy Uy < [\/dl]

we can compute k; in O(logp - v/d;) group operations using O(v/d;) memory.
Since k satisfies k¥ = k; mod d;, we can compute k by performing the above
step for 1 <14 <t and using Chinese Remainder Theorem. The total complexity
is O(logp - S°r_, V/d;) using O(max;<;<; v/d;) memory. O

Next, we use an imbedding of Z,, into F,> to generalize Theorem 1.

Theorem 2. Let g be an element of prime order p in an abelian group. Suppose
that d is a positive divisor of p+ 1 and g; :== ¢* fori=1,2,...,2d are given.
Then a can be computed in O(logp - (\/(p +1)/d+d)) group operations using
O(max{+/(p+1)/d,V/d}) memory.

Proof. Let a be a quadratic non-residue in Z, and 6 be a root of 2? = a in an
algebraically closed field of Z,. Then Z,[0] = F,2. Let H be a subgroup of order
p+1of Fp2. Since 8 € H is equivalent to BPtl =1, we see that By + £10 is an
element of H for 3y = (1+aa?)/(1 —aa?) and B = 2a/(1 — aa?) from 6P = —0
and

BP = (Bo + $10)(Bo + 167) = B3 — afBi. (3)

Let (o be a generator of H (for example, the (p + 1)-th power of a generator
of F.). Then (:= ¢¢ generates all the (p + 1)/d-th roots of unity and so there
must be some k € Z such that 8¢ = ¢* and 0 < k < (p+ 1)/d. For convenience,
we denote (¢ = s; + t;0 for some s;,t; € Zyp, where the index ¢ is defined modulo
(p+1)/d. Also we denote

1

B = (Bo + 10)" = (1- aag)d(

Jo(a) + fi(a)d),

6 J.H. Cheon

where f;’s are polynomials of degree 2d. Then we must have
Bl = ¢ ()
for some 0 < u,v < dy := [\/(p+ 1)/d]. It is equivalent to

(fola)s—utafi(a)t-u)+(fola)t-u+tfi(a)s—u)f = (1—aa®)*(sa,0 +ta,00)- (5)

Hence we compute (gfo(@)s-utafi(e)t—w) gfo(e)t—utfi(@)s—u) for all 0 < u < dy
and store them. By comparing them with (g(lfaarz)dsdl”79(1*‘10‘2)%”’1“) for each
0 < w < dy, we can find the (unique) non-negative integers u and v less than
dy satisfying (4) and v + div < (p + 1)/d. We put ko = u + dyv. Note that
glo(@) ghi(e) and g(lf‘w‘rz)d can be computed from g, g1, ..., gag in 6d exponenti-
ations. Hence ko can be found in O(logp - (6d + /(p + 1)/d)) group operations
with O(y/(p + 1)/d) memory.

Let 3 = (¥ for 0 < k < p+ 1. Then we have k = kg mod (p + 1)/d. There
exists a non-negative integer j less than d such that k = ko+j(p+1)/d. If we take
dy = [V/d], there must exist non-negative integers v/, v’ less than dy such that

ﬂC(;u (r+1)/d _ C(’)Voerzv (p+1)/d (6)

We denote C(;i(pﬂ)/d = s, +t.0 and C(]f”dzi(pﬂ)/d = s/ 4+t for some s}, t}, s t!

R A T)

€ Z, where the index ¢ is defined modulo (p + 1). Then (6) is equivalent to
(1 + aa?)sy + 2aat,) + (14 ac®)ty + 2as,)0 = (1 — ac®)(sy + tyh). (7)

Hence we compute (g(H“a?)su/““atu/,g(H“a?)tu/“asu/) for all 0 < o/ < ds
and store them. By comparing them with (g(l_”az)sv’79(1_”a2)t1)’) for each 0 <
v' < dg, we can find non-negative integers v’ and v’ satisfying (6). That is,
6 = Cécoﬂu Fd20) /4 on be found in O(logp - Vd) group operations and
O(v/d) memory. This completes the proof. O

We remark that if d < p'/3, then Theorem 2 says that the secret can be computed
in O(logp - \/p/d)) group operations using O(+/p/d) memory.

Remark 1. We may consider that our proof utilizes Diffie-Hellman oracles in a
very restricted way [Boe88, MW99]. That is, in our situations we can use the Diffie-
Hellman oracle DH (g*, g¥) = g®¥ only when z is fixed and y = 2 for some small
£. This restriction is an obstacle when we try to generalize the proposed algorithm
into other extension fields of IF,, or elliptic or hyperelliptic curves over F,,.

4 Analysis of Cryptographic Schemes Based on the
Diffie-Hellman Problem

4.1 Blind Signature Based on the GDH Assumption

The Gap-Diffie-Hellman (GDH) group is an abelian group on which there is an
polynomial time algorithm to solve the decisional Diffie-Hellman problem and
there is no polynomial time algorithm to solve the computation Diffie-Hellman
problem.

Security Analysis of the Strong Diffie-Hellman Problem 7

Boldyreva proposed a blind signature scheme on a Gap-Diffie-Hellman group
[Bol03]. The scheme is as follows: Let G be a GDH group of prime order p and g
a generator of G. Let H : {0,1}* — G be a full domain hash function [BLS01]. A
signer has a private key « € Z, and the corresponding public key y = g*. In order
to blindly sign a message m € {0,1}*, a user picks a random k € Z,,, computes
M' = H(m)g*, and sends it to the signer. The signer computes ¢’ = (M’)* and
sends it back to the user. Then the user computes the signature o = o’ /y*(=
H(m)*) of the message m.

This scheme is shown to be secure against one-more forgery under chosen
message attacks in the random oracle model [Bol03], that is the standard security
notion for blind signature schemes. However, since the signer does not have any
information on the message to be signed, we may use this blind signing phase as
a Diffie-Hellman oracle and so reduce the security of this scheme under chosen
message attacks: A chosen-message attacker 4 takes a random v; € Z, and
requests a signature on the message y - g7*. From the signature o1 = (y - ¢7*)%,
A obtains gy := g"’”2 = 01/y". Second, A takes another random 7, € Z, and
requests a signature on the message gs - g7*. From the signature o2 = (g2 - ¢72)%,
A obtains g3 = g””3 = o9/y"?. If { signature queries are allowed, A repeats
this procedure ¢ times to obtain gi,gs,...,g¢41 (gi := g*). By Theorem 1
and 2, if p — 1 has a divisor d < min{f + 1,p'/?} or p + 1 has a divisor d <
min{(£+1)/2,p'/?}, the secret key = can be computed in O(y/p/d). That is, the
security of the scheme is reduced by O(v/d) from that of the GDH assumption.

We note that the attack does not imply that the security proof of the scheme
is wrong, but that more quantitative analysis on security reduction is required.
In fact, the security proof of BLS signatures on which the Boldyreva’s blind
signature scheme is based shows that the advantage of an adversary can be
increased by gs when ¢g signature queries are allowed [BLSO01].

This method can be applied similarly to schemes which respond by its secret
key power for an unknown message. For example, the conference keying protocol
by Burmester-Desmedt has this property [BD94]. Thus, in this case, we need to
take the order carefully or raise the security parameter.

4.2 Original ElGamal Encryption Scheme

We briefly introduce the original ElGamal encryption scheme in a generalized
form: Let G be an abelian group of prime order p and g a generator of G.
Suppose the secret key and the public key of the recipient is z € Z, and g¢7,
respectively. To encrypt a message m € G, a sender takes a random k € Z, and
sends a ciphertext (c1,c2) := (¥, mg®) to the recipient. The recipient recovers
the message m by computing ca/cf.

The ElGamal encryption is known not to satisfy non-malleability under cho-
sen ciphertext attacks (Refer to the appendix in [ABR98]). That is, given a
decryption oracle any target ciphertext can be decrypted without feeding itself
to the decryption oracle. Here we show that the decryption oracle enables not
only a decryption of any target ciphertext without the secret key, but also a
reduction of the complexity to compute the secret key in some cases.

8 J.H. Cheon

As in the previous subsection, first a chosen ciphertext attacker A takes ran-
dom numbers ki,k2 € Zp, requests a decryption of the ciphertext (c1,c2) :=
(y*,y*') to the decryption oracle, and obtains cy/c? = ¢** . g*"*. Since he
knows k, k' and g%, A can compute go := g“52. By taking different random pairs
(k, k") and replacing y by g2, A can obtain g5 := g"’”3 similarly. By repeating
this procedure £ times, A can obtain g1, go, ..., g¢ (g; :== ¢g*) when ¢ decryption
queries are allowed. By Theorem 1 and 2, if p — 1 has a divisor d < min{¢, p*/?}
or p+ 1 has a divisor d < min{£/2, p*/3}, the secret key = can be computed in
O(y/p/d).

We might imagine a situation that this attack is harmful: One uses the original
ElGamal encryption scheme, to encrypt not so important messages, with another
cryptosystem having the same secret key. Then the secret key may be revealed
from the original ElGamal encryption scheme and so the other system can be
insecure. This shows that the original ElGamal scheme must not share the same
secret key with another system.

5 Practicality of the Proposed Algorithm

In this section, we discuss the potential of the proposed algorithms. The algo-
rithm in Theorem 1 has complexity O(logp - (\/(p — 1)/d + V/d)) for a divisor d
of p — 1. The complexity achieves the minimum value O(logp - p'/*) when d =
O(p'/?). The algorithm in Theorem 2 has complexity O(logp-(1/(p — 1)/d+d))
for a divisor d of p+1. The complexity achieves the minimum value O(log p-p'/?)
when d = O(p'/?). Hence the security of the /~-SDH problem on an abelian group
of order p can be reduced up to O(logp - p'/*) (resp. O(logp - p'/?)) for large ¢
if p—1 (resp. p+ 1) has a divisor d = O(p'/?) (resp. d = O(p'/?)).

Now we give an example in which security reduction due to our algorithm
yields a serious security problem.

Ezample 1. We consider the situation that ET(Fse7) [BLS01] is used for the
broadcast encryption scheme [BGWO05]. ET(F3907) has a subgroup G of 151 bit
prime order p. Let g be a generator of G and a € Z, be the system secret. The
scheme assuming n users publishes g and g; := g® for 0 <i < 2n, i # n. Using
a non-degenerate bilinear map e on G, we can compute e(g,g)al for all non-
negative integers ¢ < 4n. Using Pollard p method [Pol78], the secret key can be
found in O(27%) group operations. But if we apply the proposed algorithm, it is
reduced to about O(2%?) exponentiations or O(2%7) group operations for n = 232,
Furthermore, if we use n = 2% as in the file sharing application [BGWO05], the
complexity is reduced to O(24?) exponentiations or O(2°°) group operations.

We remark that in order to give 280 security for the system with 264 users, it
is recommended to take the group of about 220 bit prime order unless p is of a
special form.

Most cryptosystems based on SDH-related problems make use of bilinear maps.
For practice, we investigate some known elliptic curve parameters and show that

Security Analysis of the Strong Diffie-Hellman Problem 9

either p — 1 or p + 1 has many small divisors for the largest prime divisor p of
the order for each elliptic curve in [NIST, BLS01, KM05, MIRACL).

NIST curves. NIST suggested several elliptic curves for federal government
use [NIST]. They consist of three categories: Pseudo-random curves over a prime
field, a pseudo-random curve over a binary field, and a Koblitz curve over a
binary field. For most of them, the largest prime divisor p has the property that
either p — 1 or p 4+ 1 has enough small divisors. We present some of them:

— B-163: p—1=2-53-383-21179- (a 132 bit prime), which is a 163 bit integer.

— K-163: p— 1 =2%.43-73- (a 16 bit prime) - (an 18 bit prime) - (a 112 bit
prime), which is a 163 bit integer.

— P-192: p—1=2%.5.2389- (an 83 bit prime) - (a 92 bit prime), which is a
192 bit integer.

We note that P-192 gives the smallest security loss, that is 8 bits, if the
parameter ¢ in the SDH problem is less than 83 bits. Otherwise, however, the
security loss for P-192 can be more than 40 bits.

Elliptic curves with embedding degree 6. Boneh, Lynn and Shacham sug-
gested two families of elliptic curves with embedding degree 6 for short signa-
tures [BLSO1]: ET : y?2 = 23 + 2z + 1 and E~ : y* = 23 + 22 — 1 over F;.
We consider ET or E~ over F5x. We denote by p the largest prime factor of
E*(Fgn).

— Et(F3o7): p—1=2-3%.24127552321- 21523361 - 76801, which is a 151 bit
integer.

— ET(Fgi21): p—1=2-3-112-683-6029- (a 123 bit prime), which is a 155
bit integer.

Koblitz-Menezes curves. Koblitz and Menezes [KMO05] suggested seven su-
persingular elliptic curve parameters for pairing based cryptography. If we de-
note by p the order of the group to be used in cryptosystems, either p + 1 or
p — 1 has divisor 2¢ for 4 > 60 in all cases except one. The exceptional case is
p = 2160 4 23 — 1. In this case, however, p — 1 = 2-29 - 227 - 27059 (a 37 bit
prime) - (a 94 bit prime).

Elliptic curves in MIRACL library. MIRACL library [MIRACL] provides
a sample parameter for pairing-friendly elliptic curves. The order of the group
is p=2'9 4217 4 1. Then p — 1 has the following prime factorization: p — 1 =
217 . 5. 569- (a 27 bit prime) - (a 32 bit prime) - (a 32 bit prime) - (a 39 bit
prime).

We can see that our algorithm can be applied for all the examples above.
We note that our algorithm is more plausible for pairing-friendly curves in-
cluding Koblitz-Menezes curves and MIRACL library curves because a curve
with an order of small Hamming weights in signed binary form admits efficient

10 J.H. Cheon

implementation of Weil or Tate pairing. In most cases, however, it is neces-
sary and seems hard to find a prime p such that both of p — 1 and p + 1
have no small divisor greater than (logp)?. We may consider Gordon’s algo-
rithm [Gor84] to generate strong primes which resist against the proposed al-
gorithms. Basically, the algorithm is to find a prime of the form p = 2(;011’272
mod p2)p1—1+p1p2k where p; and ps are primes of equal size and k is an integer.
Then we have p1|p+1 and ps|p—1. But this algorithm usually yields a prime much
larger than p; and ps. It would be an interesting problem to find elliptic curve
parameters for which the security loss of the SDH is minimized.

6 Conclusion and Further Studies

In this paper, we proposed a novel algorithm to solve the SDH-related problems.
More precisely, given an element g of prime order p in an abelian group and a
secret o € Zy, if g* (0 < i < ¢) are published for the secret a, the complexity
to recover a can be reduced by a factor of v/d from that of the DLP, where d
is the maximum of the largest divisor of p — 1 not exceeding min{¢,p'/?} and
the largest divisor of p + 1 not exceeding min{¢/2, p*/3}. This algorithm can be
used to attack cryptographic schemes that admit an oracle to return its secret
key power upon an arbitrary input.

Hence, if a cryptographic scheme or protocol is based on a variant of ¢-SDH
problems or allows such an oracle by ¢ times, it is recommended to increase the
key size or use a prime p such that both of p4 1 and p — 1 have no small divisor
greater than (logp)?. However, we have no idea about the distribution of such
primes.

We may try to generalize the proposed algorithms as in [MW99]. One problem
is to find an embedding of IF), to some other groups including extension fields of
I, and elliptic or hyperelliptic curves over F,,.

Acknowledgement. I am grateful to Dong Hoon Lee and Taekyoung Kwon
for helpful discussions and JaeHong Seo for his implementation. I would also like
to thank the anonymous reviewers for their valuable suggestions.

References

[ABR98] M. Abdalla, M. Bellare, and P. Rogaway, “DHAES: An encryption scheme
based on Diffie-Hellman problem,” IEEE P1363a Submission, 1998, Avail-
able at http://grouper.ieee.org/groups/1363/addendum.html.

[BB04e] D. Boneh and X. Boyen,“Efficient Selective-ID Secure Identity-Based
Encryption Without Random Oracles,” Eurocrypt 2004, LNCS 3027,
Springer-Verlag, pp. 223-238, 2004.

[BB04s] D. Boneh and X. Boyen, “Short Signatures Without Random Oracles,”
Eurocrypt 2004, LNCS 3027, Springer-Verlag, pp. 56-73, 2004.

[BBGO5] D. Boneh, X. Boyen, and E. Goh, “Hierarchical Identity Based Encryption
with Constant Size Ciphertext,” Eurocrypt 2005, LNCS 3494, Springer-
Verlag, pp. 440-456, 2005.

[BBSO04]

[BD94]

[BGWO05]

[BLS01]

[Boe88]

[Bol03)]

[DYO05]

[EIGS5)

[Gor84]

[KMO5]

[MIRACL]
[MOV]
[MSKO02]

[MW99)]

[NIST]
[Pol78]
[Sho97]

[Tes98]

Security Analysis of the Strong Diffie-Hellman Problem 11

D. Boneh, X. Boyen, and H. Shacham, “Short Group Signatures,” Crypto
2004, LNCS 3152, Springer-Verlag, pp. 41-55, 2004.

M. Burmester and Y. Desmedt, “A Secure and Efficient Conference Key
Distribution System (Extended Abstract),” Eurocrypt 1994, LNCS 950,
Springer-Verlag, pp. 275-286, 1994.

D. Boneh, C. Gentry, and B. Waters. “Collution Resistant Broadcast En-
cryption with Short Ciphertexts and Private Keys,” Crypto 2005, LNCS
3621, Springer-Verlag, pp. 258-275, 2005.

D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the Weil
Pairing,” J. of Cryptology, Vol. 17, No. 4, pp. 297-319, 2004. Extended
abstract in proceedings of Asiacrypt ‘01, LNCS 2248, Springer-Verlag, pp.
514-532, 2001.

B. den Boer, “Diffie-Hellman is as Strong as Discrete Log for Certain
Primes,” Crypto ’88, LNCS 403, Springer-Verlag, pp. 530-539, 1989.

A. Boldyreva, “Threshold Signatures, Multisignatures and Blind Signatures
Based on the Gap-Diffie-Hellman-Group Signature Scheme,” Public Key
Cryptography 2003, LNCS 2567, pp. 31-46, 2003.

Y. Dodis and A. Yampolskiy, “A Verifiable Random Function with Short
Proofs and Keys,” Public Key Cryptography 2005, LNCS 3386, pp.
416-431, 2005.

T. Elgamal, “A Public Key Cryptosystem and a Signature Scheme based
on Discrete Logarithms,” IEEE Transactions on Information Theory, Vol.
31, no 4, pp. 469-472, 1985.

J. Gordon, “Strong Primes are Easy to Find,” Eurocrypt '84, LNCS 209,
Springer-Verlag, pp. 216-223, 1984.

N. Koblitz and A. Menezes, “Pairing-based Cryptography at High Security
Levels,” IMA Conference of Cryptography and Coding 2005, pp. 13-36,
2005.

M. Scott, Multiprecision Integer and Rational Arithmetic C/C++ Library,
Available at http://indigo.ie/~mscott/.

A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, 1996.

S. Mitsunari, R. Sakai, and M. Kasahara, “A New Traitor Tracing,” IEICE
Trans. Fundamentals, Vol. E85-A, no. 2, pp. 481-484, 2002.

U. Maurer and S. Wolf, “The Relationship Between Breaking the Diffie-
Hellman Protocol and Computing Discrete Logarithms,” STAM J. Comput.,
Vol. 28, no. 5, pp. 1689-1721, 1999.

Recommended Elliptic Curves for Federal Government Use, Available at
http://csrc.nist.gov/CryptoToolkit/dss/ecdsa/NISTReCur.pdf, 1999.
J. Pollard, “Monte Carlo Methods for Index Computation (mod p),” Math-
ematics of Computation, Vol. 32, pp. 918-924, 1978.

V. Shoup, “Lower bounds for Discrete Logarithms and Related Problems,”
Eurocrypt '97, LNCS 1233, Springer-Verlag, pp. 256-66, 1997.

E. Teske, “Speeding up Pollard’s Rho Method for Computing Discrete Log-
arithms,” Algorithmic Number Theory Symposium III, LNCS 1423, pp.541-
554, 1998.

Cryptography in Theory and Practice: The Case
of Encryption in IPsec*

Kenneth G. Paterson and Arnold K.L. Yau**

Information Security Group, Royal Holloway, University of London,
Egham, Surrey, TW20 OEX, United Kingdom
{kenny.paterson, a.yau}@rhul.ac.uk

Abstract. Despite well-known results in theoretical cryptography high-
lighting the vulnerabilities of unauthenticated encryption, the IPsec
standards mandate its support. We present evidence that such “encry-
ption-only” configurations are in fact still often selected by users of
IPsec in practice, even with strong warnings advising against this in
the IPsec standards. We then describe a variety of attacks against such
configurations and report on their successful implementation in the case
of the Linux kernel implementation of IPsec. Our attacks are realistic in
their requirements, highly efficient, and recover the complete contents of
IPsec-protected datagrams. Our attacks still apply when integrity pro-
tection is provided by a higher layer protocol, and in some cases even
when it is supplied by IPsec itself.

Keywords: IPsec, integrity, encryption, ESP.

1 Introduction

The need for authenticated encryption is well understood in the cryptographic
research community — see for example [4, 5, 14]. High-profile examples where the
lack of strong integrity checks is known to lead to attacks or where inappro-
priate use of integrity mechanisms still leaves systems vulnerable are plentiful
[3,6,7,8,28,30]. However the process of adopting authenticated encryption in
fielded systems is slower. Naturally, it takes time to translate theory into stan-
dards, standards into products and finally, for users to take up the latest versions
of products. There is also resistance to change without clear and easily-absorbed
evidence that such change is imperative. Attacks in the cryptographic litera-
ture can be rather technical and difficult for non-experts to understand. In some
cases, it may also be that the attacks are not perceived by users as having a high
impact. Theoreticians are rightly concerned about attacks on indistinguishability
of ciphertexts, but users are perhaps less so. Attacks requiring huge numbers of

* The work described in this paper was partly supported by the European Commission

under contract IST-2002-507932 (ECRYPT). An extended version is available [25].

** This author supported by EPSRC and Hewlett-Packard Laboratories Bristol through
CASE award 01301027.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 12-29, 2006.
© International Association for Cryptologic Research 2006

Cryptography in Theory and Practice: The Case of Encryption in IPsec 13

chosen plaintexts are interesting to theoreticians, but may not unduly concern
practitioners. Attacks on paper are easier to dismiss than fully demonstrated
attacks that work in practice against deployed systems.

In this paper, our focus is on the use of integrity protection and encryption
in IPsec, a widely-used suite of protocols providing security for IP. We provide
a short introduction to IPsec in Section 2. Bellovin [6] was the first to point
out that the lack of integrity protection in the first version of IPsec’s encryption
protocol ESP (Encapsulating Security Payload) [1] leads to security weaknesses.
However, the attacks in [6] are actually quite limited in their practical impact. A
close examination of [6] shows that the attacks presented in [6, Sections 3.1 and
3.2] only work in the rather unrealistic scenario where the attacker has access to
accounts on the two network hosts performing the IPsec processing. The other
concrete attack in [6] is contained in Section 3.8 and is attributed to Wagner. It
recovers just a single byte of plaintext, from datagrams having special formats,
and then only if 224 ciphertexts matching chosen plaintexts are available to the
attacker. Moreover, the attacks in [6] (and the related paper [22]) are really only
sketches of what might be possible rather than fully implemented, working at-
tacks: they are examples of “attacks in theory”. Nevertheless, Bellovin’s attacks
are well-known in the cryptographic and IPsec standards communities, and are
cited in subsequent versions of the ESP standards [16, 18]. The version in current
use, [16], refers to [6] when warning of the dangers of using encryption without
additional integrity protection, and requires support for integrity protection.
However it also mandates that any implementation of ESP must include sup-
port for encryption-only processing. This surely illustrates the chasm that exists
between the theory and practice of cryptography. Note that the developers of
[16] did have good practical reasons (backward compatibility and performance)
for mandating support for an encryption-only mode.

It is our belief that the availability of the encryption-only option in IPsec
has led users into actually using it, in spite of Bellovin’s work. After all, users
do not typically read RFCs or research papers, and an inexperienced network
administrator might reasonably believe that it is sufficient to use an encryption
algorithm on its own to provide confidentiality for data, especially when selecting
from amongst the myriad of IPsec options. (This point is also made in [10].)
We have found several on-line tutorials showing how to configure IPsec VPNs
using ESP for encryption with no additional integrity protection.! After the
release of the vulnerability announcement [24] describing our attacks, we became
aware that some vendors were aware of Bellovin’s work and had taken steps to
prevent the selection of encryption-only configurations, but others were much less
well-informed, or less concerned.

1.1 Owur Contribution

We present new attacks against the encryption-only configuration of IPsec that
are as realistic and devastating as possible, with the aim of finally convincing

! See for example: http://www.netbsd.org/Documentation/network/ipsec and
http://lartc.org/howto/lartc.ipsec.tunnel.html

14 K.G. Paterson and A.K.L. Yau

users not to select it. In this respect, our attacks have several attractive fea-
tures. Firstly, they are ciphertext-only attacks. Thus they do not require any
special operating conditions under which, for example, the ciphertexts matching
chosen plaintexts are generated. Nor do they require large amounts of cipher-
text to be successful: the attacks can be mounted given only a single encrypted
datagram. Secondly, the attacks merely require the attacker to be able to inject
IP datagrams into the network and intercept certain responses. Some variants
of our attacks even enable these responses to be sent directly to the attacker’s
machine. Thirdly, the attacks are very efficient. For example, one variant that
we have implemented requires the injection of only a handful of datagrams to
recover the complete contents of a datagram encrypted using AES. Fourthly,
the attacks are flexible, with a range of variants being applicable in different
circumstances. And finally, we have written an attack client which shows that
the attacks work in practice against the native implementation of IPsec in Linux.
For example, our client effectively allows a real-time cryptanalysis of encryption-
only IPsec when AES is used as the encryption algorithm. In all these senses,
our attacks improve on the pioneering work of Bellovin [6].

Our work also has consequences for the newly published version of ESP [18].
This RFC no longer requires mandatory support for encryption-only, and re-
peats the advice of [16] concerning the need for integrity protection, but then
goes on to say: “ESP allows encryption-only [...] because this may offer consid-
erably better performance and still provide adequate security, e.g., when higher
layer authentication/integrity protection is offered independently.” Tt is already
known in theory that applying authentication followed by encryption to build
an authenticated encryption scheme does not result in a generically secure con-
struction [19]. We demonstrate that relying on higher layers for the provision
of integrity in IPsec is inherently insecure in practice as well. Some of our at-
tacks even apply to configurations using the IPsec protocol AH (Authentication
Header) for integrity protection.

More generally, our attacks provide a stark illustration, should one still be re-
quired, of the general need to make appropriate use of authenticated encryption
in fielded systems. We hope that this paper will also be of use to theoreticians
in the field of authenticated encryption searching for convincing real-world ex-
amples to motivate their work.

A further theme of this paper is to illustrate the gaps that exist between
cryptography as studied in theory, as defined in standards, as implemented by
software engineers, and as actually consumed by users. For example, we have
already commented on the differences in viewpoints of theoreticians and users,
and how this can lead to the use of encryption-only ESP in practice. As another
example, our attacks should in fact be prevented by any RFC-compliant imple-
mentation of IPsec, because of some seemingly innocuous post-processing checks
specified in the architectural standard for IPsec [15]. Yet the native Linux ver-
sion of IPsec fails to implement these checks. Drawing on our experiences with
IPsec, we make some recommendations which we hope will help to bridge these

gaps.

Cryptography in Theory and Practice: The Case of Encryption in IPsec 15

2 Background

2.1 IPsec

IPsec, as defined in RFCs 24012412, provides security at the IP layer. The in-
terested reader is invited to consult [9,12] for accessible introductions to IPsec.
Implementations of IPsec exist in Microsoft Windows XP, in the Linux kernel
from release 2.6 onwards.2 Various other open source projects are also developing
IPsec implementations and IPsec is widely supported in commercial network-
ing hardware. The IPsec protocols provide data confidentiality, integrity protec-
tion, data origin authentication and anti-replay services as well as supporting
automated key management.

The IPsec protocols can be deployed in two basic modes: transport and tunnel.
In tunnel mode, on which we focus here, cryptographic protection is provided for
entire [P datagrams. In essence, a whole datagram plus security fields is treated
as the new payload of an outer IP datagram, with its own header, called the outer
header. The original, or inner, IP datagram is said to be encapsulated within the
outer IP datagram. In tunnel mode, IPsec processing is typically performed at
security gateways on behalf of endpoint hosts. The gateways could be perimeter
firewalls or routers.

IPsec provides authentication and integrity protection and/or confidential-
ity services through the AH and ESP protocols. Our focus here is on the ESP
protocol, as defined in [16,18]. ESP is normally invoked to provide confiden-
tiality, and usually makes use of a block cipher algorithm operating in CBC
mode. In tunnel mode, the entire inner IP datagram is encrypted and forms
part of the payload of the outer IP datagram. The use in ESP of a variety
of block ciphers has been specified, including DES [21], triple-DES [26] and
AES [11]. ESP in tunnel mode inserts security information in the form of a
header between the outer IP header and the encrypted version of the inner
datagram. This ESP header indicates which algorithms and keys were used to
protect the payload in a 32-bit field called the Security Parameters Index (SPI).
The ESP header also contains a 32-bit sequence number to prevent packet re-
plays; when ESP is used with encryption-only, this sequence number is simply
ignored by IPsec implementations (as it is not protected in any way). ESP in
tunnel mode may also append an authentication field after the encrypted por-
tion. This contains a MAC value if ESP’s optional integrity protection features
are in use.

Further discussion of IPsec configuration and the combined usage of AH and
ESP in tunnel and transport modes is beyond the scope of this paper. IPsec
provides an automated key management service through the Internet Key Ex-
change (IKE) [13]. We will simply assume that key establishment for ESP has
taken place, either manually or using IKE.

2 All further references to Linux in this paper refer to official release 2.6.8.1 of the
Linux kernel from http://kernel.org.

16 K.G. Paterson and A.K.L. Yau

2.2 CBC Mode Encryption in ESP

We outline how CBC mode is used by ESP in tunnel mode. For more details, see
[16,21,11, 26]. First of all, the original (inner) datagram that is to be protected
is treated as a sequence of bytes. This sequence is padded and then a single Next
Header byte is appended. It is permissible for the padding to be of variable length
and to extend over multiple blocks. We assume throughout that the minimum
amount of padding is used, though our attacks are easily modified to handle
variable length padding. Let us assume that the byte sequence after padding
consists of ¢ blocks, each of n bits. We denote these blocks by P, Ps, ..., P,. We
use K to denote the key used for the block cipher algorithm and ex (-) (dx(+))
to denote encryption (decryption) of blocks using key K. An n-bit initialization
vector, denoted IV, is selected at random. Then ciphertext blocks are generated
according to the equations:

Co=1V, Ci=ex(Cici®PF), (1<i<yg).

The encrypted portion of the outer datagram is then defined to be the sequence
of ¢ + 1 blocks Cy, (4, ..., Cy.

At the receiving security gateway, the payload of the outer datagram can be
recovered using the equations: P; = C;_1 ® dx (C;),1 < i < q. Any padding and
the Next Header byte can then be stripped off. At this point, Section 5.2 of the
IPsec architectural RFC [15] mandates that implementations should check that
the cryptographic processing performed to recover the inner datagram does in
fact match that specified in local IPsec policies. Presumably, if the check fails,
the datagram should be dropped, though this is not made explicit in [15].% In the
Linux kernel implementation of IPsec, the inner datagram is passed directly to
the IP software on the receiving gateway, without any policy checks being per-
formed. This IP software usually just routes the inner datagram to the intended
destination specified in the destination address of the inner datagram.

2.3 Bit Flipping Attacks

CBC mode has a well-known weakness, commonly known as the bit flipping vul-
nerability. Suppose an attacker captures a CBC mode ciphertext Cy, C1,. .., Cy,
then flips (inverts) a specific bit j in C;_1 and injects the modified ciphertext
into the network. Upon receipt and decryption, this bit flip is transformed into
a bit flip in position j in the plaintext block P;. This can be seen by examining
the decryption equation P; = C;—1 ® di(C;). Thus an attacker can introduce
controlled changes into the value of block P; seen by the decrypting party, simply
by flipping bits in C;_; and injecting modified ciphertexts.

Of course, a problem for the attacker is that any modification to C;_; typically
results in a value of P;_; that is effectively randomized. On the other hand, if the
modification is made in Cy (equal to I'V'), then no damage to plaintext blocks
will result.

3 Note that these checks are not specified in the ESP RFCs [16, 18]. The requirement
to drop datagrams has now been made explicit in [17].

Cryptography in Theory and Practice: The Case of Encryption in IPsec 17

2.4 IP Datagram Headers

The execution of our attacks on ESP in tunnel mode depends in a detailed way
on the structure of the headers of IP datagrams and on the order in which the
fields of these headers are processed. We focus here only on IPv4 headers, as
specified in detail in [20], and on describing those fields that are key to our
attacks. The lay-out of the IP header is shown schematically in Figure 1.

0 1 2 3
01234567890123456789012345678901
Lt S A S e B e gt S
|Version| TIHL |Type of Servicel Total Length
s B B S e e s

+

Identification |Flags| Fragment Offset |
e
Time to Live | Protocol | Header Checksum

B
Source Address |

B e T T e s o Tt S e B s o 1
Destination Address |
B
Options | Padding |
B

i e e e
+
i
+
i
+
i

Fig. 1. Structure of IP header according to RFC 791, [20]

The THL (Internet Header Length) field is 4 bits long and has a value be-
tween 5 and 15. This field indicates the length of the header in 32-bit words.
The typical value is 5; larger values indicate that options bytes are present after
the main header, in the Options field. This field can be up to ten 32-bit words
(40 bytes) in length. It has a strict format; if the format is not followed, then IP
implementations typically generate an ICMP (Internet Control Message Proto-
col) “parameter problem” message which is routed to the host indicated in the
Source Address field. Experiments confirm that, upon receipt of a datagram with
random bytes in the Options field, the implementation of IP in Linux generates
an ICMP message with probability roughly 98.5%. We discuss ICMP in more
detail below.

The Protocol field is 8 bits (1 byte) long and indicates which upper layer
protocol is carried in the IP datagram payload. A minimal set of supported pro-
tocols include ICMP, TCP and UDP. When an IP datagram reaches its intended
destination (as specified in the 32-bit Destination Address field), the protocol
field is inspected. This value determines to which upper layer protocol the pay-
load is passed. If the field contains a value corresponding to a protocol that is
not supported at that host, then the local IP implementation should generate
an ICMP “protocol unreachable” message.

The Header Checksum field is a 16-bit (2-byte) value that is formed by in-
terpreting the header (including the Options field if present) as a sequence of

18 K.G. Paterson and A.K.L. Yau

16-bit words, summing them using 1’s complement arithmetic, and then taking
the 1’s complement of the result. If the Header Checksum fails, the datagram is
discarded silently.

In Linux, the sequence of steps taken by IP when processing a datagram
is as follows. First of all, basic checks are performed on the Version field and
IHL field. The next action is to check the Header Checksum field. After this, a
datagram length check is carried out using the Total Length field. The datagram
is dropped if any of these checks fails. Next, options processing is carried out
if the IHL field indicates that options are present. Assuming this is completed
successfully, a routing decision is made: either the datagram is delivered locally
or is forwarded to another host. In the former case the Protocol field is used to
determine the upper layer protocol to which the datagram payload should be
passed. In the latter case, the TTL field is checked and the datagram dropped
if the TTL has reached zero.

2.5 ICMP

ICMP is a vital part of IP implementations, allowing network problems to be
reported to Internet hosts, routes to be tested, and diagnostics to be gathered.
ICMP was originally specified in [27], and revised for IPv4 routers in [2]. In the
event of a “problem datagram” being received by a host, that host generates
an ICMP message. This message includes the entire IP header of the offending
datagram (including any options), together with a variable number of bytes of
the datagram’s payload. According to [27], 8 bytes of payload should be included.
On the other hand, according to [2], the ICMP datagram should contain as much
of the original datagram as possible without the length of the ICMP datagram
exceeding 576 bytes. This is intended to aid fault diagnosis, and is how ICMP is
implemented in the Linux kernel.

3 Attacks Based on Destination Address Rewriting

We are now ready to discuss our first group of attacks on encryption-only ESP
in tunnel mode. We focus on the case where the block cipher used by ESP has
64-bit blocks. The two-phase attack we describe here serves as an introduction to
the more sophisticated attacks to follow. We describe the attack in the context of
a pair of security gateways communicating using encryption-only ESP in tunnel
mode to protect the traffic between them. The attack also works in more general
applications of this configuration of ESP.

We need to make one major assumption for the attack to work: that the
attacker, controlling the host located at IP address AttAddr, knows the destina-
tion IP address DestAddr of the target inner datagrams. This assumption will
be relaxed shortly.

3.1 The First Phase

Recall that the Destination Address field lies in the fifth 32-bit word of the IP
header, and therefore forms the first 32 bits of plaintext block Ps in the sequence

Cryptography in Theory and Practice: The Case of Encryption in IPsec 19

@ Flip bits here (2 Randomise here

P TIL! PF | CSUM

PAYLOAD

i
3 SRC ADDR PAYLOAD

@ Steps (D and @ resultin ® First 32 bits of payload @ To flip bits here and

random TTL, protocol, checksum also randomised create address in

and source address fields desired range

Fig. 2. Modifications to inner header fields in destination address rewriting attack,
64-bit case

of blocks to be encrypted in CBC mode by ESP. The second 32 bits of this block
is the first 32 bits of the payload of the inner datagram. This phase proceeds
as follows, with the attacker at AttAddr listening for IP datagrams during the
attack (see also Figure 2):

1. Capture a target ESP-protected outer datagram from the network. Let
Co,C1,...,C4 denote the encrypted portion of this datagram’s payload.

2. Modify block C5 in the first 32 bits by XORing it with the 32-bit mask
M = DestAddr @ AttAddr to obtain a block CY.

3. Repeat:
— a. Modify block C%, now in the last 32 bits, by setting these bits to a
random 32-bit value R. Let C% denote the modified block.
— b. Prepare a modified datagram that is identical to the one captured in
step 1, except that block Cs of the encrypted portion is replaced with C%.
Inject this modified datagram into the network.
Until a datagram is received by the attacker at AttAddr.

To see why this phase might work, notice that each injected datagram now
has AttAddr as the destination address of the inner datagram. So when the se-
curity gateway receives the modified outer datagram and decrypts the encrypted
portion, it recovers an inner datagram that will then be routed directly to the
attacker’s machine (we are assuming here that datagrams are not checked after
IPsec processing to see if the correct IPsec policies were applied; this is the case
in the Linux kernel implementation, in contradiction to [15]). The inner data-
gram is in unencrypted form, and its payload will be identical to that of the
original inner datagram except possibly in the first 32 bits (corresponding to the
randomization of the second half of C5). These payload bits can be recovered
easily using the relation P3 = P§ @ (M||R) where Pj is the third block in the
received datagram, M is the address mask used in step 2 and R the random bits
introduced in step 3.

20 K.G. Paterson and A.K.L. Yau

Of course, because of the modifications made to block Cy during the attack,
block P» of the inner datagram is essentially randomized, so the header of the
modified inner datagram is likely to be invalid. Block P» contains the time to live
(TTL), protocol, header checksum and source address fields. Thus the success
rate of each iteration of the attack depends on the combined probability that
the TTL is sufficiently large so that the inner datagram reaches the attacker’s
machine, that the checksum is valid for the new header, and that the new inner
source address is routable. All other fields in the header will be correct, since
they lie in plaintext block P; which is not modified in the attack.

Based on our experience in implementing our other attacks, we estimate that
this success probability should be roughly 27!7 per iteration, with the largest
factor of 2716 coming from the requirement for the random checksum to be a
valid one. From this, it can be calculated that 2'7 iterations of steps 3a and 3b
of the attack will give a success probability of about 60%.

3.2 The Second Phase — Recovering Further Plaintext

An attacker who has conducted the first phase against an encrypted inner data-
gram of the form Cy,C,...,C,; does not need to repeat it in order to obtain
decrypted versions of further inner datagrams. Instead, the contents of new data-
grams can be recovered much more efficiently, as follows.

The attacker reuses the payload portion Cy, Cy1, CY, C5 of the outer datagram
that was successful in the first phase, splicing onto it any g — 6 consecutive
ciphertext blocks from the encrypted payload of the new target datagram, and
finishing with the last three blocks Cy—2, C;—1, C of the original target.* Dummy
blocks can be used if necessary to ensure that a total of g blocks are present.

The attacker then uses this modified byte sequence as the encrypted payload
of an outer datagram. This construction ensures that, upon decryption by the
security gateway, the payload is correctly padded and is interpreted as an inner
datagram with a valid header and a destination address equal to AttAddr. This
datagram will be routed to the attacker’s machine (for the same reasons that
the successful datagram from the main attack was). From this datagram, a total
of 64(q — 6) bits of plaintext from the new target datagram can be recovered
(the first 64 bits are obtained using a similar to trick to that used to recover P3
in the main attack; the remaining bits appear in clear in blocks 5 up to ¢ — 3 of
the datagram payload).

3.3 Relaxing the Address Assumption

Our main assumption that the attacker know the complete destination IP ad-
dress of the inner datagram can be relaxed. It is enough that the attacker knows
a significant portion of this IP address. The main idea is as follows. Instead of
using a mask equal to DestAddr @ AttAddr in step 2 of the attack, the attacker

4 In fact, often only the last two blocks need to be preserved because the padding
rarely extends over more than one block. Variable length padding of up to 255 bytes
is allowed in [16]; our attacks are easily modified to handle this.

Cryptography in Theory and Practice: The Case of Encryption in IPsec 21

instead uses a mask which modifies that portion of the destination address known
to the attacker so that it equals the corresponding portion of the address of his
target machine. He then modifies the remaining bits of the destination address
using a counter, and repeats the main attack for each counter value. One counter
value will produce a destination address exactly matching that of the attacker;
for this counter value, the attacker has the same probability as before (roughly
2717) of receiving a datagram from the gateway. After this effort, a more efficient
second phase can again be used. Other variants are also possible [25].

3.4 Attack Implementation

As a proof of concept and as a precursor to our main attacks, we implemented
a 128-bit version of the first phase of this attack against IP and IPsec as imple-
mented in the Linux kernel. We found that roughly 2% iterations were sufficient
to produce the desired plaintext-bearing datagram, in line with a theoretical
analysis of our 128-bit attack than can be found in [25]. This experiment con-
firmed the fact that the Linux implementation of IPsec does not carry out the
policy checks described in Section 2.2 (otherwise the modified inner datagrams
would be dropped because they would fail to match the IPsec policies used in
their recovery).

4 Attacks Based on IP Options Processing

Our next set of attacks exploits the way in which IP implementations gener-
ate ICMP messages when processing incorrectly formatted options fields in IP
headers. We focus on the case where the block cipher used by ESP has 64-bit
blocks. We again describe the attack in the context of a pair of security gateways
communicating using encryption-only ESP in tunnel mode.

We need to make some assumptions for the attack to work. As usual, we
assume that the attacker is able to intercept ESP-protected datagrams and to
inject modified datagrams into the network. We additionally assume that the
attacker is able to monitor one of the gateways for ICMP messages not sent
through the IPsec tunnel. A third-party network service provider is in a perfect
position to mount this attack, for example. This would also be easily achievable
if the IPsec traffic was being broadcast on a wireless network in which WEP
(or an equivalent) was not in use. We will see later how this requirement can
be relaxed in the 128-bit case, provided the attacker has (partial) information
about inner source addresses.

4.1 The First Phase

As before, the attacker has captured an outer datagram and wishes to recover
the plaintext version of the encrypted portion of its payload. Recall that the
IHL field is located in the first byte of the IP header, and therefore lies in
plaintext block P; in the sequence of blocks to be encrypted in CBC mode by
ESP. The attacker modifies the contents of the IHL field of the inner datagram

22 K.G. Paterson and A.K.L. Yau

by flipping appropriate bits in IV, making the THL equal a value greater than 5.
When the inner datagram is subsequently processed by the IP software on the
security gateway, the first word(s) of the payload (forming the contents of the
second half of Ps; onwards) will be interpreted as options bytes. We randomize
the values of these bytes (as seen by the security gateway) by placing a random
value in the last 32 bits of Cy. Then with high probability, these bytes will
be incorrectly formatted, resulting in the generation of an ICMP “parameter
problem” message. The payload of this ICMP message will contain the header
and a segment of the payload of the inner datagram. Thus, if it can be captured
by the attacker, he can learn plaintext information from the inner datagram.
However, randomizing bytes in Cy has the additional effect of randomizing the
contents of P, after decryption by the security gateway. So the inner datagram
is likely to be dropped silently by the security gateway before any IP options
processing takes place, because of an incorrect checksum value. Thus, in fact,
the ICMP message will not often be generated. Moreover, the ICMP message, if
generated, will be sent to the random source address now specified in P,. This
helps to ensure that the ICMP message is not sent through the IPsec tunnel
between the security gateways, thus making it visible to the attacker, but also
means that this address may not be routable. These problems can be overcome
by iterating the attack sufficiently often and using new random bytes on each
iteration. We will quantify the success rate for the Linux implementation of IP
in Section 4.4 below.
This attack is illustrated in Figure 3 and formalized below.

1. Capture a target ESP-protected outer datagram from the network. Let
Co,C1, ..., C4 denote the encrypted portion of this datagram’s payload.

2. Modify block Cy = IV in the first byte, XORing it with a mask which
increases the IHL to a value greater than 5, obtaining a block CY.

3. Repeat:
— a. Modify block C5 in the last 32 bits, by setting these bits to a random
32-bit value R. Let C} denote the modified block.
— b. Prepare a modified datagram that is identical to the one captured in
step 1, except that blocks Cy and C5 of the encrypted portion are replaced
with Cj) and C}. Inject this modified datagram into the network.
Until an ICMP message is intercepted.

4.2 The Second Phase

Tricks similar to those introduced in Section 3.2 can be used in a second phase
to speed up the recovery of all payload bytes from the remainder of the initial
target datagram and further target datagrams. Once again, a successful header
can be re-used and is guaranteed to always generate an ICMP message. The
speed of recovery of plaintext in this second phase is limited only by the rate at
which the security gateway is permitted to generate ICMP messages and by the
number of payload bytes returned by ICMP.

Cryptography in Theory and Practice: The Case of Encryption in IPsec 23

C3 C4 [

(@ Flip bits here @ Flip bits here

T T T |
T TTL! PF | GSUM ‘ DEST ADDR
i R e PAYLOAD
| SRC ADDR 4 PAYLOAD .
(@ To change header ® And to randomise source (3 Then payload (® To randomise
length here address and checksum here interpreted as options options bits here

Fig. 3. Modifications to inner header fields in options processing attack, 64-bit case

4.3 The 128-Bit Case

A similar attack is possible when the block cipher used by ESP has 128-bit
blocks. Now, however, the IHL field, Header Checksum field and Source Address
field can all be manipulated by bit flipping in Cy = I'V. This allows the possible
checksums to be tested systematically, which improves the success probability.
The payload bytes which get interpreted as options bytes by the security gateway
can be randomized by selecting a random value for Cs. Again, further plaintext
can be recovered faster in a second phase which re-uses the successful header
from the first phase. Moreover, if the attacker has some (or full) knowledge of
the source address of the inner datagrams, then he can use similar ideas to those
explored in Section 3.3 to direct the ICMP response to his own machine, this
time by changing the source address in the inner header by manipulating the IV.
This is an important variant, since it removes the most stringent requirement
for our attack, namely that the attacker be able to monitor the security gateway
for ICMP messages.

4.4 Attack Implementation

We have successfully carried out the two phases of our attack against IP and
IPsec as implemented in the Linux kernel. We describe the main features and
results of this implementation here.

Figure 4 shows the experimental set-up, with two Linux machines acting as
security gateways for an ESP tunnel using either DES or AES as the encryption
algorithm (the end host shown in this figure is not active during this attack).
These machines are connected to a hub, as is the attack platform — this is simply
to ease packet sniffing in the network. Also connected to this hub is a router,
configured to act as the default router for the security gateways, thus ensuring
that any ICMP messages can take at least a first hop towards their destinations.

24 K.G. Paterson and A.K.L. Yau

Router Hub

l l ESP Tunnel

JR N

0=0

IPsec Gateway A Attacker IPsec Gateway B Endhost

Fig. 4. Experimental set-up for attacks based on options processing and protocol field
manipulation

We used a value of 6 for the modified IHL field, so as to maximise the num-
ber of plaintext bytes returned for each injected datagram in the second phase.
We observed experimentally that presenting a datagram with a random source
address and random options bytes to the IP implementation in Linux results
in an ICMP “parameter problem” message with probability about 0.85. More-
over, the probability that a random 16-bit value represents the correct header
checksum for the modified inner datagram is roughly 27!6. Thus the expected
success probability of the first phase of the attack in the 64-bit case is roughly
0.85 x 2716 per iteration. For example, then, 2!6 iterations should give a success
rate of 57%.

We performed 100 runs of the first phase of the attack. An average of 77600
iterations (taking on average 2.64 minutes with our attack client) were needed to
successfully generate an ICMP message. Linux is generous in providing 524 bytes
of inner datagram payload in ICMP messages. As a consequence, the first phase
and each injected datagram in the second phase yields 512 bytes of plaintext
data (provided the encrypted payload in the target selected for the first phase is
longer than 568 bytes, including the IV and encrypted inner header). Thus the
second phase can rapidly recover the complete contents of inner datagrams. Our
attack client, written in C, captures multiple ESP-protected datagrams, selects
the one of optimum length for the first phase, conducts the first phase, and then
runs the second, faster phase on remaining datagrams. Our attack client is also
written to carry out the 128-bit variant of this attack.

5 Attacks Based on Protocol Field Manipulation

Our third class of attacks exploits the way in which IP implementations generate
ICMP messages when faced with unsupported upper layer protocols. We focus

Cryptography in Theory and Practice: The Case of Encryption in IPsec 25

on the case where the block cipher used by ESP has 128-bit blocks, as this is
the more efficient case. We need to make the same assumptions as in Section 4
for the attack to work.

5.1 The First Phase

Recall that the protocol field is located in the second byte of the third 32-bit
word of the IP header, and therefore lies in plaintext block P; in the sequence of
blocks to be encrypted in CBC mode by ESP. The attacker modifies the contents
of the protocol field of the inner datagram by flipping appropriate bits in IV,
making the field equal a value corresponding to an upper layer protocol that is
not supported by the end host receiving the inner datagram. Now, when the inner
datagram arrives at the end host that is its final destination, an ICMP “proto-
col unreachable” message will be generated. The payload of this ICMP message
will contain the header and a segment of the payload of the inner datagram.
Thus, if it can be captured by the attacker, then he can learn plaintext infor-
mation from the inner datagram. Note that, in contrast to the attack based on
options processing, the end host, not the security gateway, generates the ICMP
message.

An attacker must solve two problems here. Firstly, the attacker must alter
the source address of the inner datagram, so that the ICMP response will not
be routed through the IPsec tunnel and so that the attacker can intercept it.
Secondly, the attacker must fix the header checksum so that it contains the
correct value for the modified inner header. Fortunately, in the 128-bit case,
both of these requirements can be met by further manipulating only IV, and in
a systematic way that leads to a very efficient attack.

Consider an attacker who modifies the protocol field by forcing a flip in bit ¢ of
the field (where 0 < i < 8) and who alters the inner source address by forcing a
flip in bit j of the address (where 0 < j < 32). These bit flips can both be induced
by manipulating IV. To correct the inner header checksum, the attacker XORs
it with two masks in sequence (one mask for each bit flip), again by flipping bits
in IV. A detailed analysis of the checksum algorithm (see [25]) shows that one
of only 17 possible masks will correct each bit flip. The attacker tries these pairs
of masks in decreasing order of probability. A maximum of 172 = 289 iterations
will be needed, with an expected number much smaller than this because of
the way mask probabilities are distributed. In fact, a simple analysis shows that
when i 4+ 8 # j mod 16, the expected number of iterations is slightly less than 7,
and smaller still when ¢ + 8 = j mod 16. This attack can be formalized just as
with the earlier attacks.

In an important variant of this attack, now requiring on average 2'° iterations,
the attacker can additionally exploit knowledge of the inner source address to
rewrite this address, thus ensuring that any ICMP response is directed to a host
he controls. This removes the requirement that the attacker be able to monitor
the security gateway for ICMP messages.

26 K.G. Paterson and A.K.L. Yau

5.2 The Second Phase

Just as with the attack in Section 4, once the first phase is complete, a second
phase which recovers the complete contents of the remainder of the initial target
datagram and further target datagrams can be invoked.

5.3 The 64-Bit Case

A similar, but less efficient, attack is possible when the block cipher used by ESP
has 64-bit blocks, but now the protocol field is manipulated by randomizing the
last 32 bits of block C5. The success probability is now limited by the need for
a random checksum to have the correct value, and for a random protocol field
to represent an unsupported protocol. In practice, it is close to 2716, because,
typically, only a handful of protocols are supported. Again, further plaintext can
be recovered faster in a second phase which re-uses the successful header from
the first phase.

5.4 Attack Implementation

We have successfully implemented the two phases of the 128-bit attack against
the Linux kernel implementation of IP and IPsec in our attack client. The ex-
perimental set-up is shown in Figure 4. In our attack, we used values ¢ = 0 and
j = 6 (many other pairs worked equally well).

According to the probability analysis sketched in Section 5.1, the expected
number of iterations of the first phase with these parameters is slightly less than
7. We performed 1000 runs of the first phase of the attack. An average of 6.53
iterations (taking 1.34 seconds with our attack client) was needed to successfully
generate an ICMP “protocol unreachable” message containing plaintext infor-
mation. Because of the way in which Linux implements ICMP, the first phase
and each injected datagram in the second phase yields about 500 bytes of plain-
text data. This means that our attack client is able to recover large amounts of
plaintext easily in the second phase of the attack. Overall, because of the small
number of trials needed, the attack effectively takes place in real time.

6 Impact

We have presented a number of attacks and variants on encryption-only ESP
in tunnel mode, as implemented in the Linux kernel. The attacks are efficient
and have been demonstrated to work under realistic network conditions. Per-
haps surprisingly, ESP using a 128-bit block cipher such as AES may be more
vulnerable to our attacks than one using a 64-bit block cipher. The underly-
ing reason for this is that in the 128-bit case, more fields of the inner header
can be manipulated by modifying IV, without any impact on the contents of
plaintext blocks. A related point is that the complexity of the attacks does not
depend on the key size of the block cipher employed by ESP: triple-DES is just
as vulnerable as DES.

Cryptography in Theory and Practice: The Case of Encryption in IPsec 27

We note that, as with [23], our work demonstrates that the open source ap-
proach does not necessarily result in secure software: an encryption-only config-
uration was all too easy to select, the IPsec implementation did not carry out
the post-processing checks mandated in the RFCs, and we found other flaws in
the implementation, particularly in the handling of padding (c.f. [29]).

Concerning the real-world impact of our attacks, we have presented evidence
in the introduction that encryption-only IPsec may still be in common use. But
we have performed only limited experiments against other IP/IPsec implemen-
tations. We do know that several vendors attempt to disable encryption-only.
However, disabling encryption-only configurations is not enough to prevent our
attacks, as they still apply to some configurations where integrity-protection is
supplied by IPsec itself. As just one instance, the attacks in Sections 3 and 4 still
work if AH is applied in transport mode end-to-end and is tunnelled inside ESP
from gateway-to-gateway. This is because the redirection or ICMP generation
take place at the gateway, before any integrity checking occurs. We note too that
our attacks are not prevented if integrity protection is offered independently of
IPsec by a higher-layer protocol. This contradicts the statement made in [18]
that we quoted in Section 1.

7 Conclusions

We believe that the dangers of encryption-only ESP that we have highlighted
here, coupled with the difficulty of ensuring that security-unaware users pick
strong configurations from amongst the myriad possibilities, means that a con-
servative approach is called for in the IPsec standards themselves. Unfortunately,
ESPv3 [18] still permits the use of encryption-only ESP, though it is no longer
mandatory to support it.

The complexity of the IPsec standards has been commented on before [10]. It
certainly does not help an implementation team if processing checks important to
the security of one module (ESP) are contained in another document altogether
(RFC 2401, [15]). It is worrying that the security of the encryption-only mode
depends completely on these checks being carried out: the security dangles from
a very thin thread indeed, as our attacks on the native Linux implementation
make clear. It would help, then, if the reasons why those checks need to be
performed were spelled out in the standard: this would give an implementor a
stronger motivation for getting things right.

We hope that this work will help in persuading users to migrate away from
encryption-only IPsec configurations. We also hope that it serves as an instruc-
tive example to the theoretical community of the gaps that exist between theory
and practice in cryptography, and that it helps to bridge these gaps.

Acknowledgements

We would like to thank Steve Kent and David Wagner for providing impor-
tant information and context. We would also like to thank the members of the

28

K.G. Paterson and A.K.L. Yau

NISCC Vulnerability Team for their assistance in evaluating the impact of our
attacks and for helping us in working with the IPsec vendor and user commu-
nities ahead of their vulnerability advisory [24] concerning this work. Nessim
Kisserli’s assistance with lab-space and hardware issues was also invaluable.

References

w N

10.

11.

12.

13.

14.

15.

16.

17.

18.

R. Atkinson, “IP Encapsulating Security Payload (ESP)”, RFC 1827, August 1995.
F. Baker, “Requirements for IPv4 Routers”, RFC 1812, June 1995.
M. Bellare, T. Kohno and C. Namprempre, “Breaking and provably repairing the

SSH authenticated encryption scheme: A case study of the Encode-then-Encrypt-
and-MAC paradigm.” ACM TISSEC, Vol. 7, No. 2, May 2004, pp. 206-241.

. M. Bellare and C. Namprempre, “Authenticated Encryption: Relations among no-

tions and analysis of the generic composition paradigm.” In 7. Okamoto (ed.),
Advances in Cryptology — ASIACRYPT 2000, LNCS Vol. 1976, Springer-Verlag,
2000, pp. 531-545.

. M. Bellare and P. Rogaway, “Encode-then-encipher encryption: How to exploit

nonces or redundancy in plaintexts for efficient cryptography.” In T. Okamoto (ed.),
Advances in Cryptology — ASIACRYPT 2000, LNCS Vol. 1976, Springer-Verlag,
2000, pp.317-330.

. S. Bellovin, “Problem Areas for the IP Security Protocols”, in Proceedings of the

Sizth Useniz Uniz Security Symposium, pp. 1-16, San Jose, CA, July 1996.

. N. Borisov, I. Goldberg and D. Wagner, “Intercepting Mobile Communications: The

Insecurity of 802.11”, in Proc. MOBICOM 2001, ACM Press, 2001, pp. 180-189.

. B.Canvel, A.P. Hiltgen, S. Vaudenay and M. Vuagnoux, “Password Interception

in a SSL/TLS Channel,” in D. Boneh (ed.), Advances in Cryptology — CRYPTO
2003, LNCS Vol. 2729, Springer-Verlag, 2003, pp. 583-599

. N. Doraswamy and D. Harkins. IPsec: the new security standard for the Internet,

Intranets and Virtual Private Networks (second edition), Prentice Hall PTR, 2003.
N. Ferguson and B. Schneier, “A cryptographic evaluation of IPsec.” Unpublished
manuscrip available from http://www.schneier.com/paper-ipsec.html.

S. Frankel, R. Glenn and S. Kelly, “The AES-CBC Cipher Algorithm and Its Use
with IPsec”, RFC 3602, Sept. 2003.

S. Frankel, K. Kent, R. Lewkowski, A.D. Orebaugh, R.W. Ritchey and S.R. Sharma,
“Guide to IPsec VPNs”, NIST Special Publication 800-77 (Draft), January 2005.
D. Harkins and D. Carrel, “The Internet Key Exchange (IKE)”, RFC 2409, Nov.
1998.

J. Katz and M. Yung, “Unforgeable encryption and chosen ciphertext secure modes
of operation.” In B. Schneier (ed.), FSE 2000, LNCS Vol. 1978, Springer-Verlag
2001, pp. 284-299.

S. Kent and R. Atkinson, “Security Architecture for the Internet Protocol”, RFC
2401, Nov. 1998.

S. Kent and R. Atkinson, “IP Encapsulating Security Payload (ESP)”, RFC 2406,
Nov. 1998.

S. Kent and K. Seo, “Security Architecture for the Internet Protocol”, RFC 4301
(obsoletes RFC 2401), Dec. 2005.

S. Kent, “IP Encapsulating Security Payload (ESP)”, RFC 4303 (obsoletes RFC
2406), Dec. 2005.

19

20.
21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

Cryptography in Theory and Practice: The Case of Encryption in IPsec 29

H. Krawczyk, “The Order of Encryption and Authentication for Protecting Com-
munications (Or: How Secure Is SSL?)”, in J. Kilian (ed.), Advances in Cryptology
- CRYPTO 2001, LNCS Vol. 2139, Springer-Verlag 2001, pp. 310-331.

Internet Protocol, RFC 791, Sept. 1981.

C. Madson and N. Doraswamy, “The ESP DES-CBC Cipher Algorithm With Ex-
plicit IV”, RFC 2405, Nov. 1998.

C.B. McCubbin, A.A. Selcuk and D. Sidhu, “Initialization vector attacks on the
IPsec protocol suite.” In WETICE 2000, IEEE Computer Society, pp. 171-175.
P.Q. Nguyen, “Can we trust cryptographic software? Cryptographic flaws in GNU
Privacy Guard v1.2.3”, in C. Cachin (ed.), Advances in Cryptology — EURO-
CRYPT 2004, LNCS Vol. 3027, Springer-Verlag 2004, pp. 555-570.

NISCC Vulnerability Advisory IPSEC - 004033, 9th May 2005. Available from
http://www.niscc.gov.uk/niscc/docs/al-20050509-00386 . html?lang=en.
K.G. Paterson and A.K.L. Yau, “Cryptography in Theory and Practice: The
Case of Encryption in IPsec.” Extended version of this paper available from
http://eprint.iacr.org/2005/416.

R. Pereira and R. Adams, “The ESP CBC-Mode Cipher Algorithms”, RFC 2451,
Nov. 1998.

J. Postel, “Internet Control Message Protocol”, RFC 792, Sept. 1981.

S. Stubblebine and V. Gligor, “On Message Integrity in Cryptographic Protocols”,
in IEEFE Security and Privacy, May 1992, pp. 85-104.

S. Vaudenay, “Security flaws induced by CBC padding — applications to SSL,
IPSEC, WTLS...”, in L.R. Knudsen (ed.), Advances in Cryptology - EUROCRYPT
2002, LNCS Vol. 2332, Springer-Verlag 2002, pp. 534-545.

T. Yu, S. Hartman and K. Raeburn, “The perils of unauthenticated encryption:
Kerberos version 4”7, in Proc. NDSS 2004, The Internet Society, 2004.

Polynomial Equivalence Problems: Algorithmic
and Theoretical Aspects

Jean-Charles Faugere! and Ludovic Perret?

L LIP6, 8 rue du Capitaine Scott, F-75015, France
Jean-Charles.Faugere@lip6.fr
2 UCL, Crypto Group, Microelectronic Laboratory, Place du Levant,
3 Louvain-la-Neuve, B 1348, Belgium
ludovic.perret@uclouvain.be

Abstract. The Isomorphism of Polynomials (IP) [28], which is the main
concern of this paper, originally corresponds to the problem of recovering
the secret key of a C* scheme [26]. Besides, the security of various other
schemes (signature, authentication [28], traitor tracing [5], ...) also de-
pends on the practical hardness of IP. Due to its numerous applications,
the Isomorphism of Polynomials is thus one of the most fundamental
problems in multivariate cryptography. In this paper, we address two
complementary aspects of IP, namely its theoretical and practical dif-
ficulty. We present an upper bound on the theoretical complexity of
“IP-like” problems, i.e. a problem consisting in recovering a particular
transformation between two sets of multivariate polynomials. We prove
that these problems are not NP-Hard (provided that the polynomial hi-
erarchy does not collapse). Concerning the practical aspect, we present
a new algorithm for solving IP. In a nutshell, the idea is to generate a
suitable algebraic system of equations whose zeroes correspond to a so-
lution of IP. From a practical point of view, we employed a fast Grobner
basis algorithm, namely F5 [17], for solving this system. This approach
is efficient in practice and obliges to modify the current security criteria
for IP. We have indeed broken several challenges proposed in literature
[28,29,5]. For instance, we solved a challenge proposed by O. Billet and
H. Gilbert at Asiacrypt’03 [5] in less than one second.

Keywords: Public-Key Cryptography, Cryptanalysis, Isomorphism of
Polynomials (IP), Grobner bases, Fs algorithm.

1 Introduction

Multivariate cryptography — which can be roughly defined as the cryptogra-
phy using polynomials in several variables — offers a relatively wide spectrum
of problems that can be used in public-key cryptography. The Isomorphism of
Polynomials (IP) lies in this family [28]. Briefly, this problem consists in recov-
ering a particular transformation between two sets of multivariate polynomials
permitting to obtain one set from the other. It originally corresponds to the
problem of recovering the secret key of a C* scheme [26]. Besides, the security of

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 30-47, 2006.
© International Association for Cryptologic Research 2006

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects 31

several other schemes is directly based on the practical difficulty of IP, namely
the authentication/signature schemes proposed by J. Patarin at Eurocrypt’96
[28], and the traitor tracing scheme described by O. Billet and H. Gilbert at
Asiacrypt’03 [5]. We also mention that IP is in a certain manner related to the
security of Sflash [13] — the signature scheme recommended by the European con-
sortium Nessie for low-cost smart cards [27] — and can be alternatively viewed
as the problem of detecting affine equivalence between S-Boxes [6]. All in all,
one can consider the hardness of IP as one of the major issues in multivariate
cryptography. The goal of this paper is to provide new insights on the theoretical
and practical complexity of IP and some of its relevant variants.

1.1 Previous Work

To the best of our knowledge, the most significant results concerning IP are
presented in [11], where an upper bound on the theoretical complexity of IP is
given. Nevertheless, we point out that the proof provided is actually not com-
plete. Anyway, the upper bound presented in that paper is original and general.
It is indeed based on a group theoretic approach of IP and actually dedicated to
“IP-like” problems. A new algorithm for solving IP, called “To and Fro”, is also
described in [11]. This algorithm is however devoted to special instances of IP,
namely the ones corresponding to a public key of C* [26]. Thus, it can not be
used for solving generic instances of IP. This is not the case for the algorithm
presented here. Besides, we present in Section 4 experimental results demon-
strating that our algorithm outperforms the “To and Fro” method. Finally, we
would like to mention a result due to W. Geiselmann, R. Steinwandt, and T.
Beth [23]. In the context of C*, they showed how to easily recover the affine
parts of a solution of IP. A similar property also holds in the context of HFE
[20]. Such a kind of result does not exist for generic instances of IP. Nevertheless,
it means that in the cryptographic context we can focus our attention on the
linear variant of IP, called 2PLE here.

1.2 Organization of the Paper and Main Results

The paper is organized as follows. We begin in Section 2 by introducing our nota-
tion and defining essential tools of our algorithm, namely varieties and Grébner
bases. A recent algorithm (i.e. F5 [17]) for computing these bases is also suc-
cinctly described. Finally, we define more formally the Isomorphism of Polyno-
mials (IP) and two of its variants, namely the Isomorphism of Polynomials with
one Secret (IP1S) [28], and the linear variant of IP that we name 2PLE. In Sec-
tion 3, we show that these problems are actually particular instances of a more
general problem that we call Polynomial Equivalence (PE). This problem pro-
vides a formal definition of an “IP-like” problem. Using classical results of group
theory, we conclude this section by providing an upper bound on the theoretical
hardness of PE. A new algorithm for solving 2PLE is presented in Section 4.
The idea is to generate a suitable polynomial system of equations whose zeroes
correspond to a solution of IP. In order to construct this system, we also provide
some specific properties of 2PLE. From a practical point of view, we used the

32 J.-C. Faugere and L. Perret

most recent (and efficient) Grébner basis algorithm, namely Fs [17], for solv-
ing this system. It is difficult to obtain a complexity bound really reflecting the
practical behavior of the F5 algorithm. We therefore carried out experimental
results illustrating the practical efficiency of our approach. We have indeed bro-
ken several challenges proposed in literature [28,29,5]. For instance, we solved
a challenge proposed by O. Billet and H. Gilbert at Asiacrypt’03 [5] in less than
one second.

2 Preliminaries

The notation used throughout this paper is the following. We denote by F, the
finite field with ¢ = p” elements (p a prime, and r > 1), and by M,, ,,(F,) the
set of n x u matrices whose components are in F,. As usual, GL,(F,) represents
the set of invertible matrices of M,, ,(F,), and AGL, (F,) denotes the cartesian
product GL,(Fq) x Fy. Finally, let x = (21,...,2,), and Fy[x] = Fylz1,..., 2,],
be the polynomial ring in the n indeterminates z1, . . ., z, over [F,. By convention,
a boldfaced letter will always refer to a row vector.

2.1 Grobner Bases

We define now two essential notions of this paper, namely varieties and Grébner
bases. For a more thorough introduction to these tools, we refer to [1, 15].

Let p = (p1,. .., Pps) be polynomials in Fy[x]|. We shall call Z = (p1,...,ps) =
{3 PRk, ut, - uk € Fo[x]} C Fy[x] the ideal generated by p1,...,ps, and
denote by V(Z) = {z € F} : pi(z) = 0,Vi,1 < i < s} the variety associated
to Z. Grébner bases provide a method for computing this variety. Informally,
a Grobner basis of an ideal 7 is a computable generator set of Z with “good”
algorithmic properties. These bases are defined with respect to monomial orders.
Here, we will use the lexicographical (LEX) and degree reverse lexicographical
(DRL) orders, which are defined as follows:

Definition 1. Let a = (a1,...,ay) and 8= (01,...,0,) € N*. Then:
-zt ezl <pEx xfl -~ aPnif the left-most nonzero entry of a— (3 is positive.

— @t adn <prr ol al, if Y aq > Y, B, or Y o = oI, B
and the right-most nonzero entry of a — [is negative.

To define Grébner bases, we need to introduce the following definitions.

Definition 2. For any n-tuple « = (a1,...,a,) € N*, we denote by x* the
monomial z{* ---z%". We shall define the total degree of this monomial by the
sum Y i, a;. The leading monomial of a polynomial p € F,[x] is the largest
monomial (w.r.t some monomial ordering <) among the monomials of p. This
leading monomial will be denoted by LM(p, <). The degree of p, denoted deg(p),
is the total degree of LM(p, <). Finally, the maximal total degree of p is the
maximal total degree of the monomials occurring in p.

We are now in a position to define one of the main objects of this paper.

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects 33

Definition 3. A set of polynomials G is a Grobner basis — w.r.t. a monomial
ordering < — of an ideal T in F4[x] if, for all p € I, there exists g € G such that
LM(g, <) divides LM(p, <).

Grobner bases are a fundamental tool to study algebraic systems in theory and
practice. They provide an algorithmic solution to several problems related to
polynomial systems (see [1] for instance). We pay here particular attention to
Grobner bases computed for a lexicographical ordering. It offers a way of sim-
plifying an algebraic system by giving an equivalent system with a structured
shape. A lexicographical Grobner basis of a zero-dimensional system (i.e. with
a finite number of zeroes over the algebraic closure) is indeed always as follows:

{fi(z1) =0, fo(z1,22) =0,..., fro(x1,22) =0, froq1(z1,22,23) =0,...,...}

To compute the variety, we simply have to successively eliminate variables by
computing zeroes of univariate polynomials and back-substituting results. How-
ever, computing a Grobner basis w.r.t. a lexicographical order is in practice much
slower than computing a Grobner basis w.r.t. another monomial ordering. It is
usually for a DRL order that the computation of Grébner bases is the fastest in
practice. Algorithms changing the monomial ordering of a Grobner basis permit
to handle efficiently this problem. The FLGM algorithm [19] allows to transform
a Grobner basis w.r.t. some monomial ordering into a lexicographical Grébner
basis in the zero-dimensional case and is polynomial-time.

The historical method for computing Grobner bases is Buchberger’s algorithm
[9, 8]. Recently, more efficient algorithms have been proposed. The F4 algorithm
[16] is based on the intensive use of linear algebra methods. In short, the arbitrary
choices — which limit the practical efficiency of Buchberger’s algorithm — are
replaced by computational strategies related to classical linear algebra problems
(mainly the computation of a row echelon form).

In [17], a new criterion (the F5 criterion) for detecting useless computations
has been proposed. We mention that Buchberger’s algorithm spends 90% of its
time to perform these useless computations. Under some regularity conditions, it
has been proved that all useless computations can be avoided. A new algorithm,
called F5, has then been built using this criterion and linear algebra methods.
Briefly, it constructs incrementally the following matrices in degree d:

mip > mg > M3 ...
t1f1
Ag= tafs
t3f3

where the indices of the columns are monomials sorted for the admissible order-
ing < and the rows are product of some polynomials f; by some monomials ¢;
such that deg(t; f;) < d. For a regular system ([17]) the matrices Ag4 are of full
rank. In a second step, row echelon forms of theses matrices are computed, i.e.

34 J.-C. Faugere and L. Perret

mi1 mo M3

tfs 100 .
A= tafs |0 10 .
tsfs |0 0 1.
000

For d sufficiently large, A/, contains a Grébner basis of the ideal considered.
Important parameters to evaluate the complexity of F5 is the maximal degree
d occurring in the computation and the size of the matrix Ay. The overall cost
is thus dominated by (#Ad)g. Very roughly, (#A4) can be approximated by
O(n?). A more precise complexity analysis can be found in [3,4].

From a practical point of view, the gap with other algorithms computing
Grobner basis is consequent. To date, Fy is the most efficient method for com-
puting Grobner bases, and hence zero-dimensional varieties. In particular, it has
been proved [2] — from both a theoretical and practical point of view — that XL
[14] is less efficient than F5. Due to the range of examples that become com-
putable with F5, Grobner basis can be considered as a reasonable computable
object in real scale applications. For systems arising in cryptography, F5 has for
instance given impressing results on HFE [18].

2.2 Isomorphism of Polynomials and Related Problems

Before defining formally IP, we briefly come back here to the origin of this
problem. To do so, we describe the encryption scheme called C* [26]. The
public key of this system is a set of multivariate quadratic polynomials b =
(b1(x),...,bn(x)) € Fy[x]™. These polynomials are obtained by applying two
bijective affine transformations (S, V) and (U, V) of AGL, (F,) to a particular
set of polynomials a = (a1(x),...,an(x)) € Fg[x]™. That is:

(b1(x),...,bu(x)) = (a1 (xS +T),...,a,(xS + T))U + V,

denoted b(x) = a(xS + T)U + V in the sequel.

To encrypt, we simply evaluate a message m € F on b, i.e. (by(m),...,b,(m)).
To recover the correct plaintext, the legitimate recipient uses the bijectivity of the
affine transformations combined with the particular structure of the polynomials
of a. How these polynomials are constructed is not relevant here. But, due to
particular constraints, the polynomials of a are always considered as a public
data. The secret key of C* is constituted of (S, T), (U, V) € AGL,(Fy).

The first approach for attacking this scheme consists in trying to retrieve the
message corresponding to a ciphertext ¢ € Fy, i.e. finding a zero of b(x) = c.
This corresponds to solving a particular instance of the so-called MQ problem,
which is NP-Hard in general [10,22]. We emphasize that such a kind of result
uniquely guarantees the worst-case hardness and does not provide any informa-
tion concerning the average-case difficulty. For instance, J.-C. Faugere and A.
Joux proposed a polynomial-time algorithm for solving instances of MQ corre-
sponding to the public key of HFE [18], which is an extension of C*.

Another approach for breaking C* consists in attempting to recover the affine
transformations hiding the structure of a. That is, extracting the secret key from

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects 35

the public key. This problem, introduced by J. Patarin at Eurocrypt’96 [28], is
defined as follows:

Isomorphism of Polynomials (IP)
Input: a = (a1,...,a,), and b= (by,...,b,) in Fy[x]".
Question: Find - if any - (5, V) € AGL,(F,;) and (U, V) € AGL,(F,), s. t.:

b(x) =a(xS+ V)U + V.

More precisely, it is usually the linear variant of IP which is considered in practice
[28,5]. That is, when the vectors T and V are both equal to the null vector. This
problem, that we call 2PLE is the following;:
Input: a = (a1,...,ay,), and b = (by,...,b,) in Fy[x]*.
Question: Find - 1f any — (S,U) € GL,(Fq) x GL,(F,), such that:

(

b(x) = a

However, it is without solving any of the two problems mentioned above that
J. Patarin proposed a full cryptanalysis of C* [30]. This attack uses the very
particular structure of the polynomials of a. This result thus does not then
affect at all the practical hardness of IP. The security estimate provided for this
problem [29] is based on the complexity of the “To and Fro” (TF) algorithm
[11,12], which is ¢"/? for quadratic polynomials, and ¢™ otherwise.

In the rest of this paper, (a =(a1,...,ay),b=(b1,..., bu)) will always denote
an element of F,[x]" x F,[x]"*. We will always suppose that all the polynomials
of a have the same maximal total degree noted D (in the practical applications,
we have 2 < D < 4). Note that, if b(x) = a(xS)U, for some (S,U) € GL,(F,) x
GL,(F,), then the polynomials of b must have the same maximal total degree
than the ones of a, i.e. D.

xS)U.

3 A Unified Point of View

The Isomorphism of Polynomials and 2PLE problems have actually a very similar
formulation. An input of these problems is formed of two systems of multivariate
polynomials and the question consists in recovering a particular transformation
permitting to express one system in function of the other. All transformations
have the same characteristic: inducing a group action on F,[x]*. Recall that
a group (G,-), with identity element e, acts on F,[x]" if there exists a map
¢ G x Fy[x]* — Fy[x]* such that ¢(e,p) = p, for all p € Fy[x]*, and:

?(9.90(g',p)) =d(g-¢',p), forall g,¢' € G, and for all p € F[x]".

Remark 1. In order to simplify the notations, we will write G instead of (G,).

For 2PLE, one can then easily check that GL,(F,) x GL,(F,) acts on Fy[x]*
through:
X GLy(Fq) X Fo[x]" — F[x]"

¢2PLE : GL (F)
((S,U),a) — a(xS\U

36 J.-C. Faugere and L. Perret

Similarly for IP, AGL,(F,) x AGL,(F,) acts on Fy[x]" through:

1P+ AGL,(Fy) X AGLy(F,) x Fy[x]* — Fy[x]"
((SvT)’(U’V)’a) Ha(XS—FT)U—FV

This observation naturally leads to the introduction of the following problem.
Let (G,-) be a group, and ¢ : G x Fy[x]* — Fy[x]* be an action of G on Fy[x]*.
Given (a,b) € Fy[x]* x Fy[x]*, the problem we call Polynomial Equivalence,
with respect to (G, -) and ¢ — and denoted by PE(G, (;5) — is the one of finding
(if any) g € G, verifying:

b = ¢(g,a),

denoted a =g ¢) b in the sequel. This formulation is very convenient since it
procures a unified description of IP and 2PLE. Indeed, PE(GL,,(Fq) X GLy(F,),
¢2pLE):2PLE, and PE(AGLn(]P‘q) X AGLu(]P‘q),¢1p):IP. More generally, PE
provides a unified description of “IP-like” problems. In our mind, such a kind
of problems consists in recovering a particular transformation between two sets
of multivariate polynomials. For instance, the Isomorphism of Polynomials with
one Secret (IP1S) — introduced at Eurocrypt’96 by J. Patarin [28] — falls into
this new formalism. This problem, which can be used to design an authentica-
tion (resp. signature) scheme [28], is as follows. Given (a, b) € Fy[x]" x F,[x]",
find - if any — (S, T) € AGL,(F,), such that b(x) = a(xS + T). Using our
formalism, we immediately obtain that PE(AGL,(F,), ¢p1s) = IP1S, with
dp1s : AGLy(Fy) x Fo[x]* — Fy[x]*, ((S,T),a(x)) — a(xS + T). Finally, the
following lemma justifies the use of the word equivalence in PE.

Lemma 1. Let (G,-) be a group, and ¢ : G X Fy[x]* — Fy[x]|“ be an action of
G on Fy[x]". Then, =(q,¢) is an equivalence relation on F,[x]".

3.1 Polynomial Equivalence Problems and Group theory

In the Graph Isomorphism context, the introduction of group theory concepts
permitted to achieve significant advances from both a theoretical and algorithmic
point of view [24, 21]. The formalism previously given permits to naturally extend
these results to Polynomial Equivalence problems.

Definition 4. Let (G,-) be a group. We shall call Autg 4 (a) = {g € G :
#(g.a) = a}, Aut(g 4 (b) = {g € G : ¢(g,b) = b}, the automorphism groups
of a and b w.r.t. (G, ¢). We shall also set S 4)(a,b) ={g€ G :b=¢(g,a)}.

Aut(g,4)(a) and .Aut (g 4y(b) are also known as stabilizer of a (resp. b) w.r.t.
(G, ¢). However, we will rather call these sets automorphism groups. This des-
ignation being indeed more usually used in the Graph Isomorphism context
[24]. Anyway, the results that we are going to expose are classical results of
group theory concerning the stabilizers and orbits, and then given without
proofs.

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects 37

Proposition 1. Let (G, ") be a group, and ¢ : G X F4[x]"* — F4[x]" be an action
of G on Fy[x]". If there exists g € G, such that b = ¢(g,a), then Siq 4)(a,b) is
a left (resp. right) coset —in G — of the automorphism group Aut g) (a) (resp.
Aut(g,4)(b)). That is:

S(G’¢)(a7 b) = {g -h:he Aut(G’Qg)(a)} =g- Aut(G’(b)(a),
S(G7¢) (37 b) = {h < g h e AUt(G@) (b)} = AUt(G@) (b) - g.

Moreover, the automorphism groups Aut(q,4)(a) and Aut (g 4 (b) are conjugate,
i.e. Aut(c 4)(b) =g - Autc 4)(a) - g7, and we have:

IS(G,0)(a,b)| = |Aut(c 4)(b)| = |Aut (g ¢ (a)].

3.2 A Generic Upper Bound on the Complexity of “IP-Like”
Problems

Using the Polynomial Equivalence problem previously defined, we give in this
part a general upper bound on the theoretical complexity of “IP-like” problems.
To do so, Let us fix a group (G, -) acting on F,[x]* through a map noted ¢.
For simplicity, we suppose here that G is included in a finite set £. We also
suppose that the uniform distribution of the elements of £ can be simulated in
polynomial-time. These assumptions allows to facilitate the proofs, and are ad-
ditionally well adapted to “IP-like” problems. Indeed, AGL,,(F,) C M,, ,,(F,) x
Fy, GLn(Fy) x GLu(Fy) C My n(Fy) x Myu(Fy), AGL,(Fy) x AGL,(F,) C
My n(Fg) X Fyy x My o(Fy) x Fy. To obtain our upper bound, we introduce:

Definition 5. An interactive proof for a language L (i,e. a subset of {0, 1}*)
is a two party protocol between a verifier V and a prover P. At the end of the
protocol, the verifier has to accept or reject a given input such that the following
conditions hold:

Efficiency. The verifier strategy is a probabilistic polynomial time procedure.
Completeness. For all x € L, Pr{(V,P)(z) accepts| = 1.

Soundness. For all x € L, and for any prover P*, Pr{(V,P*)(z) accepts] < .
The probabilities are taken over the random choices of the verifier.

Let us analyse the following two party protocol:

Input: (ag,a;) € Fy[x]" x Fq[x]*

Protocol: PI(G, ¢)

The verifier chooses uniformly at random ¢ € {0,1}.

He also chooses uniformly at random g € £ and checks if g € G. If after C trials
the verifier does not obtain an element g € G, he accepts directly.

Otherwise, he sends a’ = ¢(g, a;) to the prover.

The prover replies by sending j € {0, 1} to the verifier.

The verifier accepts if ¢ = j and rejects otherwise.

Efficiency. The efficiency of this protocol depends on the cost of computing
o(g,a;), for all g € G, and of the number of trials C.

38 J.-C. Faugere and L. Perret

Completeness. If ag #(,¢) a1, then a prover can always check if a’ =g 4) a0
or a’ =g ¢) a1. In this situation, the verifier accepts with probability one.

Soundness. If ag =(,4) a1, then by transitivity a’ =g) a1 and a’ =4 4) ao.
In such a case, we will show that a’ = ¢(g, a;) yields no information about the bit
i chosen by the prover. Let then ¢ be a random variable uniformly distributed
over {0,1}, and X be a random variable uniformly distributed over G.

Lemma 2. Let ag,a;,a’ € Fy[x]". If ag =(q,¢) a1 and a' =q,4) a0, then:
1
Pt = 0] ay(xZ) = a) = Prig: = 1| ay(xZ) = a] =

Proof. We have Pr[¢p(X,a,) = a'|¢p = 0] = Pr[¢p(X,a9) = a'] = Pr[¥ €
S(a,4)(a0,a’)]. Moreover, according to Proposition 1:

1S(G,9) (a0, @)| = |Aut(g,4) ()| = |S(c,¢)(a1,2)].
Therefore, Pr[¢(X,a0) = a'] = Pr[a;(xX) = a’], and thus:
Pr(¢p(X,ay) = a' |4 = 0] = Prl¢(¥,ay) =a'[¢ = 1].
According to the Bayes formula:

Pry=0)Pr(¢(Z,a,)=a’ | =0
Pro) = 0]¢(2,a,) =] = - T a0
_ Pry=1 Pri¢(z,a,)=a’|v=1]

Pr[qﬁ(Z‘,aw):a’]

= Pr[Y = 1|¢(Z,ay) = .

Finally:
_ Priy=0Pr(¢(5,ay)=a’ | v=0]
Pri¢(z,a,)=a’]
_ Priy=1] Pr[¢(z.a0)=2]
Pri¢(z,a,)=a’]
_ Priy=1] Pr[zes ¢ (a",a0)] 1

Pr(£es g, 4 (ay.a’)] B

Pry = 0] ¢(Z,a,) = &

a

It follows that no prover — no matter what its strategy is — can guess i with
probability greater than é Finally, using a classical result of R. B. Boppana, J.
Hastad, and S. Zachos [7], we get that:

Corollary 1. If the polynomial hierarchy does not collapse then IP, 2PLE, and
IP1S are not NP-Hard.

Proof. We sketch the proof for IP1S. Note that for all g € AGL,(F,), one can
compute ¢rp1s(g,a’) in polynomial-time. Let Lip be the language associated
to IP1S (i.e. the set of instances of IP admitting a solution). We study now
the number of trials in PI(AGLn (Fy), ¢1p1s). Recall that more than 1/4 of the
matrices of M, ,,(IF,) are invertible. Therefore for IP1S, we have G = AGL,,(F,),

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects 39

E =M, (Fy) xF, and Pr[g € G|g € €] > |. By setting C' = 10, we get that
no prover can guess ¢ with probability greater than

L (3 10<1+1_9
2 4 2 16 16’

where (2)10 < | is the probability of not obtaining an element of AGL,(F,)
after ten trials. By repeating the protocol two times, we obtain that no prover

can fool the verifier into accepting ap #(agL, (r,),¢r1s) @1 With a probability

greater than (196)2 < % The protocol PI (AGLn(]l7‘q)7 (;Slpls) is then an interactive
proof for the complementary language of Lipis (i.e. {0,1}*\Lipig), where at
most 4 messages are exchanged between the verifier and the prover. We do
not detail the proof, but one can easily check that the same result holds for
PI(AGLn(IFq) x AGL,(Fy), (;511:) and PI(GLn(Fq) x GL,(F,), ¢2pLE).

The corollary then follows from a result of [7], stating that if the complemen-
tary of a language admits a constant round interactive protocol, then this
language can not be NP-Complete, unless the polynomial hierarchy collapses. O

The new formalism introduced in this part allows to upper bound the theoretical
hardness of IP, 2PLE, and IP1S. More generally, it provides a new insight on the
complexity of “IP-like” problems. The previous corollary can be indeed easily
adapted to any instance of the Polynomial Equivalence problem. An “IP-like”
problem is then intrinsically not NP-Hard. Furthermore, we believe that our
formalism is of independent interest. It indeed procures a general framework for
studying “IP-like” problems. However, this is out of the scope of this paper. We
investigate now another aspect of these problems.

4 An Algorithm for Solving 2PLE

We study here the practical hardness of a particular Polynomial Equivalence
problem, namely 2PLE. Precisely, we present a new algorithm for solving this
problem. We emphasize that — as explained in 1.1 — it is usually sufficient to
consider this problem rather than its affine variant IP. Besides, any algorithm
solving 2PLE can be transformed into an algorithm solving IP [11,12].

4.1 A First Attempt: Evaluation and Linearization

Instead of directly describing the details of our method, we present the different
steps that yielded to this algorithm. Anyway, most of the intermediate results
that we are going to present will be used in our final algorithm, but differently.
Our earliest idea for solving 2PLE was based on the following remark. If b(x) =
a(xS)U, for (S,U) € GL,(F,) x GL,(Fy), then:

b(p)U ! = a(pS), for all p € F}. (1)

We hence obtain, for each p € Fy, u non-linear equations in the n? +u? compo-
nents of the matrices S and U~!. We point out that the coefficients of U ™! only

40 J.-C. Faugere and L. Perret

appear linearly in these equations. This is the advantage of considering the in-
verse of U rather than simply U in (1). The number of equations obtained is then
significantly bigger than the number of unknowns. In this situation, one can sim-
ply use a linearization method (i.e. associating a new variable to each monomial)
for solving the algebraic system. Unfortunately, our experiments rapidly revealed
that the equations generated in this way are not all linearly independent. Be-
sides, it also appeared that the number of unknowns is significantly bigger than
the number of linearly independent equations. The use of a linearization method
is then clearly no longer relevant. Let us explain this phenomenon.

Lemma 3. Lety=(y1,1,---sY1ns---+Yn,1s--->Ynn), GNAZ = (Z1,1, -, Z1us-- -
2 Zuls- - Zuu)- For each i,1 < i <, there exists a subset S; C]Fg and polyno-
mials pa,; € Fqly,z], such that the following equality holds:

(b(x)U ™" —a(xS5)), = Y pai(S, U)x%, (2)

a€s;
Pa,i(S, U™Y) being the evaluation of pa,i on S = {sij}1<ij<n, U™" = {u} ; }1<ij<u-
Proof. The polynomial (b(x)U ™! — a(x5)), can be regarded as an element of:
FglS1,15 s 81,mseevsSnylseeesSnyns Ul 1seeesUlaseeosUnus- s Una) [Tl s Tnl, (3)

i.e. a polynomial with unknowns z1,...,x, and whose coefficients are polyno-
mials in the components of S and U~'. In this setting, the polynomials p, ;
exactly correspond to the coefficients of the monomials (in z1, ..., z,) occurring
in (b(x)U~! —a(xS)),. Lastly S; = {a € F}! : pai # 0} O

The cost of generating the polynomials p, ; is proportional to the number of
monomials occurring in (b(x)U ! — a(xS)), viewed as a polynomial of (3), i.e.
O(n*P). Note also that each p, ; is by construction the sum of a polynomial in
y, plus a linear polynomial in z. Furthermore, the maximal total degree reached
by a monomial in the variables y is equal to D.

From (2), we obtain that for all ¢,1 <4 < w:

(b(p)Uﬁl—a(pS))i = Z Pai(S, U)pt -+ pn for all p = (p1,...,pn) € Fy.
a€S;

It follows that, for all p € F, the equations procured by (1) are linear combi-
nations of the p, ;(S,U~!). The number of polynomials p,; is limited by the
number of monomials occuring in (b(p)U~* — a(p5)),. Thus, u - CP, j, bounds
from above the number of linearly independent equations provided by linearizing
(1). On the other hand, the number of unknowns in the linearized system is equal
to the number of monomials in the variables y of degree smaller than D, plus the
u? variables corresponding to z. Using a rough bound, the linearization method
yields a linear system of at most O(u - n?) linearly independent equations with
O(u - n?P) unknowns.

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects 41

4.2 The 2PLE Algorithm

The linearization can thus not be employed for solving efficiently 2PLE. However,
Grobner basis procures another method for solving the algebraic system given by
(1). From a practical point of view, this approach is quite promising. Indeed, the
system obtained by evaluating b(x)U~! = a(xS) on several vectors is overde-
termined. Nevertheless, all the equations derived from b(p)U~* = a(pS) are
according to (2) linear combinations the polynomials p, ;. It is hence sufficient
to only consider the system formed by these equations. Formally:

Proposition 2. Let T = (po,; : foralli,1 < i < u, and for alla € S;) C
F,ly,z] be the ideal generated by the polynomials pa,; defined as in Lemma 3,
and V(I) be the following variety:

V(@)= {s c]FZZJF“Q : Payi(s) =0, for all i,1 <i < wu, and for all a € Si}.
If b(x) = a(xS)U, for some (S,U) € GL,(F,) x GL,(Fy), then:
((bl(S)v(bQ(Uil)) € V(I)7

with:

2
¢1 : Mn,n(Fq)_’FZ 2, S:{si,j}lgi,jgn’_)(sl,la R R N P 5n,n)7 and
¢2 : My u(Fy) — Fy Ut = {ugyj}lgingu»a (U] 1oy U gy Uy 15 e e Uy)

Proof. For all, 1,1 <i < u:

(bx)U ™" —a(x9)), = Y pailS,U x> =0.
a€EeS;

Thus, pa,i(S,U™*) =0,Vi,1 <i < u,andVa € S;, i.e. (¢1(5),02(U™1)) € V(I).
O

In other words, if b = a(xS)U, for some (S,U) € GL,(F,) x GL,(F,), then the
variety V(Z) contains the components of the matrices S and U~!. The system
associated to Z has n?+u? variables and is of degree D. Once again, we recall that
the variables of z only appear linearly in this system. The number of equations
of the system is equal to the number of monomials occurring in the polynomials
of a, i.e. O(u-CE,). The system is then overdetermined.

Remark 2. In order to guarantee that V(I) C Fg", we must generally join the
field equations to the initial system. The fields considered in our case can be rela-
tively large, leading then to a significant increase of the system’s degree. This can
artificially render impracticable the computation of a Grobner basis. Fortunately,
our systems are overdetermined and it is not necessary in practice to include the
field equations. In our experiments the elements of V(Z) were indeed — without
including these equations — all the times in Fg". It implies in particular that the
hardness of 2PLE is not related to the size of the field. This is an important
remark since the current security bound for 2PLE depends on this size.

42 J.-C. Faugere and L. Perret

The next proposition is fundamental to understand the practical behaviour of
our approach. This result permits furthermore to improve the efficiency of our
method.

Proposition 3. Let d be a positive integer, and Iy C F,ly,z] be the ideal gen-
erated by the polynomials pa ;i of maximal total degree smaller than d. Let also
V(Z4) be the variety associated to Zy. If b(x) = a(xS)U, for some (S,U) €
GL,(Fy) x GL,(F,), then:

(61(59), 92(U™1)) € V(Zy), for all d,0 < d < D,

¢1 and ¢2 being defined as in proposition 2.
The proof is obviously deduced from the following result:

Lemma 4. Let (S,U) € GL,(F,) x GL,(Fy). We have:
b(x) = a(xS)U < b¥(x) = a? (xS)U, for all d,0 < d < D,

b(®) (resp. a(d)) being the homogeneous components of degree d (i.e. the sum of
the terms of total degree d) of the polynomials of b (resp. a).

The systems associated to Z; and Zy only contain linear equations in the
components of S and U~!. Indeed, let 0, be the null vector of Fy, and A €
Miu(Fy) (resp. B € My, o (F,)) be the matrix representation of al!) (resp. b)),

ie. xA =al)(x) (resp. xB = b(!)(x)). According to Lemma 4:

b (0,)U~ = a®(0,),
b = a(xS)U, for (S,U) € GL,(F,) x GL,(F,) = {BU(l :) s (On)
That is, we get linear dependencies between the components S and U~*. More
precisely, we obtain u(n+1) linear equations in the n?+u? components of the ma-
trices solution. Anyway, we can not solve 2PLE just by using these equations. On
the other hand, it is not necessary to consider the system formed by all the poly-
nomials p, ;. According to Proposition 3, we can actually restrict our attention
on Z4,, with dp being the smaller integer rendering the system overdetermined.
This dy can be defined in function of a. Indeed, dy ~ min{d > 1:a(® #0,}. In
practice, it is usually sufficient to take dy = 2. The hardness of an instance of
2PLE is then related to dy rather than to the maximal total degree D of this in-
stance. It is also an important remark since the maximal degree of an instance is
taken into account in the security estimate of 2PLE given by J. Patarin [28, 29)].
Our algorithm for solving this problem is as follows:

Input: (a,b) € Fy[x]|* x F,[x]*

Let dy = min{d > 1:a(® # 0,}

Construct the polynomials p, ; of max. total deg. smaller than dy
Compute V(Zy,) using the F5 algorithm

Find an element of V(Zg,) corresponding to a solution of 2PLE
Return this solution

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects 43

The system associated to Zj, is overdetermined by its very construction
(u® + n? unknowns, and O(u - C%, ,) equations). The variety V(Zy,) is then
very likely reduced to a solution of 2PLE (this has been indeed verified in
our experiments). The complexity of this algorithm is (theoretically) domi-
nated by the Grobner basis computation. It is difficult to obtain a complexity
bound really reflecting the practical behavior of the F5 algorithm. We therefore
carry out now experimental results illustrating the practical efficiency of our

approach.

4.3 Experimental Results

We present in this part experimental results obtained with our algorithm. Before
that, we provide the conditions of our experiments

Generation of the instances
We have only considered instances (a,b) of 2PLE admitting a solution. We
constructed the instances in the following way:

(1) Choose the polynomials of a
(2) Randomly choose (S,U) € GL,(Fy) x GL,(Fy)
(3) Return (a(x),b(x) = a(xS)U)

Precisely, we constructed the polynomials of a in two different ways. The
first one simply consists in randomly choosing — w.r.t. a given maximal total
degree D — the polynomials of a. Precisely, each polynomial is a random linear
combination of all the monomials of total degree smaller (or equal) to D. Note
that we obtain in this way dense polynomials. We shall call random instance, an
instance of 2PLE generated in this manner. In the second method, a corresponds
to the public key of a C* scheme [26]. An instance of 2PLE generated in this
way will be named C* instance.

Programming Language — Workstation

The experimental results have been obtained with an Opteron bi-processors 2.4
Ghz, with 8 Gb of Ram. The systems associated to an instance of 2PLE have
been generated using the Magma software[25]. We used our own implementation
(in language C) of F5 for computing the Grobner bases. However, for the sake of
comparison, we sometimes used the last version of Magma (i.e. 2.12) for obtaining
these bases. This version includes an implementation of the F4 algorithm.

Table Notations

The following notations are used in the tables below:

— n, the number of variables,

— ¢, the size of the field,

— deg, the maximal total degree of the considered instance,

— TGen, the time needed to construct the system,

— Tp,, the time of our algorithm for finding a solution of 2PLE (using the F5
algorithm for computing the Grébner bases,

— T, the total time of our algorithm, i.e. T'= Tk, + TGen,

44 J.-C. Faugere and L. Perret

— T, /Mag> the time of our algorithm for recovering a solution of 2PLE, using
Magma v. 2.12 for computing Grobner bases,

— q"/? (resp. ¢"), the security bound given in [11,12] for instances of deg = 2
(resp. deg > 2).

Practical Results — Random Instances

We present here the results obtained on random instances of 2PLE. We em-
phasize that this family of instances is the one employed in the authentication
and signature schemes based on 2PLE proposed by J. Patarin at Eurocrypt’96
[28,29]. He suggested to use u = n in practice. Since our main motivation is to
study the security of these schemes, we can restrict our attention on the case
u=n.

n q deg Taen Tr, Trystag/Te, T ¢/
8 216 2 035s. 0.14s. 6 0.49 s. 264
10 26 2 1.66s. 0.63s. 10 2.29 s. 280
12 26 2 733s. 2.16s. 16 9.49 s. 296
15 216 2 48.01s. 10.9s. 23 58.91s. 2120
17 216 2 137.21s. 27.95s. 31 195.16 5. 2136
20 2% 2 569.14s. 91.54 s. 41 660.68 s. 2160
1065521 2 1.21s. 0.44 s. 10 1.65s. ~ 280
1565521 2 35.58 s. 8.08 s. 23 43.66 5. ~ 2120
20 65521 2 434.96 s. 69.96 s. 41 504.92 s. = 2160
23 65521 2 1578.6 s. 235.92 s. 1814 5. =~ 2184

Remark 3. Our implementation of Fs is faster than the Grébner basis algorithm
available in Magma 2.12. For n = 20, F5 is for instance 41 times faster than
Magma. To fix ideas, u =n = 8, and u = n = 16 were two challenges proposed at
Eurocrypt’96 [29]. We obtained exactly the same results as the ones quoted in the
previous table for random instances of deg > 2. On the other hand, the security
estimate for these instances is at least equal to 2'?8(n = 8). The mazimal total
degree of the systems is indeed the same as for instances of deg = 2, i.e. dy
1s equal to 2 independently of D. In other words, increasing the mazximal total
degree of a random instance will not change its practical hardness. We observe
the same behavior for the size of the field, that is increasing q does mot really
change the hardness of a random instance. This will indeed modify only the cost
of the arithmetic operations in the different steps our algorithm.

Interpretation of the Results

In all these experiments, the varieties computed were reduced to one element, i.e.
the components of the matrices solution of 2PLE. Furthermore, we observe in
practice that the complexity of our algorithm is dominated by the time required
to construct the system, and not by the Grobner basis computation. This is
surprising, but it clearly highlights that the systems considered here can be
easily solved in practice. The generation of the systems being polynomial, we
then conclude experimentally that our algorithm solves random instances of

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects 45

2PLE in polynomial-time. This conclusion is supported by the fact that in all
these experiments, the matrices generated by F5 (see the Appendix) were of size
at most equal to n®. Experimentally, we deduce a complexity of (n3)3 = n? for
our algorithm on random instances of 2PLE.

Practical Results — C* Instances

We now present the results obtained on C* instances (a,b) of degree D. We
highlight that these instances are used in the traitor tracing scheme described
in [5]. In this context, we also have u = n. The polynomials of a correspond to
the public-key of a C* scheme [26]. Precisely, these polynomials are the “multi-
variate representation” of a univariate monomial (see [5] for details concerning
the generation of this multivariate representation). The univariate monomial has

the following shape:m1+q61+q62+”'+qu_l, with 61,05,--- ,0p_1 € N*.
n q deg TGen Try Try/vag/Trs T q"
526 4 02s 013s. 45 0.33s. 2%
6 2% 4 0.7s. 1.03s. 64 1.73s. 2%
726 4 15s 6.15s. 90 7.65s. 2112
8 216 4 388s. 54.34 s. 112 58.22s. 2128
9 216 4 543 s. 79.85 s. 145 85.28 5. 244
10 2% 4 12.9s.532.33 s. 170 545.23 s. 2160

Remark 4. n =5 , and deg = 4 is the first challenge proposed at Asiacrypt’03
[5]. Similarly to random instances, we observed that the size of the field does not
really change the practical hardness of the C* instances. We can conclude that
it is a general behaviour of 2PLE instances.

Interpretation of the Results and Future Work

Our algorithm is no longer polynomial for C* instances. The systems obtained
for these instances are indeed harder to solve than the random ones. We be-
lieve that it is due to the fact that the systems are here sparser. The equality
b(0,) = a(0,)U does not provide any information (b(0,) = a(0,) = 0y in the
c* case). It is not clear yet but it seems that C* instances with n = 19 (the
second challenge proposed in [5]), can not be solved with our approach.

More generally, we think that dy = min{d > 0 : a® # 0,} provides a rele-
vant measure of the practical hardness of 2PLE instances. It seems actually that
this practical difficulty increases in function of dy. Indeed, for random instances
of 2PLE, dy = 0 and our algorithm solves 2PLE efficiently. For C* instances,
dmin = 1 and there is a change of complexity class. We also checked that the
practical complexity increases for homogeneous instances of degree 2, i.e. dy = 2.
To summarize, for dyp = 0 it is relatively clear that our algorithm solves 2PLE
efficiently (likely in polynomial-time). For dg > 1, we conjecture that our algo-
rithm is subexponential in n, and will depend on dy. This anyway needs further
investigations. It is an open problem to precisely determine, as a function of dy,
the asymptotic complexity of our algorithm. It could be possible that techniques
presented in [3, 4] provide an answer.

46

J.-C. Faugere and L. Perret

Acknowledgements

We thank Francoise Levy-dit-Vehel and anonymous referees for numerous
comments which improved the presentation of the results.

References

1.

10.

11.

12.

13.

14.

15.

W.W. Adams and P. Loustaunau. An Introduction to Grébner Bases. Graduate
Studies in Mathematics, Vol. 3, AMS, 1994.

. G. Ars, J.-C. Faugere, H. Imai, M. Kawazoe, and M. Sugita. Comparison Between

XL and Grébner Basis Algorithms. Advances in Cryptology — ASTACRYPT 2004,
Lecture Notes in Computer Science, vol. 3329, pp. 338-353, 2004.

. M. Bardet, J-C. Faugere, B. Salvy and B-Y. Yang. Asymptotic Behaviour of the

Degree of Regularity of Semi-Regular Polynomial Systems. In MEGA 2005, Eighth
International Symposium on Effective Methods in Algebraic Geometry, 15 pages,
2005.

. M. Bardet, J-C. Faugere, and B. Salvy. On the Complezity of Grébner Basis

Computation of Semi-Regular Overdetermined Algebraic Equations. In Proc. of
International Conference on Polynomial System Solving (ICPSS), pp. 71-75, 2004.

. O. Billet, and H. Gilbert. A Traceable Block Cipher. Advances in Cryptology —

ASTACRYPT 2003, Lecture Notes in Computer Science, vol. 2894, Springer—Verlag,
pp- 331-346, 2003.

. A. Biryukov, C. De Canniere, A. Braeken, and B. Preneel. A Toolbox for Crypt-

analysis: Linear and Affine Equivalence Algorithms. Advances in Cryptology — EU-
ROCRYPT 2003, Lecture Notes in Computer Science, vol. 2656, Springer—Verlag,
pp. 33-50, 2003.

. R. B. Boppana, J. Hastad, and S. Zachos. Does co-NP Have Short Interactive

Proofs? Information Processing Letters, 25(2), pp. 127-132, 1987.

. B. Buchberger. Grobner Bases : an Algorithmic Method in Polynomial Ideal The-

ory. Recent trends in multidimensional systems theory. Reider ed. Bose, 1985.

. B. Buchberger, G.-E. Collins, and R. Loos. Computer Algebra Symbolic and Alge-

braic Computation. Springer-Verlag, second edition, 1982.

N. Courtois. La sécurité des primitives cryptographiques basées sur des problémes
algébriques multivariables: MQ, IP, MinRank, HFE. Ph.D. Thesis, Paris, 2001.
N. Courtois, L. Goubin, and J. Patarin. Improved Algorithms for Isomorphism
of Polynomials. Advances in Cryptology - EUROCRYPT 1998, Lecture Notes in
Computer Science, vol. 1403, Springer-Verlag, pp. 84-200, 1998.

N. Courtois, L. Goubin, and J. Patarin. Improved Algorithms for Isomorphism of
Polynomials - Extended Version. Available from http://www.minrank.org.

N. Courtois, L. Goubin, and J. Patarin. SFLASH, a Fast Asymmetric Signature
Scheme for low-cost Smartcards — Primitive Specification and Supporting Docu-
mentation. Available at http://www.minrank.org/sflash-b-v2.pdf.

N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations. Advances in Cryptol-
ogy — EUROCRYPT 2000, Lecture Notes in Computer Science, vol. 1807, Springer—
Verlag, pp. 392-407, 2000.

D. A. Cox, J.B. Little and, D. O’Shea. Ideals, Varieties, and Algorithms: an
Introduction to Computational Algebraic Geometry and Commutative Algebra.
Undergraduate Texts in Mathematics. Springer-Verlag. New York, 1992.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.
28.

29.

30.

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects 47

J.-C. Faugere. A New Efficient Algorithm for Computing Grobner Bases (Fi).
Journal of Pure and Applied Algebra, 139(1-3), pp. 61-88, June 1999.

J.-C. Faugere. A New Efficient Algorithm for Computing Grobner Basis without
Reduction to Zero: Fs. Proceedings of ISSAC, pp. 75-83. ACM press, July 2002.
J.-C. Faugere, and A. Joux. Algebraic Cryptanalysis of Hidden Field Equation
(HFE) Cryptosystems using Grobner bases. Advances in Cryptology - CRYPTO
2003, Lecture Notes in Computer Science, vol. 2729, Springer-Verlag, pp. 44-60,
2003.

J. C. Faugere, P. Gianni, D. Lazard, and T. Mora. Efficient Computation of Zero-
Dimensional Grébner Bases by Change of Ordering. Journal of Symbolic Compu-
tation, 16(4), pp. 329-344, 1993.

P. Felke On certain Families of HFE-type Cryptosystems. Proceedings of WCC’05,
International Workshop on Coding and Cryptography, March 2005.

S. Fortin. The Graph Isomorphism problem. Technical Report 96-20, University of
Alberta, 1996.

M. R. Garey, and D. B. Johnson. Computers and Intractability. A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

W. Geiselmann, R. Steinwandt, and T. Beth. Attacking the Affine Parts of
SFLASH. Cryptography and Coding, 8th IMA International Conference, vol. 2260,
Springer—Verlag, pp. 355-359, 2001.

M. Hoffman. Group-theoretic algorithms and Graph Isomorphism. Lecture Notes
in Computer Science, vol. 136, Springer—Verlag, 1982.
http://magma.maths.usyd.edu.au/magma/

T. Matsumoto, and H. Imai. Public Quadratic Polynomial-tuples for efficient
signature-verification and message-encryption. Advances in Cryptology — EU-
ROCRYPT 1988, Lecture Notes in Computer Science, vol. 330, Springer—Verlag,
pp- 419-453, 1988.
https://www.cosic.esat.kuleuven.be/nessie/deliverables/decision-final.pdf.

J. Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): two new families of Asymmetric Algorithms. Advances in Cryptology — EU-
ROCRYPT 1996, Lecture Notes in Computer Science, vol. 1070, Springer-Verlag,
pp. 33-48, 1996.

J. Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): two new families of Asymmetric Algorithms — Extended Version. Available
from http://www.minrank.org/hfe/.

J. Patarin. Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Fu-
rocrypt’88. Advances in Cryptology — CRYPTO 1995, Lecture Notes in Computer
Science, Springer-Verlag, vol. 963, pp. 248-261, 1995.

Alien vs. Quine, the Vanishing Circuit
and Other Tales from the Industry’s Crypt

Vanessa Gratzer' and David Naccache'-?

1 Université Paris 11 Panthéon-Assas, Hall Goullencourt, casier 55,
12 place du Panthéon, F-75231, Paris, CEDEX 05, France
vanessa@gratzer.fr
2 Tcole Normale Supérieure, Equipe de Cryptographie,

45 rue d’Ulm, F-75230, Paris, CEDEX 05, France
david.naccache@ens.fr

Abstract. This talk illustrates the everyday challenges met by embed-
ded security practitioners by five real examples. All the examples were
actually encountered while designing, developing or evaluating commer-
cial products.

This note, which is not a refereed research paper, presents the details
of one of these five examples. It is intended to help the audience follow
that part of our presentation.

1 Foreword

When I was asked to give this talk, I was delighted, but a bit concerned.

What in my brief decade in the card industry would be of interest to a group
of practitioners far more experienced in security than myself?

What will my story be?

As I started to question ex-colleagues, competitors and suppliers, I quickly
realized that the problem would be in deciding what to leave out rather than
what to include. I was finally able to narrow my list to five examples.

The first ones will deal with an electronic circuit that mysteriously vanished
into thin air, DES and RSA key-management in early-generation cards, a crypto-
graphic watchdog chasing own tail and the story of the industry’s first on-board
sensors.

This note, which is not a refereed paper, presents the details of the fifth
example — coauthored with one of my students. It is intended to help the audi-
ence follow that part of the talk — a talk that I dedicate to the memory of our
friends and colleagues Prof. Dr. Thomas Beth (1949-2005) and Prof. Dr. Hans
Dobbertin, (1952-2006).

David Naccache

2 Introduction

Aliens are a fictional bloodthirsty species from deep space that reproduce as
parasites. Aliens lay eggs that release araneomorph creatures (facehuggers) when

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 48-58, 2006.
© International Association for Cryptologic Research 2006

Alien vs. Quine, the Vanishing Circuit and Other Tales 49

a potential host comes near. The facehugger slides a tubular organ down the
victim’s throat, implanting a larva in the victim’s stomach.

Within a matter of hours the larva evolves into a chestburster and emerges,
violently killing the host; chestbursters develop quickly and the cycle restarts.

Just as Aliens, rootkits, worms, trojans and viruses penetrate healthy systems
and, once in, alter the host’s phenotype or destroy its contents. Put differently,
malware covertly inhabits seemingly normal systems until something triggers
their awakening.

As illustrated recently [4], detecting new malware species may be a nontrivial
task. In theory, the easiest way to exterminate malware is a disk reformat fol-
lowed by an 0OS reinstallation from a trusted distribution cD. This relies on the
assumption that computers can be forced to boot from trusted media.

However, most modern PCs have a flash Bios. This means that the code-
component in charge of booting has been recorded on a rewritable memory
chip that can be updated by specific programs called flashers or, sometimes, by
malware such as the C1H (Tchernobyl) virus.

Hence, a natural question arises:

How can we ascertain that malware did not re-flash the BIOS to derail
disk reformatting attempts and simulate their successful completion?

Flash smart cards® are equally problematic. Consider a SiM-card produced by
Alice and sold empty to Bob. Bob keys the card. Alice reveals an 0s code but
flashes a malware simulating the legitimate 0S. When some trigger-event occurs?
the malware responds (to Alice) by revealing Bob’s keys.

This note describes methods allowing Bob to check that siMs bought from
Alice contain no malware. Bob’s only assumption is that his knowledge of the
device’s hardware specifications is correct.

In biology, the term Alien refers to organisms introduced into a foreign locale.
Alien species usually wreak havoc on their new ecosystems — where they have
no natural predators. In many cases, humans deliberately introduce matching
predators to eradicate the alien species. This is the approach taken here.

Related topic. What we try to achieve differs fundamentally from program
competitions for the control of a virtual computer, such as Core War. Here the
verifier cannot see what happens inside a device and seeks to infer the machine’s
state given its behavior.

3 The Arena

We tested the approach on Motorola’s 68HC05, a very common eight-bit micro-
controller (more than five billion units sold). The chip’s specifications were very
slightly modified to better reflect the behavior of a miniature pPC.

! e.g. ssT Emosyn, Atmel AT90sC3232, Infineon SLES8CFx4000P, Electronic Marin’s

EMTCG, etc.
2 e.g. a specific 128-bit challenge value sent during the GsM authentication protocol.

50 V. Gratzer and D. Naccache

The 68HC05 has an accumulator A, an index register X, a program counter
PC (pointing to the memory instruction being executed), a carry flag C and
a zero flag Z indicating if the last operation resulted in a zero or not. We
denote by ((z) a function returning one if x = 0 and zero otherwise (e.g.
() = [27)).

The platform has ¢ < 2'® = 65536 memory bytes denoted M[0],...,M[¢ — 1].
Any address a > ¢ is interpreted as a mod £. We model the memory as a state
machine insensitive to power-off. This means that upon shut-down, execution
halts and the machine’s RAM is backed-up in non-volatile memory. Reboot re-
stores RAM, resets A, X, C and Z and launches execution at address 0x0002 (which
alias is start).

The very first RAM state (digital genotype) is recorded by the manufacturer in
the non-volatile memory. Then the device starts evolving and modifies its code
and data as it interacts with the external world.

The machine has two 1/0 ports (bytes) denoted In and Out. Reading In
allows a program to receive data from outside while assigning a value to Out
displays this value outside the machine. In and Out are located at memory
cells M[0] and M[1] respectively. Out’s value is restored upon reboot (In isn’t).
If the device attempts to write into In, execute In or execute Out, execution
halts.

The (potentially infested) system pretends to implement an 0s function named
Install(p). When given a string p, Install(p) installs p at start. We do not
exclude the possibility that Install might be modified, mimicked or spied by
malware. Given that the next reboot will grant p complete control over the chip,
Install would typically require some cryptographic proof before installing p.

We reproduce here some of the 68HC05’s instructions (for the entire set see

[3]). B denotes the function allowing to encode short-range jumps ®.

EFFECT lda ¢ sta 1 bne k bra k

new A «— M[¢ mod]

new X <«

new Z «— C(new A) C(hA)

EFFECT ON M M[¢ mod] «— A

new PC « PC+2mod ¢ PC+2mod/ B(PC,Z, k, £) B(PC, 0, k, £)
OPCODE 0xB6 0xB7 0x26 0x20
CYCLES 3 4 3 3

3 The seventh bit of k indicates if k mod 128 should be regarded as positive or negative,
ie.

B(PC, 2, k, L) = (PC+2+(1—Z) X (k—256 X LgsJ)) mod 2.

EFFECT

new A <«
new X <«
new zZ <—
EFFECT ON M
new PC «
OPCODE
CYCLES

EFFECT

new A «—
new X <«
new zZ <«
EFFECT ON M
new PC «—
OPCODE
CYCLES

EFFECT

new A «—
new X <«
new zZ <«
EFFECT ON M
new PC «—
OPCODE
CYCLES

Alien vs. Quine, the Vanishing Circuit and Other Tales

inca

A+ 1 mod 256
C(new A)

PC+ 1 mod £

0x4C
3

1dx ¢

M[¢ mod]
C(new X)

PC + 2 mod £

OxBE
3

ora ¢
AV M[i mod]

C(new A)

PC + 2 mod £

OxBA
3

incx

X+ 1 mod 256
¢(new X)

PC + 1 mod £

0x5C
3

sta %,X

¢(a)
Mi + X mod £] < A
PC+ 2 mod ¢

OxE7
5

inc ¢

¢(new M[: mod ¢])

PC + 2 mod ¢
0x3C

51

lda ,X ldx ,X
M[X]

M[x]
C(new A) ¢(new X)
PC+1mod¢ PC+ 1mod/
0xF6 OxFE
3 3
lda %,X tst ¢
M[i + X mod /]
C(new A) ¢(M[¢ mod 4])
PC+2mod ¢ PC+2mod/{
0xE6 0x3D
4 4

stx ¢

¢(x)

M[z mod £] <+ M[i mod ¢] + 1 mod 256 M[i mod ¢] « X
PC+ 2 mod /¢
0xBF
4

5

4 Quines as Malware Predators

A Quine (named after the logician Willard van Orman Quine) is a program that
prints a copy of its own code [1,2]. Writing Quines is a tricky programming
exercise yielding Lisp, C or natural language examples such as:

((lambda (x) (list x (list (quote quote) x)))
(quote (lambda (x) (list x (list (quote quote) x)))))

char *f="char*f=yclsVc;main(){printf(f,34,f,34,10);}lc";
main() {printf(f,34,f,34,10);}

Copy the next sentence twice. Copy the next sentence twice.

We start by loading a Quine into the tested computer. The device might
be under the malware’s total spell. The malware might hence neutralize the
Quine or even analyze it and mutate (adapt its own code in an attempt to fool
the verifier). As download ends, we start a protocol, called phenotyping, with
whatever survived inside the platform.

52 V. Gratzer and D. Naccache

Phenotyping will allow us to prove (Section 5) or assess the conjecture
(Section 4) that the Quine survived and is now in full control of the platform. If
the Quine survived we use it to reinstall the 0s and eliminate itself; otherwise we
know that the platform is infected. As we make no assumptions on the malware’s
malefic abilities, there exist extreme situations where decontamination by software
is impossible. A trivial case is a malware controlling the 1/0 port and not letting
anything new in. Under such extreme circumstances the algorithms presented in
this note will only detect the malware but will be of no avail to eliminate it.

The underlying idea is that, upon activation, the Quine will (allegedly!) start
dumping-out its own code plus whatever else found on board. We then prove or
conjecture that the unique program capable of such a behavior, under specific
complexity constraints, is only the Quine itself.

In several aspects, the setting is analogous to the scenario of Alien vs. Preda-
tor, where a group of humans (0s and legitimate applications) finds itself in the
middle of a brutal war between two alien species (malware, Quine) in a confined
environment (68HC05).

5 Space-Constrained Quines

We start by analyzing the simple Quine given below (Quinel.asm). This 19-
byte program inspects £ = 256 bytes platforms. Quinel is divided into three
functional blocks separated by artificial horizontal lines. First, a primitive com-
mand dispatcher reads a byte from In and determines if the verifier wants to
read the device’s contents (In = 0) or write a byte into the RAM (In # 0).

As the program enters print the index register is null. print is a simple loop
causing 256 bytes to be sent out of the device. As the loop ends, the device
re-jumps to start to interpret a new command.

The store block queries a byte from the verifier, stores it in M[X] and re-jumps
to start.

start: 1dx In ; X<—In 0xBE 0x00
bne store ; if X#£0 goto store 0x26 0x09

print: lda M,X ; A—M[X] 0xE6 0x00
sta Out ; Out<—A 0xB7 0x01
incx ; X++ 0x5C
bne print ; if X#0 goto print 0x26 O0xF9
bra start ; if X=0 goto start 0x20 OxF3

store: 1lda In ; A—In 0xB6 0x00
sta M,X ; M[X]<A 0xE7 0x00
bra start ; goto start 0x20 OxED

The associated phenotyping ¢ is the following:

1. Install(Quinel.asm) and reboot.
2. Feed Quinel with 235 random bytes to be stored at M[21],...,M[255].

Alien vs. Quine, the Vanishing Circuit and Other Tales 53

3. Activate print (command zero) and compare the observed output to:

$1 =0x00 0x00 OxBE 0x00 0x26 0x09 OxE6 0x00 0xB7 0x01
0x5C 0x26 0xF9 0x20 OxF3 0xB6 0x00 OxE7 0x00 0x20
0xED M[21],...,M[255]

Is Quinel.asm the only nineteen-byte program capable of always printing s;
when subject to ¢17

We conjecture so although (unlike the variant presented in the next section)
we are unable to provide a formal proof. To illustrate the difficulty, consider a
slight variant:

start: 1dx In ; X<—In 0xBE 0x00
bne store ; if X#£0 goto store 0x26 0x0B
label: tst label ; 0x3D 0x06

print: 1da M,X ; A—M[X] 0xE6 0x00
: : ; same code as in Quinel

For all practical purposes, this modification (Quine2.asm)* has nearly no
effect on the program’s behavior: instead of printing s;, this code will print:

55 =0x00 0x00 OxBE 0x00 0x26 0xOB 0x3D 0x06 OxE6 0x00
0xB7 0x01 0x5C 0x26 OxF9 0x20 OxF1 0xB6 0x00 OxE7
0x00 0x20 OxEB M[23],...,M[255]

Let Quine3 be Quine2 where tst is replaced by inc.

When executed, inc will increment the memory cell at address 1abel which
is precisely inc’s own opcode. But since inc’s opcode is 0x3C, execution will
transform 0x3C into 0x3D which is... the opcode of tst.

All in all, ¢2 does not allow to distinguish a tst from an inc present at label,
as both Quine2 be Quine3 will output ss.

The subtlety of this example shows that a microprocessor-Quine-phenotyping
triple {p, Q, ¢} rigorously defines a problem:

Given a state machine p find a state M (malware) that simulates the
behavior of a state) (legitimate 0s) when p is subject to stimulus ¢

(phenotyping).

Security practitioners can proceed by analogy to the assessment of cryptosys-
tems which specifications are published and submitted to public scrutiny. If an
M simulating @@ with respect to ¢ is found, a fix can either replace @ or ¢
or both. Note the analogy: Given a stream-cipher p and a key @ (defining an
observed cipher-steam ¢), prove that the key @ has no equivalent-keys M.

An alternative solution, described in the next section, consists in proving the
Quine’s behavior under the assumption that the verifier is allowed to count clock
cycles (state transitions if p is a Turing Machine).

4 #, should be slightly twitched as well (233 random values to write).

54 V. Gratzer and D. Naccache

6 Time-Constrained Quines

Consider the following program loaded at address start:

start: 1dx In ; 3 cycles; X«In (instruction I;)
stx Out ; 4 cycles; Out—X (instruction Iy)
; ; other instructions

Latch a first value v; at In and reboot, as seven cycles elapse v; pops-up at
Out. If we power-off the device before the eighth cycle and reboot, v reappears
on Out® immediately. Repeating the process with values vy and v3, we witness
two seven-cycle transitions v ~» vo and vy ~> v3.

It is impossible to modify two memory cells in seven cycles as all instructions
capable of modifying a memory cell require at least four cycles. Hence we are
assured that between successive reboots, the only memory changes are in Out.
This means that no matter what the examined code is, this code has no time to
mutate in seven cycles and necessarily remains invariant between reboots.

The instructions other than sta and stx capable of modifying directly Out
are: ror, rol, neg, 1sr, 1sl, asl, asr, bset, bclr, clr, com, dec and inc. Hence,
it suffices to select vy # dir(v1) and vs # dir(vg), where dir stands for any of
the previous instructions®, to ascertain that Out is being modified by an sta or
an stx (we also need v1 # v2 # v3 to actually see the transition).

v1 = 0x04, vo = 0x07, v3 = 0x10 satisfy these constraints.

As reading or computing with a memory cell takes at least three cycles there
are only four cycles left to alter the contents of Out; consequently, the only sta
and stx instructions capable of causing the transitions fast enough are:

I, € sta Out stx Out sta ,X stx, X

To aim at Out (which address is 0x0001), sta ,X and stx ,X would require
an X=0x01 but this is impossible (if the code takes the time to assign a value to
X it wouldn’t be able to compute the transition’s value by time). Hence, we infer
that the code’s structure is:

start: 777 7?77 ; 3 cycles; an instruction causing e <—In
ste Qut ; 4 cycles; an instruction causing Out«— e
; ; other instructions

where e stands for register A or register X. The only possible code fragments
capable of doing so are:

adc In adc ,X add In add ,X eor In eor ,X

I, sta Out sta Out sta Out sta Out sta Out sta Out

S
I 1lda In lda ,X ora In ora ,X 1dx In 1ldx ,X

sta Out sta Out sta Out sta Out stx Out stx Out

5 Dut being a memory cell, its value is backed-up upon power-off.
5 for ror and rol, consider the two sub-cases C =0 and C = 1.

Alien vs. Quine, the Vanishing Circuit and Other Tales 55

There is no way to further refine the analysis without more experiments, but
one can already guarantee that as the execution of any of these fragments ends,
the machine’s state is either Sy = {A = v3,X = 0x00} or Sx = {A=0x00,X = v3}.

Now assume that Out = vg = 0x10. Consider the code:

start: 1dx In ; 3 cycles; X«<In
stx Out ; 4 cycles; Out+X
1lda ,X ; 3 cycles; A—M[X] (instruction I3)
sta Out ; 4 cycles; Out«—A (instruction I4)

; ; other instructions

— Latch In < v4 = 0x02, reboot, wait fourteen cycles; witness the transition”
0x10 ~~ 0x02 ~~ 0xBE; power-off before the fifteenth cycle completes.

— Latch In « vg = 0x04, reboot, wait fourteen cycles; witness the transition®
0xBE ~~» 0x06 ~~ 0xF6; power-off before the fifteenth cycle completes.

As vs # dir(vs) and v7 # dir(vg) the second transition is, again, necessarily
caused by some member of the sta or stx families and, more specifically® one
of the following:

I4 € sta Out stx Out sta ,X

I3 cannot be an instruction that has no effect on X and A as this will either
inhibit a transition or cause a transition to zero (remember: immediately before
the execution of I3 the machine’s state is either S, or Sx). This rules-out eighteen
jump instructions as well as all cmp, bit, cpx, tsta and tstx variants. 1da ¢
and 1dx i are impossible as both would have forced 0x02 and 0x04 to transit to
the same constant value.

In addition, vs # dir(vs) implies that I3 cannot be a dir-variant operating
on A or X, which rules-out negx, nega, comx, coma, rorx, rora, rolx, rola, decx,
deca, dec, incx, inca, clrx, clra, 1srx, lsra, 1slx, 1lsla, aslx, asla, asrx
and asra altogether.

As no carry was set, we sieve-out sbc and adc whose effects will be strictly
identical to sub 7 and add i (dealt with below).

add i, sub i, eor i, and ¢ and ora ¢ are impossible as the system

0x02 x t=0xBE
0x06 x t=0xF6

has no solutions when operator % is substituted by 4+, —, ®, A or V.
The only possible I3 candidates at this point are:

Is € sub ,X and ,X eor ,X ora ,X add ,X lda, X 1ldx ,X

" vs = OxBE is the opcode of 1dx, read from address 0x02.

8 v7 = 0xF6 is the opcode of 1da ,X, read from address 0x06.

9 taking timing constraints into account and ruling-out stx ,X who can only cause an
Out = 0x01, a value never witnessed.

56 V. Gratzer and D. Naccache

But before the execution of I3 the machine’s state is:

Sy = {A = 0x06,X = 0x00} or Sx = {A = 0x00,X = 0x06}
The ",X" versions of sub, and, eor, ora and add are impossible because:
— if the device is in state S, we note that
0x06 x 0x06 # 0xF6 for x € {—,V,®,A+}

— and if the device is in state Sx we note that

A — opcode(sub, X) = 0x00 — 0xFO = 0x10 # 0xF6
A A opcode(and, X) = 0x00 A 0xF4 = 0x00 # 0xF6
A @ opcode(eor, X) = 0x00 ® 0xF8 = 0xF8 # 0xF6
AV opcode(ora, X) = 0x00 V OxFA = 0xFA # 0xF6
A + opcode(add, X) = 0x00 + 0xFB = 0xFB # 0xF6

1dx ,X is impossible as it would have caused a transition to opcode(1dx,X) =
OxFE # 0xF6 (if Sx) or to 0x06 (if Sy).

I3 is hence identified as being necessarily 1da ,X.

It follows immediately that I, = sta Out and that the ten register-A-type
candidates for {I;,I5} are inconsistent.

The phenotyped code is thus one of the following two:

1ldx In 1ldx ,X
N /
stx Out
lda ,X
sta Out

Only the leftmost is capable of causing the observed transition 0x02 ~» 0xBE.

All in all, we have built a proofthat the device actually executed the fragment
presented at the beginning of this section.

Extending the code further ahead to:

start: 1dx In ; X<—In 0xBE 0x00
stx Out ; Out<—X 0xBF 0x01
print: 1da ,X ; A—M[X] 0xF6
sta Out ; Out«—A 0xB7 0x01
incx ; X—X+1 0x5C
bne print ; if X # 0 goto print 0x26 OxFA

and subjecting the chip to three additional experiments, we observe:
In +— 0x09 = O0xF6 ~» 0x09 ~» 0x5C

In <« 0x0A = 0x5C ~» 0x0A ~~ 0x26
In <« 0x0OB = 0x26 ~~» 0x0B ~~» OxFA

Alien vs. Quine, the Vanishing Circuit and Other Tales 57

Note that the identified code ”happens to” allow the verifier to inspect with
absolute certainty the platform’s first 256 bytes. The rest is clear. The verifier
does a last time measurement, allowing the Quine to print the device’s first 256
bytes (power-off as soon as the last bne iteration completes, to avoid falling into
the jaws of Aliens hiding beyond address 0x000B).

It remains to check the Quine’s payload (code between 0x000C and 0xOO0FF)
and unleash the Quine’s execution beyond address 0x000B. Quine won the game.

7 Questions

This work raises a number of intriguing questions: Is it possible to prove security
using only space constraints? In the negative, can we modify the assembly lan-
guage to allow such proofs'®? Can space-constrained Quines solve space-complete
problems to flood memory instead of receiving random data?

Another interesting challenge consists in developing a time-constrained Quine
whose proof does not require rebooting but the observation of one long succession
of transitions. We conjecture that such programs exist. A possible starting point
might be a code (not necessarily located at start) similar to:

loop: sta Out
lda In
sta Out
ldx In
stx Out
lda ,X
sta Out
bne 1loop

Here the idea is that the verifier will feed the Quine with values chosen ran-
domly in a specific set (to rule-out dir-variants) to repeatedly explore the code’s
immediate environment until some degree of certainty is acquired!!.

If possible, this would have the advantage of making the Quine a function
automatically insertable into any application whose code needs to be authen-
ticated. Moreover, if we manage to constrain the capabilities of such a Quine,
e.g. not allow it read data beyond a given offset'2, we could offer the selective
ability to audit critical program parts while preserving the privacy of others.
For instance, the code of an accounting program could be audited while secret
signature keys would provably remain out of the Quine’s reach.

Finally, as time-constrained phenotyping is extremely quick (a few clock cy-
cles), preserves nearly all the platform’s data and requires only table lookups
and comparisons, we currently try to extend the approach to more complex
microprocessors and implement it between chips in motherboards.

10 The approach would analogous to Java bytecode which is purposely shaped to fit
type-inference.

' To exit the bne loop the verifier will purposely read a zero somewhere.

12 ¢.g. the example above cannot read data beyond address 255.

58 V. Gratzer and D. Naccache

References

1. J. Burger, D. Brill and F. Machi, Self-reproducing programs, Byte, volume 5, Au-
gust 1980, pp. 74-75.

2. D. Hofstadter, Godel, Escher, and Bach: An eternal golden braid, Basic Books, Inc.
New York, pp. 498-504.

3. Motorola Inc., 68HC(7)05H12 General release specifications, HCO5H12GRS /D Rev. 1.0,
November 1998.

4. T. Zeller, The ghost in the CD; Sony BMG stirs a debate over software used to guard
content, The New York Times, c1, November 14, 2005.

Hiding Secret Points Amidst Chaff

Ee-Chien Chang and Qiming Li*

Department of Computer Science,
National University of Singapore
changec@comp.nus.edu.sg, qiming.li@ieee.org

Abstract. Motivated by the representation of biometric and multime-
dia objects, we consider the problem of hiding noisy point-sets using a
secure sketch. A point-set X consists of s points from a d-dimensional
discrete domain [0, N — 1]d. Under permissible noises, for every point
(z1,..,2zq4) € X, each x; may be perturbed by a value of at most §.
In addition, at most t points in X may be replaced by other points in
[0, N — 1]d. Given an original X, we want to compute a secure sketch P.
A known method constructs the sketch by adding a set of random points
R, and the description of (X U R) serves as part of the sketch. However,
the dependencies among the random points are difficult to analyze, and
there is no known non-trivial bound on the entropy loss. In this paper,
we first give a general method to generate R and show that the entropy
loss of (X UR) is at most s(dlog A + d + 0.443), where A = 26 + 1.
We next give improved schemes for d = 1, and special cases for d = 2.
Such improvements are achieved by pre-rounding, and careful partition
of the domains into cells. It is possible to make our sketch short, and
avoid using randomness during construction. We also give a method in
d = 1 to demonstrate that, using the size of R as the security measure
would be misleading.

1 Introduction

Many biometric data are noisy in the sense that small noises are introduced dur-
ing acquisition and processing. Hence, two biometric samples that are different
but close to each other, are considered to belong to the same identity. This poses
technical challenges in applying classical cryptographic operations on them. Re-
cently, new generic techniques such as fuzzy commitment [10], helper data [15]
and secure sketch [7] are introduced to handle noisy data. These techniques at-
tempt to remove the noise with the aid of some additional public data P. Here
we follow Dodis et al. [7] and call such P a sketch. During registration, given orig-
inal data X, a sketch P is constructed and made public. During reconstruction,
given some other data Y and the sketch P, the original X can be reconstructed
if Y is close! to X. In other words, the sketch aids in removing noise from noisy

* The author is currently with Department of Computer and Information Science,
Polytechnic University.
! The formal definition of “closeness” will be given in Section 3.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 59-72, 2006.
© International Association for Cryptologic Research 2006

60 E.-C. Chang and Q. Li

data Y. It is important that such sketch P should be secure in the sense that
it reveals only limited information about the original X, so that the privacy of
the original data can be sufficiently maintained. In other words, it is desirable
to bound the entropy loss of X given P (Section 3 gives the definitions).

Not surprisingly, the design of a secure sketch is very much dependent on
the definition of “closeness”. Secure sketch for the following two main types
of data have been proposed: (1) The data are from a vector space, and two
sequences are close to each other if their distance (e.g., Hamming distance) is
less than a threshold. (2) The data X and Y are subsets of a universe U, where
|X| = |Y] = s, and they are close with respect to a threshold ¢, if the set
difference s — | X NY| <t

We observe that in many applications, a combination of the above is required.
For example, a fingerprint template is typically represented as a set of minutiae
points in a discrete 2-dimensional space, or even 3-dimensional if the less reliable
orientation attribute is included [6]. Under noise, each points may be slightly
perturbed, and a small number of points may be replaced.

We study secure sketch schemes for such point-sets. A point-set X is a set of s
points from a discrete d-dimensional domain [0, N —1]¢. Under permissible white
noise, for every point (x1,..,z4) € X, each z;, 1 <i < d, may be perturbed by
at most 6. In addition, under replacement noise, at most ¢t points in X may be
replaced by randomly selected points. Hence, two point-sets X and Y are close
to each other if we can find a subset X' C X, |X’| > s — t, such that for each
x € X', there is a unique y € Y that satisfies || — y||co < 8, where || - || is the
infinity norm. We assume that a point-set X is always well-separated, that is,
for any x,x’ € X, the distant ||z — 2’||oc > 38. This assumption is reasonable in
practice. For example, in a fingerprint template, two minutiae points cannot be
too close to each other, otherwise they will be considered as false minutiae and
should be corrected [11].

Clancy et al. [5] give the following construction of a two-part sketch for a
point-set. The first part of the sketch is a codebook C, which is a collection of
points that are well-separated. We call each point in C a codeword, and we assume
that all codewords are properly indexed in a pre-defined manner. The codebook
C is the union of the original data X and a set of random chaff points R, i.e.,
C = (X U R). Consider another point-set Y that is a version of X corrupted
only by white noise. For each point y € Y, the codeword in C that is closest
to y must be the corresponding x € X. Thus, with C, the white noise can be
corrected. Hence we call C the white noise sketch. The second part of the sketch
is constructed from the indices of the points in X, where the index of a point
x € X is its location in the codebook C = (X U R). By using existing schemes
for set difference, replacement of at most ¢ points can be corrected. Hence we
call it the replacement sketch. In this paper, we will focus on the construction
of the white noise sketch. That is, we study how to hide the original points X
amidst some chaff points R.

Clancy et al. propose the following method to generate R: The points in R
are iteratively selected. During each iteration, a chaff point is chosen uniformly

Hiding Secret Points Amidst Chaff 61

at random. If it is too close to any previously selected points or a point in X, then
it is discarded. Otherwise it is selected. The iteration is repeated until sufficient
points are selected or it is impossible to add more points. The above process of
selecting a set of random points is essentially the online parking process which
has intrinsic statistical properties [14, 13, 8].

Due to the dependencies among the selected points, the analysis of online
parking process is difficult. This is especially so in higher dimensions. Many
fundamental questions remain open, for example, the Palasti’s Conjecture [13]. In
our context of secure sketch, there is no known non-trivial bound of the entropy
loss by revealing (X U R). Furthermore, although the points generated seem
to be “random”, due to the dependencies, the original X may be statistically
distinguishable from R. Indeed, an empirical study suggests a method to find X
among (X UR) [4].

Therefore, we propose another method of generating the points. First, many
points are generated independently. Next, some points are removed so that
among the remaining points, no two points are near to each other. In this way,
we can eliminate the dependencies among the chaff points and give an upper
bound Ly on the information revealed (i.e., the entropy loss) by the codebook
C = (X UR). There are many ways to generate the points independently. The
challenging issue now is to find a method whereby the randomness invested dur-
ing generation is not much less than the number of bits required to represent
the codebook.

For the second part of the sketch that corrects the replacement noise, we
employ known techniques for set difference. Let Lsp(s,t,n) be the entropy loss
of the sketch for set difference, where n = |C| is the size of codebook. There are
sketch schemes such that Lsp(s,t,n) is in O(tlogn) (e.g., those proposed by
Juels and Wattenberg [9], Dodis et al. [7], and Chang et al. [3]).

In this paper, we propose a generic method to generate the white noise sketch
and show that the upper bound of the entropy loss Ly < s(dlog A+d+log(e/2)),
where A = 26 + 1, e is the base of natural logarithm and log(e/2) ~ 0.443.
The overall entropy loss is at most Ly + Lsp(s,t, N4/(46 4+ 1)?). The bound is
quite tight in the sense that there is a distribution of X such that the entropy
loss of C is at least Ly — € where € is a positive constant that is at most 3.
When ¢ = 0 (i.e., no replacement noise), a lower bound of the entropy loss is
sdlog A. Hence, the gap between our construction and the optimal is at most
s(d+1log(e/2)). By pre-rounding and carefully partitioning the domain [0, N —1]
into cells, we can improve the entropy loss in d = 1 to at most s(1+1log(A—1))+
Lsp(s,t,N/(38)). We further apply the technique of partitioning to some special
cases in two dimensions (d = 2) and obtain some improvements. Such technique
probably can be extended to d = 2 in general, and to higher dimensions. In
addition, we give two methods to reduce the size of the sketch. In one of them,
we can avoid using randomness during sketch construction, thus some limited
form of reusability can be achieved [2]. We also give another method in one
dimension to demonstrate that, using the size of R as the security measure
would be misleading.

62 E.-C. Chang and Q. Li

2 Related Works

Recently, a few new cryptographic primitives for noisy data are proposed. Fuzzy
commitment scheme [10] is one of the earliest formal approaches to error tol-
erance. The fuzzy commitment scheme uses an error correcting code to handle
Hamming distance. The notions of secure sketch and fuzzy extractor are intro-
duced by Dodis et al. [7], which gives constructions for Hamming distance, set
difference, and edit distance. Under their framework, a reliable key is extracted
from noisy data by reconstructing the original data with a given sketch, and then
applying a normal extractor (such as pair-wise independent hash functions) on
the data.

An important requirement of a secure sketch scheme is that the amount of
information about X revealed by publishing the sketch P should be limited.
Dodis et al. [7] propose a notion of entropy loss to measure the security of the
sketch. They also provide a convenient way to bound the entropy loss for any
distribution of X. Such worst case analysis is important in practice because
typically, the actual distribution of the biometric data is not known.

The issue of reusability of sketches is addressed by Boyen [2]. It is shown
that a sketch scheme that is provably secure may be insecure when multiple
sketches of the same biometric data are obtained. It is also shown by Boyen that
a sketch that can be constructed deterministically can achieve some limited form
of reusability [2].

The set difference metric was first considered by Juels and Wattenberg [9],
who gave a fuzzy vault scheme. Later, Dodis et al. [7] proposed three construc-
tions. The entropy loss by all these schemes are roughly the same. They differ
in the sizes of the sketches, decoding efficiency and also the degree of ease in
practical implementation. The BCH-based scheme [7] has small sketches and
achieves “sublinear” (with respect to the size of the universe) decoding by care-
ful reworking of the standard BCH decoding algorithm. Chang et al. [3] gave a
scheme for multi-sets, using the idea in set reconciliation [12].

A fuzzy fingerprint vault scheme is proposed by Clancy et al. [5], which is to
be used in secure fingerprint verification using a smart card. The security of the
scheme is analyzed by considering force attackers. Yang and Verbauwhede [16]
employed similar approaches with different fingerprint representation.

3 Preliminaries

Entropy and entropy loss. We follow the definitions of entropy by Dodis et al.
[7]. They propose to examine the average min-entropy of X given P, which gives
the minimum length of an almost uniform secret key that can be extracted even
if the sketch P is made public.

Let Ho(A) be the min-entropy of the random variable A, i.e., Hyo(A) =
—log(max, Pr[A = a]). For two random variables A and B, the average min-
entropy of A given B is defined as Hoo (A | B) = — log(By_ p[2He=(AIB=0)]),

The entropy loss of X given sketch P is defined as £ = Hoo (X) — Hoo (X | P).
When it is clear in the context, we simply call £ the entropy loss of sketch P.

Hiding Secret Points Amidst Chaff 63

This definition is useful in the analysis of entropy loss, since for any ¢-bit string
B, we have Hoo(A | B) > Hoo(A) — £. For any secure sketch scheme, let R be
the randomness invested in constructing the sketch, it can be shown that when
R can be recovered from X and P, then

L =H,(X)—Hy(X | P) <|P| - Hoo(R). (1)

Inequality (1) implies that the entropy loss can be bounded from above by the
difference between the size of the sketch and the randomness we invested during
construction. This gives a general method to find an upper bound of £ that is
independent of X, and hence it applies to any distribution of X. Therefore, L is
an upper bound of entropy loss in the “worst-case”.

Secure sketch. Let M be a set with a closeness relation C C M x M. When
(X,Y) € C, we say the Y is close to X, or (X,Y) is a close pair. Similar to Dodis
et al. [7], define

Definition 1. A sketch scheme is a tuple (M,C, Enc,Dec), where Enc : M —
{0,1}* is an encoder and Dec : M x {0,1}* — M is a decoder such that for all
X, Y e M, Dec(Y,Enc(X)) = X if (X,Y) € C. The string P = Enc(X) is to be
made public and we call it the sketch. We say that the sketch scheme is L-secure
if for all random variable X over M, the entropy loss of P is at most L. That
is, Hoo(X) — Hoo (X | Enc(X)) < L.

Closeness relations. For any two points « and y from the d-dimensional space
[0, N — 1]¢, we define the closeness Cs, where (z,y) € Cs if ||z — y|loo < 6. We
further define the closeness PSs s for two point-sets.

Definition 2. For any two sets of s points X ={x1,...,xs} andY ={y1,...,ys},
we say that (X,Y) € PSss,; if there exists a 1-1 correspondence f on {1,...,s}
such that |{i | (xs0,y:) € Cs}t| > s —t.

A lower bound of the entropy loss. Here we give a lower bound Lg of the entropy
loss. We say that Lo is a lower bound if, for any sketch scheme (P([0, N —
1]9), PSs,s,t, Enc, Dec), there exists a distribution of X such that the entropy loss
of P = Enc(X) is at least Lo.

For any distribution of X, let A} to be the set of all possible original point-sets
given sketch P = b. We observe that

1
maxPr[X =a | P =0b] > .
axPrlX =a|P=t]>

Substitute it into the definition, we have

H., (X|P) < log |). 2
(XIP) <, max log || 2)
Now, by considering X that is uniformly distributed over all well-separated sets
of size s in [0, N — 1], using (2), we can show that (details omitted) when
s< (M) andt < (212)(21, Ly is in

sdlog A + (2(tdlog 2]2) (3)

64 E.-C. Chang and Q. Li

Recall that A = 26 + 1. An intuitive interpretation of the bound is that, it is
the minimum number of bits needed to describe the noise. The first term in (3)
is for the white noise, and the second term is for the replacement noise. When
t =0 (i.e., there is no replacement noise), the bound becomes sdlog A.

4 The Basic Construction

Recall that our sketch consists of two parts Py Pg, where Py is the white noise
sketch that removes the white noise. During encoding, a large number of points R
is generated to form the codebook C = (XUR), and Py is its description. During
decoding, the points in Y are matched with the nearest codewords in C, so that
white noise can be removed. The sketch Pg for set difference is constructed using
known schemes on C to correct the replacement noise. We also assume that X
is well-separated.

Here we focus on the construction of Py. We will first give our basic con-
struction in one dimension (d = 1), and then show that it can be extended to
higher dimensions.

The main idea of our construction is to first independently generate many
points, but avoiding regions near the original X. We can also view the generation
of these points as a two dimensional Poisson process. Next, remove some points
so that among the remaining points, no two points are near to each other. The
retained points form the codebook C. Since the points are generated indepen-
dently, it is easier to bound the entropy loss. To minimize the entropy loss, we
need to find a way so that the size of the sketch is not much larger than the
randomness we invested during the construction.

4.1 Construction of Py in One Dimension (d = 1)

For any point z € [0, N — 1], call the set Si(z) = {z+ 1,2+ 2,...,z + 26} the
half-sphere of x.

Given X = {z1,..., s}, the white noise Py is constructed as below. We first
construct a sequence (hg, hi,...,hn_1), where each h; € [0,p; — 1], and p; is a
parameter that is chosen to be p; = |S1(2)|+1 = 26+1 for optimal performance.

1. For each « € X, set h, = 0, and for each a € S1(x), h, is uniformly chosen
at random from {1,...,p; — 1}.
2. For each h; that has not been set in step 1, uniformly choose its value from

{0,...7]91—1}.

For each w € [0, N — 1], we select it to be in the codebook if and only if
hyw = 0 and h, # 0 for all a € S1(w). Hence, if w is a codeword, there would
be no other codeword in the half-sphere S;(w). The sequence (hg,...,hy_1) is
published as the white noise sketch Pg. Note that in practice, we can simply
publish a description of the codebook C as the sketch. However, we choose to
publish the entire sequence (hg,...,hy_1) for the ease of analysis.

From the codebook C, we can construct Pg, the second part of the sketch,
using known schemes for set difference.

Hiding Secret Points Amidst Chaff 65

During decoding, given Y, each point y € Y is matched with its nearest
codeword in C. Suppose y is a noisy version of an z € X, ie. |y — z| < 6,
it is easy to verify that z is its closest point in C. Hence, Py can correct the
white noise. Lemma 3 gives the entropy loss, and Lemma 4 shows that the
bound is quite tight. Note that Lemma 3 and 4 still hold if we choose to publish
a shorter description of the codebook instead of the entire sequence. In other
words, publishing the entire sequence might seem to reveal more information
about X, the “worst-case” entropy loss would not be much different.

Lemma 3. The entropy loss of X given Py is at most

s <1ogA+(A—1)log(1+ Al_l))

which is less than s (log A + loge), where e is the base of natural logarithm.

Proof. Since the randomness invested in constructing Py can be recovered from
X and Py, we can apply (1) in Section 3. In particular, we look at the difference
between the size of the sketch Pg, which is NV log p1, and the randomness invested
in constructing Py. For any h; in Ppg, if it is not set in Step 1 of the above
construction, then |h;| = logp;, which equals to the invested randomness, and
hence it does not contribute to the difference. For each h, such that x € X,
it is set to 0, which contributes log p; to the difference. For each h, such that
a € Si(z) for some x € X, we use log(p; — 1) bits of randomness, hence the
difference introduced is log "' .
Therefore, the total difference (hence the entropy loss) is no greater than

s(logp1+26log P)
p1—1

When p; = 26 + 1, and substituting A = 26 + 1, we have
1
Lg<s <logA—|- (A—1)log(1l+ A 1)> .

Since (1 + Al_l)A*1 approaches e from below when A approaches infinity, we

have the above claimed bound.

Lemma 4. There exists a distribution of X, where the entropy loss of X given
Py is at least s(log A+ (A —1)log(1 + ') — € for some positive constant e.

Proof. Consider the distribution X = {x1,z1 + 24, -+ ;21 + 2(s — 1)A},
where 2 is uniformly chosen from a set A = {aq,---,ax} of A points. Hence,
H. (X) = log A. Recall that, given Py, a point w is a codeword if and only if
hw = 0 and hy, # 0 for all b € Sq(w). Certainly, each point x; in X itself must
be a codeword. Hence, each point a; € A is a possible candidate of the original
point z; if and only if all the points in {a;,a; + 24,...,a; + 2(s — 1)A} are
codewords in C.

66 E.-C. Chang and Q. Li

For any a; # x1, the probability that a; is a possible candidate of z; is at
most 4, (1— i)(A_l)s. Let C be the number of candidates of 21 for a given Py,
then we have

1 A 1
< — (A-1)s _ (A-1)s.
E[C] <1+ A s1+ 0=)

As (1 A

Now by choosing
A\ = 2$(log A+(A-1) log(1+ Al_l))

we have E[C] < 2. By Markov’s Inequality, we have
Pr[C < 4] >1-E[C]/4 > 1/2.
We note that

Epp,, [2*HW(X|PH:b)}

=Ey_p, [max Pr[X =a|Py = b]}
1

1
> < > .
74Pr[074]78

Therefore, the left-over entropy Hao(X |P) < —log 515 = 3. Considering that
Ho(X)=log\=s (logA +(A—1)log(1+ AL)), and let e = 3, we have the
claimed bound.

4.2 Extension to Higher Dimensions

The construction in one dimension can be easily extended to higher dimensions
by giving an appropriate notion of half-sphere. Let us first define a total order
for the points in [0, N — 1]9. Define (x1, x2, ..., zq) = (2}, 75, ..., 2}) if and only
if there exists an 7 such that x; > z} and T = ac; for all 1 < j < i. We define the
half-sphere of z in d-dimensions Sq(z) = {y | 0 < ||y — #[|cc <26 and y > z}.

The sketch Py is a set of N¢ symbols. For each h, € Py, we have y €
[0, N —1]¢ and hy € {0,...,pq — 1} for some parameter pq that is to be chosen
later. We construct Py as below.

1. For each « € X, set h, = 0. For every a € S4(x), uniformly choose h, at
random from {1,...,ps — 1}.

2. For each h, that is not set in step 1, choose its value uniformly at random
from {0,...,pq — 1}.

From Py we can determine the codebook C as follows. A point « € [0, N —1]¢
is in C if and only if h, = 0 and for every a € Sy(x), we have h, # 0. We can
then construct the second part Ps of the sketch for set difference. Suppose y is
a noisy version of an x € X, that is, ||y — z||e < 6, it is not difficult to verify
that its closest point in C is x.

In fact, this construction is essentially the same as the construction for d = 1,
except that Sy(x) is larger when d > 1. By simple counting we have

Hiding Secret Points Amidst Chaff 67

(46 +1)4 -1
0 .

Similar to the one-dimensional case, we choose pg = |Sq(x)| + 1. By substituting
A=25+1, we have

|Sa(x)| =

Theorem 5. The entropy loss of X given sketch Py is at most

1 e
<
1)) <s (dlogA+d+log2)

s (1ogpd T (pa—1)log(1 +
Pa —

d
in d-dimensions, where pg = (46+;) +1, and e is the base of natural logarithm.
Similarly to the one-dimensional case, the above bound is tight. That is, there
is a distribution of X such that the entropy loss is at least

1
s (logpd + (pa — 1) log(1 +)) —€
pa—1

for some positive constant €. Taking into consideration the entropy loss of sketch
for set difference, we have

Corollary 6. In d-dimensions, the entropy loss of X given sketch Py Ps is at
d
most s (dlogA +d +log g) + Lsp (s,t7 (25111)(1> .

5 Improved Schemes

The generic construction in Section 4.2 can indeed be further improved in terms
of entropy loss. We employ two techniques. The first is pre-rounding. That is,
each point in X and Y is rounded prior to both encoding and decoding. We
observe that, the effect of the white noise is reduced on the rounded points. The
second technique is partitioning, where we carefully partition the domain into
cells. Instead of selecting points independently from the space, in the improved
scheme, at most one point is selected in each cell. Both techniques are useful in
reducing the randomness required in constructing Pp.

5.1 Improvement in One Dimension (d = 1)

First, we give an improvement for § = 1 using partitioning, and we observe that
this scheme can be extended to any é > 1 by pre-rounding.

We partition the domain [0, N — 1] into cells of size 3, such that the i-th cell
contains the 3 consecutive points {37, 3i + 1,3i + 2}. There are n’ = [N/3] cells
in total. We want to assign one bit h; to the i-th cell for all 0 < i <n’ — 1, and
construct Py as the binary sequence (hg, h1,...hp—1).

Our main idea is to use this binary sequence to describe the codewords in
the cells. At the first glance, it seems impossible since each cell would have three
different possible codewords, which cannot be described by one bit. However,

68 E.-C. Chang and Q. Li

since two codewords cannot be too close to each other, we can eliminate certain
cases by considering each two consecutive cells together. In this way, we can use
only two bits to describe the codewords in two consecutive cells.

Here is how the values in the binary sequence are determined: For each z € X,
it is in the ¢ = |z/3]-th cell, and » = x mod 3 indicates the location of z in the
i-th cell. We set two values h; and h;4+1 in Py according to Table 1(a). Since there
are s points in X, the above process sets the values for 2s bits in (hy, ha, ... hpr—1).
For each h; that is not set, we randomly assign a value from {0, 1} to it.

Now, from (hg, h1,...hy—1), we determine a set of “potential codewords”.
For each i-th cell, the potential codeword in the cell is determined by h; and
hiy1 using Table 1(b). Next, for a potential codewords z, if there is another
potential codeword z’ such that ' € Si(z), then = is removed. The retained
points form the codebook C. By the design of Table 1(a) & (b), each z € X will
be a codeword.

Table 1. Improved Scheme for d = 1

f(L)z‘ hiOJrl hivt =0 hipt =1
2l N hi =0 3i 3i+1
r—2 1 1 h;=1 31+ 2 3+ 2

(a) (b)

Similar to the basic construction, in practice, we can publish a description
of C as the sketch. However, for the ease of analysis, we choose to publish
(ho,h1, ..., hyp—1). During decoding, each y is simply matched to the nearest
codeword in C.

Since we invested n’ — 2s bits of randomness, and the size of sketch is 2s, the
entropy loss is at most 2s.

Extension to any 6. To extend this scheme to any §, we employ rounding. The
rounding is essentially a many-to-one mapping. For each point w € [0, N — 1],
we map it to @ = |w/6]. Note that under white noise, the perturbed point w’
can only be mapped to w — 1,w or w + 1. In other words, under the mapping,
the white noise (that appears to be on) is reduced to —1, 0, or +1, which
corresponds to white noise with unit strength. Since the mapping is many-to-
one, for each x € X, we keep the rounding error x — §(|x/6]) and publish it as
part of the sketch. Hence, the additional entropy loss due to the rounding is at
most log ¢ for each x € X. In total, we have

Theorem 7. The entropy loss for the above scheme is at most (2 4 logé)s +
Lsp (s,t,N/(30)).
5.2 Improvement for d =2 and § =1

For § = 1 in two dimensions, with a parameter a € [0, 4], we partition the space
such that every 5 points of the form {(w, 5k + «), (w, 5k + a+ 1), (w, 5k + o + 2),

Hiding Secret Points Amidst Chaff 69

O$&O

(=9

00 @ OO
€oo0 0 O
00 0 90

O 0fe
20 02000
O O O)(Os O

Fig. 1. Cells of size 5. For each scenario, the black point is a data point, the white
points cannot be in the codebook.

(w,5k +a+3), (w, 5k + a+4)} for some non-negative integer k, are grouped into
a cell (Fig. 1). Each cell will be assigned a number ¢ € [0,p2 — 1] where py is a
constant to be decided later. If the assigned value q is less than or equal to 4, then
we select the point (w, 5k + ¢) to be a codeword in the cell, otherwise no codeword
is selected in this cell.

There are five possible scenarios for a point € X, corresponding to the five
different possible locations it occupies in a cell. Two of the five possible scenarios
are illustrated in Fig. 1. Now we count the entropy loss for the scenario in Fig.
1(a). Same as in the basic construction, for any = € X, all the points in the
half-sphere So(x) cannot be codewords. Therefore, all the white points in the
figure cannot be codewords. Hence, for cell labeled d;, there is only 1 choice for
the value of the corresponding ¢, for ds and ds, there are p, — 3 choices, and for
ds, d4, and dg, there are po — 2 choices. Hence the entropy loss for this point is
log p2 + 2log(p2/(p2 — 3)) + 3log(p2/(p2 — 2)).

Now we choose ps = 14, and the entropy loss for all five scenarios are as
shown in Table 2.

Table 2. Entropy loss of the five scenarios

(a) logpa + 2log(p2/(p2 — 3)) + 3log(p2/(p2 — 2)) < 5.1704
(b) logpz + 2log(p2/(p2 — 4)) 4 3log(p2/(p2 — 1)) < 5.0990
(c) logpz + 2log(pz/(p2 — 5)) < 5.0823
(d) logpz + 2log(p2/(p2 — 4)) + 2log(p2/(p2 — 1)) < 4.9921
(e) logpa +2log(pz/(p2 — 3)) + 2log(p2/(p2 — 2)) < 4.9480

Next, we choose a value for «, such that scenario (e) happens most often.
By this choice of «, we can show that Ly < 5.0750s, whereas in the basic
construction in Section 4.2, the bound is at least 5.0861s for § = 1.

Although the improvement is small, this construction suggests that the basic
construction can be further improved by partitioning. There are many ways to
partition the 2-d domain, and it is interesting to find the optimal partition in
terms of entropy loss.

70 E.-C. Chang and Q. Li

6 Short Description of Py

In the basic constructions (Section 4.2), we can view the sketch Py as a random
sequence of length N¢log py with two types of constraints: Type 0 constraint is
of the form (k, 0), which requires that hy = 0, and type 1 constraint is of the form
(k, 1) which requires that hy # 0. The main idea is as follows: Find the seed of
some pseudo-random generator, such that the generated sequence satisfies all the
type 0 and 1 constraints, and use the seed as the sketch. In this section, we give
two methods. The first method has efficient decoding and encoding algorithms,
but still requires randomness. The second method eliminates all randomness but
there is no known efficient encoder.

Using a high degree polynomial. Let n = N¢ and assign each z € [0, N — 1]¢
a unique index ind(x) in [0,n — 1]. Given a constraint set S = {(k1,71),...,
(Km, 7m)}, we construct a polynomial f(z) of degree at most m — 1 in Z,, as the
following.

1. Uniformly choose di,...,d, € Z, at random such that for 1 < i < m, if
r; =0, then d; =0 mod pg, otherwise d; 20 mod py.

2. Find the polynomial f of degree at most m — 1 such that f(ind(k;)) = d;
mod n for 1 <i < m.

The m coefficients of f is published as the sketch. During decoding, each hj in
Py can be recovered by computing by, = (f(ind(k)) mod n) mod pg. Since for
each point x we can have at most |Sq(z)|+ 1 constraints, The polynomial f can
be represented using ds((%gl)dﬂ) log N bits.

When py divides n, the entropy loss of this sketch is the same as the basic

construction.
Using almost k-wise independence [1]. A sample space of n bits is almost k-wise
independent if the probability distribution, induced on every k bit locations in a
randomly chosen string from the sample space, is statistically close to uniform.
The number of bits required to describe one sample is (2+0(1))(loglog n+3k/2+
log k). The sample space is pre-computed and made public.

We observe that this construction can be employed to make the sketch
shorter. For instance, for d = 1 and 6 = 1 in our basic construction, we can
construct such a sample space with & = 3s and n = N. Given an original X,
which in turn gives a set of constraints, we find the first sample that satisfies
the constraints. The description of the sample is the sketch, whose size is in
o(s + loglog N'), which is also an upper bound for the entropy loss. In general,
the size of the sketch would be in o (sAd + log log(Nd)) in d-dimensional space.
However, we are not aware of a better bound on the entropy loss other than the
size of the sketch.

7 Entropy Loss of a Random Placement Method

Intuitively, it seems that it is better to have the codebook C = (X U R) as large
as possible, since then a brute-force attacker will need to try more guesses to

Hiding Secret Points Amidst Chaff 71

get X. In this section we give a seemingly natural random placement method to
construct Py with a large R in one dimension, and we show that the entropy
loss is high for certain distributions of X.

The secure sketch Pg is a description of the sequence <r07r1, ceey T"N/A‘|>.
Each r; describes the gap between two consecutive codewords in C (except for 7,
which can be considered as the description of an “imaginary” starting codeword).
Hence, instead of generating the codewords directly, we randomly choose the
gaps between the codewords.

The sequence Py is generated incrementally, starting from r1. Most of the
times the value of each gap can be chosen from A different values, but when a
codeword w is close to a point x € X, then the gap between w and the next
codeword will be selected from a smaller interval (Steps 2 and 3).

1. Letrog = —6,i = 1.

2. If there is an z € X s.t. © — r;_1 € [26,46] then let r; = x — r;_1.

3. If there is an z € X s.t. x —r;—1 € [46 + 1,66], uniformly choose r; from
[A—1,2 —r;—1 — A]. Otherwise, uniformly choose r; from [A —1,2A — 2].

4. Increase i by 1, and repeat from Step 2 until i = [N/A] + 1.

5. Output PH = <T1, ey T(N/A]>~

The codewords can be recovered from Pp. In particular, the k-th codeword is
Z?:O ri, for 1 < k < [N/A]. If a codeword recovered in this process is greater
than N — 1, it is removed. It is not necessary for Py to have exactly [N/A]
elements, and the extra padding is only for the ease of analysis.

Consider X = {z1,11+24,...,21+2(s—1)A}, where z is uniformly distrib-
uted. It can be shown that the entropy loss of X given Py is at least 2slog A —e
for some small positive constant e. Comparing with other constructions in this
paper, this method reveals the most information, even though it produces the
largest number of codewords.

8 Conclusions and Discussions

In this paper, we investigate the technique of hiding a set of secret points by
adding chaff points. Instead of considering brute force attackers as in known
previous works, we give rigorous treatment under the secure sketch framework.
We propose a construction of secure sketch for such point-sets, which can be
extended to any dimension, and also some improvements for certain specific
parameters. We give tight bounds of the entropy loss of our schemes.

Although we used infinity norm as the measure of closeness between any
pair of points in the space, it is not difficult to extend our basic construction to
any other closeness relations (e.g., using o norm). It seems that this is always
possible as long as a total order can be defined on the points, so that the half-
sphere of any given point is uniquely defined and is bounded.

On the other hand, the improvements in Section 5 are “ad-hoc” in the sense
that they are specially designed for particular values of § and d. We can also
obtain improved schemes for another case where the white noise either leaves a

72

E.-C. Chang and Q. Li

coordinate unchanged or increased by one (we call this the 0-1 noise). An inter-
esting question now is whether there is a generic method to find the “optimal”
way of partitioning the space.

The proposed sketches are not suitable for large universe size N¢. The meth-

ods in Section 6 can reduce the sketch size, but the encoding and decoding
algorithms can still be inefficient for large universe.

References

10.

11.

12.

13.

14.

15.

16.

. Noga Alon, Oded Goldreich, Johan Hastad, and René Peralta. Simple constructions

of almost k-wise independent random variables. In Proc. of the 31st FOCS, pages
544-553, 1990.

Xavier Boyen. Reusable cryptographic fuzzy extractors. In Proceedings of the 11th
ACM conference on Computer and Communications Security, pages 82-91. ACM
Press, 2004.

Ee-Chien Chang, Vadym Fedyukovych, and Qiming Li. Secure sketch for
multi-set difference. Cryptology ePrint Archive, Report 2006/090, 2006.
http://eprint.iacr.org/.

. Ee-Chien Chang, Ren Shen, and Francis Weijian Teo. Finding the original point

set hidden among chaff. In ASTACCS, 2006. To appear.

T.C. Clancy, N. Kiyavash, and D.J. Lin. Secure smartcard-based fingerprint au-
thentication. In ACM Workshop on Biometric Methods and Applications, 2003.
Michael D.Garris and R.Michael McCabe. Fingerprint minutiae from latent and
matching tenprint images. NIST Special Database 27, 2000.

Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to gen-
erate strong keys from biometrics and other noisy data. In Furocrypt’04, volume
3027 of LNCS, pages 523-540. Springer-Verlag, 2004.

E.G. Coffman Jr., L. Flatto, and P. Jelenkovié¢. Interval packing: The vacant-
interval distribution. The Annals of Applied Probability, 10(1):240-257, 2000.

Ari Juels and Madhu Sudan. A fuzzy vault scheme. In IEEE Intl. Symp. on
Information Theory, 2002.

Ari Juels and Martin Wattenberg. A fuzzy commitment scheme. In Proc. ACM
Conf. on Computer and Communications Security, pages 28-36, 1999.

D. Maltoni, D. Maio, A.K. Jain, and S. Prabhakar. Handbook of Fingerprint Recog-
nition. Springer, 2003.

Yaron Minsky, Ari Trachtenberg, and Richard Zippel. Set reconciliation with nearly
optimal communications complexity. In ISIT, 2001.

I. Palasti. On some random space filling problems. Publ. Math. Inst. Hung. Acad.
Sci., 5:353-359, 1960.

A. Rényi. On a one-dimensional problem concerning random space-filling. Publ.
Math. Inst. Hung. Acad. Sci., 3:109-127, 1958.

P. Tuyls and J. Goseling. Capacity and examples of template-protecting biometric
authentication systems. In ECCV Workshop BioAW, pages 158-170, 2004.
Shenglin Yang and Ingrid Verbauwhede. Automatic secure fingerprint verification
system based on fuzzy vault scheme. In IEEFE Intl. Conf. on Acoustics, Speech,
and Signal Processing (ICASSP), pages 609-612, 2005.

Parallel and Concurrent Security of the
HB and HB* Protocols

Jonathan Katz* and Ji Sun Shin**

Dept. of Computer Science, University of Maryland
{jkatz, sunny}@cs.umd.edu

Abstract. Juels and Weis (building on prior work of Hopper and Blum)
propose and analyze two shared-key authentication protocols — HB and
HB* — whose extremely low computational cost makes them attrac-
tive for low-cost devices such as radio-frequency identification (RFID)
tags. Security of these protocols is based on the conjectured hardness
of the “learning parity with noise” (LPN) problem: the HB protocol
is proven secure against a passive (eavesdropping) adversary, while the
HB™protocol is proven secure against active attacks.

Juels and Weis prove security of these protocols only for the case of
sequential executions, and explicitly leave open the question of whether
security holds also in the case of parallel or concurrent executions. In
addition to guaranteeing security against a stronger class of adversaries,
a positive answer to this question would allow the HB™ protocol to be
parallelized, thereby substantially reducing its round complexity.

Adapting a recent result by Regev, we answer the aforementioned
question in the affirmative and prove security of the HB and HB™ proto-
cols under parallel/concurrent executions. We also give what we believe
to be substantially simpler security proofs for these protocols which are
more complete in that they explicitly address the dependence of the
soundness error on the number of iterations.

1 Introduction

Low-cost, severely resource-constrained devices such as radio-frequency identifi-
cation (RFID) tags or sensor nodes demand extremely efficient algorithms and
protocols. Securing such devices is a challenge since, in many cases, “traditional”
cryptographic protocols are simply too computationally-intensive to be utilized.
With this motivation in mind, Juels and Weis [20] — building upon work of
Hopper and Blum [18,19] — investigate two highly-efficient, shared-key (unidi-
rectional) authentication protocols suitable for an RFID tag identifying itself to
a tag reader. (We will sometimes refer to the tag as a prover and the tag reader
as a vertfier.) These protocols are extremely lightweight, requiring both parties
to perform only a relatively small number of primitive bit-wise operations such

* This research was supported by NSF Trusted Computing grants #0310499 and
#0310751, and NSF CAREER award #0447075.
** Supported by NSF Trusted Computing grant #0310499.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 73-87, 2006.
© International Association for Cryptologic Research 2006

74 J. Katz and J.S. Shin

as “XOR” and “AND,” and can thus be implemented using fewer than the 5-10K
gates required to implement even a block cipher such as DES or AES [20].

The two protocols studied by Juels and Weis are both proven secure viareduction
to the “learning parity with noise” (LPN) problem [4,5,6,9,17,21,18,19,25]; a
formal definition of this problem as well as evidence for its difficulty are reviewed
in Section 2.1. The first protocol (called the HB protocol [18, 19]) is proven secure
against a passive (eavesdropping) adversary, while the second (called HBT) is
proven secure against the stronger class of active adversaries. In each case, Juels
and Weis focus on a single, “basic authentication step” of the protocol and prove
that a computationally-bounded adversary cannot succeed in impersonating a
tag in this case with probability noticeably better than 1/2; that is, a single iter-
ation of the protocol has soundness error 1/2. The implicit assumption (though
see below) is that repeating these “basic authentication steps” sufficiently-many
times yields a protocol with negligible soundness error.

Difficulties and limitations. There are, however, some subtle limitations of
the security proofs given by Juels and Weis. Most serious, perhaps, is a difficulty
explicitly highlighted by Juels and Weis and regarded by them as a potential
barrier to usage of the HB™ protocol in practice [20, Section 6]: the proof of
security for HB' requires that the adversary’s interactions with the tag (i.e.,
when the adversary is impersonating a tag reader) be sequential. Besides leaving
in question the security of HBT under concurrent executions, this also means
that the HB' protocol itself (which, recall, consists of sufficiently-many rep-
etitions of an underlying basic authentication step) requires very high round
complexity since the multiple iterations of the basic authentication step cannot
be parallelized but must instead be performed sequentially. The difficulty and
importance of proving security of various identification protocols under concur-
rent or parallel composition is well-understood, and many results are known: for
example, the (black-box) zero-knowledge property of an identification protocol is
not preserved under parallel [14] or concurrent [8] composition (though it is pre-
served under sequential composition [16]), whereas witness indistinguishability
is preserved in these cases [11]. Unfortunately, the HBT protocol is not known to
satisfy either zero knowledge or witness indistinguishability and so such results
are of no help here.

An additional difficulty, not explicitly mentioned in [20], is that it is unclear
what is the exact relationship between the soundness error and the number of
repetitions of the basic authentication step; this is true for both the HB and
HB™ protocols, regardless of whether the repetitions are carried out in par-
allel or sequentially.! This is related to the more general question of “when
is solving multiple instances of a problem more difficult than solving a single
instance?” (i.e., hardness amplification) which has been studied in many con-
texts [26,15,3,13,24,7] and turns out to be surprisingly non-trivial to answer.

! Indeed, Juels and Weis only prove soundness 1 /2 for a basic authentication step and
never make any claims regarding the security of multiple iterations (for either HB or
HB™); this indicates that those authors also recognized the difficulty of characterizing
the dependence of soundness on the number of iterations.

Parallel and Concurrent Security of the HB and HB* Protocols 75

Unfortunately, there does not seem to be any prior work that applies in our
setting. Specifically:

e For the HB and HB™ protocols it is not possible to efficiently verify whether
a given transcript is “successful” without possession of the secret key; thus,
Yao’s “XOR-lemma” [26,15] and related techniques that require efficient
verifiability do not apply.

e Work on hardness amplification for “weakly-verifiable puzzles” [7] does not
apply either. Although the HB/HB™ protocols can be viewed as efficiently-
verifiable puzzles, hardness amplification in [7] is only proved for completely
independent instances of the “puzzle.” In particular, then, the work of [7]
implies that running the basic authentication step of the HB protocol n times
using n independent keys yields soundness (roughly) 1/2™, but says nothing
about running n iterations using the same key (which is the case we are
interested in).

e The HB/HB™ protocols are computationally-sound only, and thus known
results [13, Appendix C] [24] on soundness reduction for interactive proof
systems (which apply only when soundness holds even against an all-powerful
cheating prover) do not apply either.

e Bellare, et al. [3] study soundness reduction in computationally-sound proto-
cols, and show a positive result [3, Sect. 4] for the case of protocols running
in 3 rounds. Unfortunately, their result is specifically stated to apply only
when the verifier does not hold a secret key (or, more generally, only when
the verifier does not share state across different iterations). As in the case of
weakly-verifiable puzzles, then, this result is of no help when the same secret
key is used across all iterations.

An additional difficulty in our setting is that the verifier is supposed to accept
even when some iterations have not been answered successfully; indeed, crucial to
both the HB and HB™ protocols is that the honest prover injects “noise” into its
answers and so even the honest prover does not succeed with probability 1. This
was not explicitly addressed in the security proofs of [20], either, and introduces
additional complications.

1.1 Owur Contributions

In this work we address the difficulties and open questions mentioned above, and
show the following results: (1) the HB' protocol remains secure under arbitrary
concurrent interactions of the adversary with the honest prover/tag, and so in par-
ticular the iterations of the HBT protocol can be parallelized; furthermore, (2) our
security proofs explicitly incorporate the dependence of the soundness error on the
number of iterations as well as the error introduced by the honest prover.
Besides the results themselves, we expect that the techniques and proofs we
give here will be of independent interest for future work on cryptographic appli-
cations of the LPN problem. Our main technical tool is a result due to Regev
[25] (see also [5]) showing that the hardness of the LPN problem implies the
pseudorandomness of a certain distribution. Using this, we give proofs which we

76 J. Katz and J.S. Shin

believe are substantially simpler than those given in [20], and also more complete
(in that, in contrast to [20], they explicitly deal with the dependence of sound-
ness on the number of iterations and also the issues arising due to non-perfect
completeness).

1.2 Additional Discussion

The problem of secure authentication using a shared, secret key is by now well-
understood, and many widely-known solutions based on, e.g., block ciphers are
available. We stress that the aim of the line of research considered here, as in [20],
is to develop protocols which are exceptionally efficient while still guaranteeing
some useful level of (provable) security. The estimates from [20] are that 5,000—
10,000" gates are needed for block-cipher implementations, whereas a typical
RFID tag may only have 2,000 gates that can be dedicated to security. Moore’s
Law will not necessarily help here, either: as pointed out in [20], there is intense
pressure to keep prices for RFID tags low; as computational power per fixed unit
of currency increases, the trend has been to reduce the cost of tags and thus
expand their application domain rather than to increase their computational
power while keeping costs fixed. In short, there seems to be “little effective
change in tag resources for some time to come, and thus a pressing need for new
lightweight primitives” [20].

Gilbert, et al. [12] have recently shown a man-in-the-middle attack on the
HB™ protocol. Although their attack would be debilitating if carried out suc-
cessfully, the possibility of such an attack does not mean that it is now useless to
explore the security of the HB/HB™ protocols in weaker attack models! (Indeed,
only recently have man-in-the-middle attacks on identification protocols been
formally considered in general [2], yet certainly research in the area conducted
up to that point is not valueless.) There will always be some tradeoff between
efficiency and security, and our work can be viewed as mapping out where the
HB/HBT™ protocols lie on this spectrum. Moreover, Juels and Weis [20, Appendix
A] note that the man-in-the-middle attack of [12] does not apply in a detection-
based system where numerous failed authentication attempts immediately raise
an alarm. Furthermore, especially in the case of RFID (where communication
is inherently short range), it appears much more difficult to mount a man-in-
the-middle attack than an active attack.? The reader is referred to the work of
Wool, et al. [22,23], for an illuminating discussion on the feasibility of man-in-
the-middle attacks in RFID systems.

2 Definitions and Preliminaries

We formally define the LPN problem and state and prove the main technical
lemma on which we rely. We also define our notion(s) of security for identifica-

2 Though there have been claims of being able to read some RFID tags over as much
as 69 feet [1], the maximum distance from which many commonly-used cards can be
read appears to be almost two orders of magnitude lower [22]. Note further that a
man-in-the-middle attack requires the ability to send data to the tag (and reader).

Parallel and Concurrent Security of the HB and HB* Protocols 7

tion; these are standard, but some complications arise due to the fact that the
HB/HB™ protocols do not have perfect completeness.

2.1 The LPN Problem

View k as a security parameter. If s a;,...,a, are binary vectors of length
k, let z; = (s,a;) denote the dot product of s and a; (modulo 2). Given the
values ay, 21, . .., ay, z¢ for randomly-chosen {a;} and ¢ = O(k), it is possible to

efficiently solve for s using standard linear-algebraic techniques. However, in the
presence of noise where each z; is flipped (independently) with probability e,
finding s becomes much more difficult. We refer to the problem of learning s in
this latter case as the LPN problem.

For the formal definition, let Ber. be the Bernoulli distribution with parameter
g€ (0,) (soif v~ Ber. then Pr[v = 1] = ¢ and Pr[v = 0] = 1 —¢), and let A,
be the distribution defined by:

{a —{0,1}*;v < Ber. : (a, (s,a) @ y)}

Also let Ag . denote an oracle which outputs (independent) samples according
to this distribution. Algorithm M is said to (¢, g, 6)-solve the LPN. problem if

Pr[s « {0,1}%: MA==(1%) = 5] > ¢,

and furthermore M runs in time at most ¢ and makes at most g queries to its
oracle.? In asymptotic terms, in the standard way, the LPN. problem is “hard”
if every probabilistic polynomial-time algorithm solves the LPN. problem with
only negligible probability (where the algorithm’s running time and success prob-
ability are functions of k).

Note that € is usually taken to be a fixed constant independent of k, as will be
the case here. The value of € to use depends on a number of tradeoffs and design
decisions: although, roughly speaking, the LPN. problem becomes “harder” as ¢
increases, a larger value of ¢ also implies that the honest prover is rejected more
often (as will become clear when we describe the HB/HB™ protocols, below).
In any case, our results are meaningful for all € € (0, }1) For concreteness, the
reader can think of € ~ é.

The hardness of the LPN, problem (for constant € € (0, 3)) has been studied
in many previous works. It can be formulated also as the problem of decoding
a random linear code [4, 25], and is N'P-complete [4] as well as hard to approx-
imate within a factor better than 2 (where the optimization problem is phrased
as finding an s satisfying the most equations) [17]. These worst-case hardness re-
sults are complemented by numerous studies of the average-case hardness of the
problem [5, 6,9, 21,18, 19, 25]. Most relevant for our purposes is that the current
best-known algorithm for solving the LPN. problem [6] requires t, g = 20(k/1ogk),

3 Our formulation of the LPN problem follows, e.g., [25]; the formulation in, e.g., [20]
allows M to output any s satisfying > (1 — €) fraction of the equations returned
by As,. It is easy to see that for ¢ large enough these formulations are essentially
equivalent as with overwhelming probability there will be a unique such s.

78 J. Katz and J.S. Shin

We refer the reader to [20, Appendix D] for more exact estimates of the running
time of this algorithm, as well as suggested practical values for k.

2.2 A Technical Lemma

In this section we prove a key technical lemma: hardness of the LPN,. problem
implies “pseudorandomness” of Ag .. Specifically, let Ujy1 denote the uniform
distribution on (k+ 1)-bit strings. The following lemma shows that oracle access
to As (for randomly-chosen s) is indistinguishable from oracle access to Ug1.
A proof of the following is essentially in [25, Sect. 4], although we have fleshed
out some of the details and worked out the concrete parameters of the reduction.

Lemma 1. Say there exists an algorithm D making q oracle queries, running
i time t, and such that

|Pr[s < {0,1}% : D= (1%) = 1] — Pr [DYs+1 (1%) =1]| > 6.

Then there exists an algorithm M making ¢ = O (q 672 1og k) oracle queries,
running in time t' = O (t k6 2log k), and such that

Pr[s «— {0, 1 MAs=(1F) = s| > ¢/4.

(Various tradeoffs are possible between the number of queries/running time of
M and its success probability in solving LPN.; see [25, Sect. 4]. We aimed for
simplicity in the proof rather than trying to optimize parameters.)

Proof. Set N = O (6-2logk). Algorithm M= (1*) proceeds as follows:

1. M chooses random coins w for D and uses these for the remainder of its
execution.

2. M runs DYk+1(1%;w) for a total of N times to obtain an estimate p for the
probability that D outputs 1 in this case. (The probability here is over the
responses from the oracle.)

3. M obtains ¢ - N samples {(a1,j,21,j)}j=1,---» {(anj, 2n,5) }j=; from As..
Then for i € [k]:

(a) Run D(1*;w) for a total of N times, each time using a fresh set of samples
{(aj,2j)}}=; to answer the g oracle queries of D. Answer the 4t oracle
query of D in each iteration by choosing a random bit ¢; and returning
(aj & (c; -), zj), where e; is the vector with 1 at position ¢ and Os
elsewhere. Obtain an estimate p; for the probability that D outputs 1 in
this case.

(b) If |p; — p| > 6/4 set s, = 0; else set s, = 1.

4. Output s’ = (s),...,s}).

Let us analyze the behavior of M. First note that, by standard averaging

argument, with probability at least 6/2 over choice of s and random coins w it
holds that

|Pr [D?A==(1%;w) = 1] — Pr [DYV*+1 (1% w) = 1]| > 6/2, (1)

Parallel and Concurrent Security of the HB and HB* Protocols 79

where the probabilities are taken over the answers D receives from its oracle.
We restrict our attention to s,w for which Eq. (1) holds and show that in this
case M outputs s’ = s with probability at least 1/2. The theorem follows.

By our choice of N we have that

|Pr [DYVs+1 (1% w) = 1] —p| < 6/16 (2)

except with probability at most O(1/k). Next focus on a particular iteration i of
steps 3(a) and 3(b). Letting hyb, denote the distribution of the answers returned
to D in this iteration, we again have

|Pr [D™*(1%;w) = 1] — p; | < 6/16 (3)

except with probability at most O(1/k). Applying a union bound (and setting
parameters appropriately) we see that with probability at least 1/2 Egs. (2)
and (3) hold (the latter for all i € [k]), and so we assume this to be the case for
the rest of the proof.

We claim that if s; = 0 then hyb, = A ., while if s; = 1 then hyb, = Ug1.
To see this note that when s; = 0 the answer (a; @ (c; - €;), 2;) returned to D is
distributed exactly according to As . since (s, a; ® (¢; - €;)) = (s,a;) = z;. On
the other hand, if s; = 1 then z; = (s, a;) is independent of a; @ (¢; - €;) since
¢; is random (and unknown to D).

It follows that if s; = 0 then

|Pr [D"*i(1F;w) = 1] — Pr [DY*+ (1%;w) = 1]] > /2

(by Eq. (1)), and so [p; —p| > § —2- 156 = 385 (by Egs. (2) and (3)) and
st =0=s;. When s; = 1 then

Pr [_Dhybl(].k,W) — 1] = Pr [DUk+1(]_k’(,d) =]-])

and so [p; —p| < 2- . = (again using Eqgs. (2) and (3)) and s} = 1 = s;. Since
this holds for all ¢ € [k], we conclude that s’ = s.

2.3 Overview of the HB/HB+ Protocols, and Security Definitions

The HB and HB™ protocols as analyzed here consist of n parallel iterations of
a “basic authentication step.” We describe the basic authentication step for the
HB protocol, and defer a discussion of the HB' protocol to Section 3.2. In the
HB protocol, a tag 7 and a reader R share a random secret key s € {0,1}%;
a basic authentication step consists of the reader sending a random challenge
a € {0,1}* to the tag, which replies with z = (s,a) @ v for v ~ Ber.. The reader

can then verify whether the response z of the tag satisfies z L (s, a); we say the
iteration is successful if this is the case. See Figure 1.

Even for an honest tag a basic iteration is unsuccessful with probability e.
For this reason, a reader accepts upon completion of all n iterations of the basic
authentication step as long as ~ ¢ - n of these iterations were unsuccessful. More

80 J. Katz and J.S. Shin

T (s,€) R(s)
bl a a < {Oa 1}k
v «— Ber.
z:=(s,a) Dv # >

verify: z < (s, a)
Fig. 1. The basic authentication step of the HB protocol

precisely, let |,u be such that | < e-n < u; then the reader accepts as long as
the number of unsuccessful iterations lies in the range [l,u]. Since ¢ - n is the
expected number of unsuccessful iterations for an honest tag, the completeness
error €. (i.e., the probability that an honest tag is rejected) can be calculated
via a Chernoff bound.* Overall, then, the entire HB protocol is parameterized
by €,1,u, and n.

Observe that by sending random answers in each of the n iterations, an ad-
versary trying to impersonate a valid tag succeeds with probability

u
:,I,u,n déf 27" Z <7ZI)1

i=l
that is, 6’;|’u’n is the best possible soundness error we can hope to achieve for
the given setting of the parameters. Our definitions of security will be expressed
in terms of the adversary’s ability to do better than this. Looking at asymptotic
security (taking k as a security parameter), note that for any constant e < 1/2
it is easy to find functions |, u,n of k such that n = O(k) and furthermore both
the completeness error €. and the “best achievable” soundness error 6’;|’u’n are
negligible.

Let ’TS':'E'?” denote the tag algorithm in the HB protocol when the tag holds

secret key s (note that the tag algorithm is independent of I, u), and let RHE

s,e,l,u,n
similarly denote the algorithm run by the tag reader. We denote a complete exe-

cution of the HB protocol between a party T and the reader R by <’f'7 RHE >

s,e,l,u,n
and say this equals 1 iff the reader accepts.

For a passive attack on the HB protocol, we imagine an adversary A running
in two stages: in the first stage the adversary obtains ¢ transcripts® of (honest)
executions of the protocol by interacting with an oracle transSHE’n (this models
4 Note in particular that if u is set to ezactly € - n then the completeness error will

be rather high. One can imagine changing the protocol so that the tag introduces at

most ¢ - n errors; see Section 4 for discussion of this point.

5 Following [18,19,20], a transcript comprises only the messages exchanged between
the parties and does not include the reader’s decision of whether or not to accept.
If the adversary is given this additional information, the adversary’s advantage may
increase by (at most) an additive factor of ¢ - e..

Parallel and Concurrent Security of the HB and HB* Protocols 81

eavesdropping); in the second stage, the adversary interacts with the reader and
tries to impersonate the tag. We define the adversary’s advantage as

1 def
passive 161
Adviitie (e,lLu,n) =

Pr [S - {0’ 1}k;Atranssim,(1k) . <,A7 RsH,E,I,u,n> = 1} — :,I,u,n‘
As we will describe in Section 3.2, the HB protocol uses two lieys S1,82. We
let TS';"BSMm denote the tag algorithm in this case, and let R:B,sz,s,l,u,n denote
the algorithm run by the tag reader. For the case of an active attack on the
HB™ protocol, we again imagine an adversary running in two stages: in the first
stage the adversary interacts at most ¢ times with the honest tag algorithm
(with concurrent executions allowed), while in the second stage the adversary
interacts only with the reader.® The adversary’s advantage in this case is

active def
Advy s (e, u,n) =

+
Pr|si,s2 {07 l}k;ATSqE?Sz’E'”(lk) : <A7 Rls-{lB,;,s,l,u,n> = 1:| - :,I,u,n'

We remark that in both the HB and HB™ protocols, the tag reader’s ac-
tions are independent of the secret key(s) it holds except for its final decision
whether or not to accept. So, allowing the adversary to interact with the reader
multiple times (even concurrently) does not give the adversary much additional
advantage (other than the fact that, as usual, the probability that the adversary
succeeds in at least one impersonation attempt scales linearly with the number
of attempts).

3 Proofs of Security for the HB and HB™ Protocols

3.1 Security of the HB Protocol Against Passive Attacks

Recall from the previous section that we parameterize the HB protocol by ¢ (a
measure of the noise introduced by the tag), |, u (which determine the complete-
ness error €. as well as the best achievable soundness ¢*), and n (the number
of iterations of the basic authentication step given in Figure 1). We stress that
these n iterations are run in parallel, and so the entire protocol requires only
two rounds.

The following result characterizes security of the HB protocol against passive
attack. This can be compared to [20, Lemma 1], where Juels and Weis prove
security for a single iteration of the HB protocol (i.e., they fix n = 1) and do not
explicitly take the non-zero completeness error into account (this is taken into
account in the following via the dependence on |, u).

5 As we have already noted, this is the “classical” notion of security against active
attacks which does not take into account man-in-the-middle attacks.

82 J. Katz and J.S. Shin

Theorem 1. Say there exists an adversary A eavesdropping on q evecutions of
the HB protocol, running in time t, and achieving AdVi'}iz" (¢,1,u,n) > 6. Then
there exists an algorithm D making (¢ + 1) - n oracle queries, running in time
O(t), and such that

’PI‘ [S — {07 1}k . DAs,E(lk) _ 1] — Pr [DU’“'H(]_k) _ 1”

2u
>5+5;,M—€C—2n-z<’7).
;

=0

Asymptotically, for any e < ; and n = O(k) all terms of the above expression
(other than §) are negligible for appropriate choice of I, u. We thus conclude that
the HB protocol is secure (for n = @(k) and appropriate choice of |, u) assuming
the hardness of the LPN, problem.

Proof. Algorithm D, given access to an oracle returning (k+ 1)-bit strings (a, z),
proceeds as follows:

1. D runs the first phase of A. Each time A requests to view a transcript of
the protocol, D obtains n samples {(a;, z;)}?"_; from its oracle and returns
these to A.

2. When A is ready for the second phase, D again obtains n samples
{(a;,z;)}, from its oracle. D then sends the challenge (ai,...,a,) to A
and receives in return a response Z' = (z1,...,2.).

3. D outputs 1iff Z = (21,...,2,) and Z’ differ in at most 2u entries.

When D’s oracle is Uy, it is clear that D outputs 1 with probability ex-
actly 27" - Z?io (?) since Z is in this case uniformly distributed and inde-
pendent of everything else. On the other hand, when D’s oracle is As. then
the transcripts D provides to A during the first phase of A’s execution are
distributed identically to real transcripts in an execution of the HB protocol.
Let 7+ & ({(s,a1),...,(s,an)) be the vector of “correct” answers to the chal-
lenge (ai,...,a,) sent by D in the second phase. Then with probability at least
6+67) ., it holds that Z" and Z* differ in at most u entries (since A successfully
impersonates the tag with this probability). Also, since Z is distributed exactly
as the answers of an honest tag, Z and Z* differ in at most u positions except
with probability at most e. It follows that with probability at least 6+67, , ,, —¢c
the vectors Z’ and Z differ in at most 2u entries, and so D outputs 1 with at

least this probability. O

The above result provides a useful security guarantee only when e < 1/4, since
when ¢ > 1/4 then 2u > 2e-n >n/2 and so 27" - Z?:“O (") = 1/2. We also note
that the concrete security reduction obtained above leaves much to be desired,
and in particular it is not clear whether useful levels of security are achieved for
reasonably-efficient settings of the parameters. On the other hand, it is unclear
what can be said about the tightness of the security reductions obtained by
Juels and Weis [20] since they do not explicitly handle multiple iterations of

Parallel and Concurrent Security of the HB and HB* Protocols 83

the protocol nor do they consider the effect that the acceptance criteria (i.e., in
terms of |, u) have on the soundness.

We believe that the security reduction can be improved by taking into ac-
count the distribution on Z when D’s oracle is As. (and modifying step 3 of
D appropriately), as well as by focusing on protocols with perfect completeness.
See Section 4 for some discussion of the latter possibility.

3.2 Security of the HB* Protocol Against Active Attacks

The HB protocol is insecure against an active attack, as an adversary can simply
repeatedly query the tag with the same challenge vector (as,...,a,) and thereby
determine with high probability the correct values of (s,ai),...,(s,a,) (after
which solving for s is easy). To combat such an attack, Juels and Weis propose to
modify the HB protocol by having the tag and reader share two (independent)
keys s1,s2 € {0,1}*. A basic authentication step now consists of three rounds:
first the tag sends a random “blinding factor” b € {0,1}*; the reader replies
with a random challenge a € {0,1}* as before; and finally the tag replies with
z = (s1,b) @ (s2,a) @ v for v ~ Ber.. As in the HB protocol, the tag reader can

then verify whether the response z of the tag satisfies z < (s1,b) B (s2,a), and
we again say the iteration is successful if this is the case. See Figure 2.

T (s1,82,¢) R(s1,82)
b {0,1}* b
« a a«— {0,1}*
v <« Ber,
z:=(s1,b) D (s2,a) v z .

verify: z < (s1,b) P (s2,a)
Fig. 2. The basic authentication step of the HB™ protocol

The actual HB™ protocol consists of n parallel iterations of the basic authenti-
cation step (and so the entire protocol requires only three rounds). The protocol
also depends upon parameters |,u as in the case of the HB protocol, and the
values €. and ¢7 |, ,, are defined exactly as there.

The following result characterizes security of the HB™ protocol under active
attacks. It can be compared to [20, Lemma 3], where Juels and Weis prove
security for a single iteration of the HB™ protocol (i.e., they fix n = 1). Their
proof requires rewinding of the adversary A in order to simulate the first phase of
A, and therefore their proof does not extend to the case of parallel or concurrent
executions of the basic authentication step.

We remark that by combining the proofs of Theorem 2 and Lemma 1 (i.e.,
reducing the HB' protocol directly to the LPN problem rather than relying

84 J. Katz and J.S. Shin

on Lemma 1 as an intermediate step) we can improve the security reduction
stated in the following theorem. By applying techniques from [25, Sect. 4], the
parameters of the reduction can be improved further.

Theorem 2. Say there exists an adversary A interacting with the tag in at most
q executions of the HB™ protocol (possibly concurrently), running in time t, and
achieving Adv%ﬁ%ﬂ (e,l,u,n) > 6. Then there exists an algorithm D making q-n

oracle queries, running in time O(t), and such that

|Pr [s — {07 1}k . DAS‘E(lk) _ 1] — Py [DUkﬂ(lk) _ 1”

6+6:|un3 2n o n
> lun)2 g, .
= () ()

=0

Asymptotically, for any € < }l and appropriate choice of n, |, u the last two terms
of the above expression (and also €.) are negligible. We thus conclude that the
HB™ protocol is secure (for appropriate choice of n, 1, u) assuming the hardness
of the LPN. problem.

Proof. Algorithm D, given access to an oracle returning (k+ 1)-bit strings (b, z),
proceeds as follows:

1. D chooses sz € {0,1}* uniformly at random. Then, it runs the first phase
of A. To simulate a basic authentication step, D does the following: it obtains
a sample (b,) from its oracle and sends b as the initial message. A replies
with a challenge a, and then D responds with z = Z & (s2,a). Note that
since D does not rewind A here, there is no difficulty in simulating parallel
executions of the basic authentication step (i.e., as part of an execution of
the “full” HB™ protocol) or concurrent executions of the HB™ protocol.

2. When A is ready for the second phase of the HB™ protocol, A sends an
initial message by, ..., b, (we now explicitly look at the actual HB™ protocol
rather than focusing on a single basic authentication step). In response, D
choosesrandom al, ... al € {0, 1}*, sends these challenges to .4, and records

1 2

A’s response z1,...,z.. Then D rewinds A, chooses random a?,... a2 €
2

{0,1}*, sends these to A, and records A’s response 22, ..., 22.
def N
3. Let 27 := 2] @27 and set 2% = (2f,...,29). Let & = a} ® a? and

i i
2; = (s2,4;), and set 7 def (21,...,2,). D outputs 1 iff Z® and Z differ in
at most 2u entries.

Let us analyze the behavior of D:

Case 1: Say D’s oracle is Ug41. In step 1, above, since Z is uniformly distributed
and independent of everything else, the answers z that D returns to A are
uniformly distributed and independent of everything else. It follows that A’s
view throughout the experiment is independent of the secret so chosen by D.
The {&;}} ; are uniformly and independently distributed, and so except with
probability g: they are linearly independent and non-zero (cf. the claim proved

below). Assuming this to be the case, Z is uniformly distributed over {0,1}"

Parallel and Concurrent Security of the HB and HB* Protocols 85

from the point of view of A. But then the probability that Z® and Z differ in
at most 2u entries is exactly 27" - 3224 (7). We conclude that D outputs 1 in

this case with probability at most 3: +27". Z?:“O M.

Case 2: Say D’s oracle is Ag, . for randomly-chosen s;. In this case, D pro-

vides a perfect simulation for the first phase of A. By a standard averaging

5467 .
argument, with probability at least b b o 5" over the randomness used in

the first phase of A (which includes the keys si,s2, the randomness of A, and

the randomness used in responding to A’s queries) the probability (over random

challenges a1, . ..,a, sent by the tag reader in the second phase) that 4 success-

fully impersonates the tag in the second phase is at least 5. Assume this is the

case. Then the probability that A successfully responds to both sets of queries
1

al,...,al and a?,...,a2 is at least $2. But this means that (z],...,z}) differs

in at most u entries from the “correct” answer

ans! = ((s1,b1) & (sg,a1),...,(s1,bn) & (sp,a,))

and also (2%,...,22) differs in at most u entries from the “correct” answer

ans? = ((s1,b1) @ (s2,al) ..., (s1,by) @ (s3,22)) .

But then (z1,...,2}) @ (22,...,22) = Z9 differs in at most 2u entries from

ans' @ans® = ({sz,a1) ® (s2,a7),...,(s2,a,) ® (s2,a5))
= (<527 (al ® a%)> e <527 (al @ ai)>) = Z.

We conclude that D outputs 1 in this case with probability at least 5 - 62, This
completes the proof of the theorem. a

The following technical claim, used above, is quite straightforward:

Claim. Assume n vectorsay, ..., a, are chosen uniformly at random from {0, 1}’“ .
The probability that these Vectors are not linearly independent is less than 2 o -

Proof. Say event Bad; occurs if a; is linearly dependent on the previous ¢ — 1
vectors chosen (for the case i = 1 this is the event a; = 0*). Since the subspace
spanned by i — 1 vectors has size at most 2¢=1 the probability of Bad; is at most

21 " Applying a union bound, we have:

’I’L

\/Bad]<2 g ZT o

yielding the claim. a

Pr

A typical range of parameters might be k ~ 200 and n ~ 40-50, so the 3: term
above is truly inconsequential.

86 J. Katz and J.S. Shin
4 Conclusions and Open Questions

The main technical results of this paper are the first rigorous proofs of (1) secu-
rity of the HB™ protocol against active attacks, even under parallel and concur-
rent executions; and (2) “hardness amplification” for the HB and HB™ protocols
as the number of iterations of the basic authentication step increases. Our proofs
are also the first to explicitly take into account the non-zero completeness error
and the impact this has on the security of the protocol as a whole.

We believe our proofs are remarkably simple, and view this as an additional
contribution of this work (rather than as a drawback!). Indeed, we expect there
will be further applications of Lemma 1 to the analysis of other cryptographic
constructions based on the LPN problem, and hope this paper inspires and aids
others in exploring such applications.

It would be nice to improve the analysis (or propose new protocols) so as to
obtain meaningful security guarantees even in the case i <e< % It would also
be wonderful to improve the concrete security reductions obtained here, or to
propose new protocols with tighter security reductions. (As we have mentioned,
it is not clear whether the proofs provided here yield sufficiently-high security
for practically-efficient settings of the parameters.) As one possible approach
toward this goal, one can imagine changing the HB/HB™ protocols so that the
tag always introduces at most ¢ -n errors, rather than introducing errors in each
of the n iterations with independent probability .7 (A related idea, in a different
context, was explored in [5]; their analysis does not seem to apply to our setting.)
This would give protocols with perfect completeness, and would help improve
the concrete security bounds as well since the upper bound u could be set to
exactly € -n and the “problem” mentioned in footnote 5 would also go away. On
the other hand it is not clear what can be said of the hardness of the natural
variant of the LPN problem such protocols would be based on.

It would also be very interesting to see an efficient protocol based on the LPN
problem that is provably resistant to man-in-the-middle attacks.

References

1. Associated Press. “Geeks Flex Hacker Muscles at Defcon.” Article appeared Aug. 2,
2005 on CNN.com.

2. M. Bellare, M. Fischlin, S. Goldwasser, and S. Micali. Identification Protocols Se-
cure against Reset Attacks. Adv. in Cryptology — Eurocrypt 2001, LNCS vol. 2045,
Springer-Verlag, pp. 495-511, 2001.

3. M. Bellare, R. Impagliazzo, and M. Naor. Does Parallel Repetition Lower the Error
in Computationally-Sound Protocols? 38th IEEE Symposium on Foundations of
Computer Science, IEEE, pp. 374-383, 1997.

4. E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg. On the Inherent In-
tractability of Certain Coding Problems. IEEE Trans. Info. Theory 24: 384-386,
1978.

" Note that introducing ezactly € - n errors in the n iterations is insecure.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.
25.

26.

Parallel and Concurrent Security of the HB and HB* Protocols 87

A. Blum, M. Furst, M. Kearns, and R. Lipton. Cryptographic Primitives Based
on Hard Learning Problems. Adv. in Cryptology — Crypto ’93, LNCS vol. 773,
Springer-Verlag, pp. 278-291, 1994.

. A. Blum, A. Kalai, and H. Wasserman. Noise-Tolerant Learning, the Parity Prob-

lem, and the Statistical Query Model. J. ACM 50(4): 506-519, 2003.

. R. Canetti, S. Halevi, and M. Steiner. Hardness Amplification of Weakly Verifiable

Puzzles. 2nd Theory of Cryptography Conference (TCC 2005), LNCS vol. 3378,
Springer-Verlag, pp. 17-33, 2005.

. R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Black-Box Concurrent Zero-

Knowledge Requires (Almost) Logarithmically Many Rounds. SIAM J. Computing
32(1): 1-47, 2002.

. F. Chabaud. On the Security of Some Cryptosystems Based on Error-Correcting

Codes. Adv. in Cryptology — Eurocrypt 94, LNCS vol. 950, Springer-Verlag,
pp. 131-139, 1995.

W. Diffie and M. Hellman. New Directions in Cryptography. I[EEE Trans. Info.
Theory 22(6): 644-654 (1976).

U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Proto-
cols. 22nd ACM Symposium on Theory of Computing, ACM, pp. 416-426, 1990.
H. Gilbert, M. Robshaw, and H. Silbert. An Active Attack against HB™
— a Provably Secure Lightweight Authentication Protocol. Available at
http://eprint.iacr.org/2005/237

O. Goldreich. Modern Cryptography, Probabilistic Proofs, and Pseudorandomness.
Springer-Verlag, 1998.

O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof
Systems. SIAM J. Computing 25(1): 169-192, 1996.

O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR-Lemma. Available at
http://eccc.uni-trier.de/eccc-reports/1995/TR95-050/

O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof
Systems. J. Cryptology 7(1): 1-32, 1994.

J. Hastad. Some Optimal Inapproximability Results. J. ACM 48(4): 798-859, 2001.
N. Hopper and M. Blum. A Secure Human-Computer Authentication Scheme.
Technical Report CMU-CS-00-139, Carnegie Mellon University, 2000.

N. Hopper and M. Blum. Secure Human Identification Protocols. Adv. in Cryptol-
ogy — Asiacrypt 2001, LNCS vol. 2248, pp. 52-66, 2001.

A. Juels and S. Weis. Authenticating Pervasive Devices with Human Protocols.
Adv. in Cryptology — Crypto 2005, LNCS vol. 3621, Springer-Verlag, pp. 293-308,
2005. Updated version available at: http://www.rsasecurity.com/rsalabs/staff/
bios/ajuels/publications/pdfs/lpn.pdf

M. Kearns. Efficient Noise-Tolerant Learning from Statistical Queries. J. ACM
45(6): 983-1006, 1998.

Z. Kfir and A. Wool. Picking Virtual Pockets using Relay Attacks on Contactless
Smartcard Systems. Available at http://eprint.iacr.org/2005/052

I. Kirschenbaum and A. Wool. How to Build a Low-Cost, Extended-Range RFID
Skimmer. Available at http://eprint.iacr.org/2006,/054

R. Raz. A Parallel Repetition Theorem. STAM J. Computing 27(3): 763-803, 1998.
O. Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. 37th ACM Symposium on Theory of Computing, ACM, pp. 84-93, 2005.
A. C.-C. Yao. Theory and Applications of Trapdoor Functions. 23rd IEEE Sym-
posium on Foundations of Computer Science, IEEE, pp. 80-91, 1982.

Polling with Physical Envelopes: A Rigorous
Analysis of a Human-Centric Protocol*

Tal Moran! and Moni Naor!**

Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel

Abstract. We propose simple, realistic protocols for polling that allow
the responder to plausibly repudiate his response, while at the same time
allow accurate statistical analysis of poll results. The protocols use simple
physical objects (envelopes or scratch-off cards) and can be performed
without the aid of computers. One of the main innovations of this work is
the use of techniques from theoretical cryptography to rigorously prove
the security of a realistic, physical protocol. We show that, given a few
properties of physical envelopes, the protocols are unconditionally secure
in the universal composability framework.

1 Introduction

In the past few years, a lot of attention has been given to the design and analy-
sis of electronic voting schemes. Constructing a protocol that meets all (or even
most) of the criteria expected from a voting scheme is generally considered to
be a tough problem. The complexity of current protocols (in terms of how dif-
ficult it is to describe the protocol to a layperson) reflects this fact. A slightly
easier problem, which has not been investigated as extensively, is that of polling
schemes.

Polling schemes are closely related to voting, but usually have slightly less
exacting requirements. In a polling scheme the purpose of the pollster is to
get a good statistical profile of the responses, however some degree of error
is admissible. Unlike voting, absolute secrecy is generally not a requirement
for polling, but some degree of response privacy is often necessary to ensure
respondents’ cooperation.

The issue of privacy arises because polls often contain questions whose an-
swers may be incriminating or stigmatizing (e.g., questions on immigration sta-
tus, drug use, religion or political beliefs). Even if promised that the results of
the poll will be used anonymously, the accuracy of the poll is strongly linked
to the trust responders place in the pollster. A useful rule of thumb for polling
sensitive questions is “better privacy implies better data”: the more respondents
trust that their responses cannot be used against them, the likelier they are to

* This work was partially supported by the Minerva Foundation.
** Incumbent of the Judith Kleeman Professorial Chair.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 88-108, 2006.
© International Association for Cryptologic Research 2006

Polling with Physical Envelopes 89

answer truthfully. Using polling techniques that clearly give privacy guarantees
can significantly increase the accuracy of a poll.

A well-known method for use in these situations is the “randomized response
technique” (RRT), introduced by Warner [25]. Roughly, Warner’s idea was to
tell responders to lie with some fixed, predetermined, probability (e.g., roll a
die and lie whenever the die shows one or two). As the probability of a truthful
result is known exactly, statistical analysis of the results is still possible!, but an
individual answer is always plausibly deniable (the respondent can always claim
the die came up one).

Unfortunately, in some cases this method causes its own problems. In pre-
election polls, for example, responders have a strong incentive to always tell the
truth, ignoring the die (since the results of the polls are believed to affect the
outcome of the elections). In this case, the statistical analysis will give the cheat-
ing responders more weight than the honest responders. Ambainis, Jakobsson
and Lipmaa [1] proposed the “Cryptographic Randomized Response Technique”
to deal with this problem. Their paper contains a number of different proto-
cols that prevent malicious responders from biasing the results of the poll while
preserving the deniability of the randomized response protocol. Unlike Warner’s
original RRT, however, the CRRT protocols are too complex to be implemented
in practice without the aid of computers. Since the main problem with polling is
the responders’ lack of trust in the pollsters, this limitation makes the protocols
of [1] unsuitable in most instances.

The problem of trust in complex protocols is not a new one, and actually
exists on two levels. The first is that the protocol itself may be hard to under-
stand, and its security may not be evident to the layman (even though it may
be formally proved). The second is that the computers and operating system
actually implementing the protocol may not be trusted (even though the proto-
col itself is). This problem is more acute than the first. Even for an expert, it is
very difficult to verify that a computer implementation of a complex protocol is
correct.

Ideally, we would like to design protocols that are simple enough to grasp
intuitively and can also be implemented transparently (so that the user can
follow the steps and verify that they are correct).

1.1 Our Results

In this paper we propose two very simple protocols for cryptographic randomized
response polls, based on tamper-evident seals (introduced in a previous paper
by the authors [18]). A tamper-evident seal is a cryptographic primitive that
captures the properties of a sealed envelope: while the envelope is sealed, it is

1 For instance, suppose p > ; is the probability of a truthful response, n is the total
number of responses, x is the number of responders who actually belong in the “yes”
category and R is the random variable counting the number of “yes” responses. R
is the sum of n independent indicator random varables, so R is a good estimation

for E(R) =pzr+ (1 —p)(n —x) = 2(2p — 1) + n(1 — p). Therefore, given R, we can
E(R)—n(1-p)

accurately estimate the actual number of “yes” responders: x = 21

90 T. Moran and M. Naor

impossible to tell what’s inside, but if the seal is broken the envelope cannot be
resealed (so any tampering is evident). In fact, our CRRT protocols are meant
to be implemented using physical envelopes (or scratch-off cards) rather than
computers. Since the properties of physical envelopes are intuitively understood,
even by a layman, it is easy to verify that the implementation is correct.

The second important contribution of this paper, differentiating it from pre-
vious works concerning human-implementable protocols, is that we give a for-
mal definition and a rigorous proof of security for the protocols. The security is
unconditional: it relies only on the physical tamper-evidence properties of the
envelopes, not on any computational assumption. Furthermore, we show that
the protocols are “universally composable” (as defined by Canetti [3]). This is a
very strong notion of security that implies, via Canetti’s Composition Theorem,
that the security guarantees hold even under general concurrent composition

Our protocols implement a relaxed version of CRRT (called weakly secure
in [1]). We also give an inefficient strong CRRT protocol (that requires a large
number of rounds), and give impossibility results and lower bounds for strong
CRRT protocols with a certain range of parameters (based on Cleve’s lower
bound for coin flipping [8]). These suggest that constructing a strong CRRT
protocol using scratch-off cards may be difficult (or even impossible if we require
a constant number of rounds).

1.2 Related Work

Randomized Response Technique. The randomized response technique for polling
was first introduced in 1965 [25]. Since then many variations have been proposed
(a survey can be found in [6]). Most of these are attempts to improve or change
the statistical properties of the poll results (e.g., decreasing the variance), or
changing the presentation of the protocol to emphasize the privacy guarantee
(e.g., instead of lying, tell the responders to answer a completely unrelated ques-
tion). A fairly recent example is the “Three Card Method” [14], developed for
the United States Government Accountability Office (GAO) in order to estimate
the size of the illegal resident population. None of these methods address the case
where the responders maliciously attempt to bias the results.

To the best of our knowledge, the first polling protocol dealing explicitly with
malicious bias was given by Kikuchi, Akiyama, Nakamura and Gobioff. [17], who
proposed to use the protocol for voting (the protocol described is a randomized
response technique, although the authors do not appear to have been aware of
the previous research on the subject). Their protocol is still subject to malicious
bias using a “premature halting” attack (this is equivalent to the attack on the
RRT protocol in which the responder rolls a die but refuses to answer if result
of the die is not to his liking). A more comprehensive treatment, as well as a
formal definition of cryptographic randomized response, was given by Ambainis
et al. [1]. In their paper, Ambainis et al. also give a protocol for Strong CRRT,
in which the premature halting attack is impossible. In both the papers [17,1],
the protocols are based on cryptographic assumptions and require computers to
implement.

Polling with Physical Envelopes 91

Independently of this work, Stamm and Jakobsson show how to implement
the protocol of [1] using playing cards [24]. They consider this implementation
only as a visualization tool. However, if we substitute envelopes for playing cards
(and add a verification step), this protocol gives a Responder-Immune protocol
(having some similarities to the one described in Section 3.2).

Deniable and Receipt-Free Protocols. The issues of deniability and coercion have
been extensively studied in the literature (some of the early papers in this area
are [2,22,4,5,15]). There are a number of different definitions of what it means
for a protocol to be deniable. Common to all of them is that they protect against
an adversary that attacks actively only after the protocol execution: in partic-
ular, this allows the parties to lie about their random coins. Receipt-Free pro-
tocols provide a stronger notion of security: they guarantee that even if a party
is actively colluding with the adversary, the adversary should have no verifiable
information about which input they used. Our notion of “plausible deniability”
is weaker than both “traditional” deniability and receipt-freeness, in that we
allow the adversary to gain some information about the input. However, as in
receipt-freeness, we consider an adversary that is active before and during the
protocol, not just afterwards.

Secure Protocols Using “Real” Objects. The idea of using real objects to provide
security predates cryptography: people have been using seals, locks and envelopes
for much of history. Using real objects to implement protocols that use them
in non-obvious ways is a newer notion. Fagin, Naor and Winkler [16] propose
protocols for comparing secret information that use various objects, from paper
cups to the telephone system. In a more jocular tone, Naor, Naor and Reingold
[19] propose a protocol that provides a “zero knowledge proof of knowledge”
of the correct answer to the children’s puzzle “Where’s Waldo” using “low-tech
devices” (e.g., a large newspaper and scissors). In all these works the security
assumptions and definitions are informal or unstated. Crépeau and Kilian [10]
show how to use a deck of cards to play “discreet” solitary games (these involve
hiding information from yourself). Their model is formally defined, however it
is not malicious; the solitary player is assumed to be honest but curious.

A related way of using real objects is as aids in performing a “standard”
calculation. Examples in this category include Schneier’s “Solitaire” cipher [23]
(implemented using a pack of cards), and the “Visual Cryptography” of Naor
and Shamir [21] (which uses the human visual system to perform some basic
operations on images). The principles of Visual Cryptography form the basis for
some more complex protocols, such as the “Visual Authentication” protocol of
Naor and Pinkas [20], and Chaum’s human verifiable voting system [7].

Tamper-Evident Seals. This work can be viewed as a continuation of a previous
work by the authors on tamper-evident seals [18]. In [18], we studied the possi-
bility of implementing basic cryptographic primitives using different variants of
physical, tamper-evident seals. In the current work we focus on their use in real-
istic cryptographic applications, rather than theoretical constructs (for instance,
there is a very sharp limit on the number of rounds and the number of envelopes

92 T. Moran and M. Naor

that can be used in a protocol that we expect to be practical for humans). We
limit ourselves to the “distinguishable envelope” (DE) model, as this model has
a number of intuitive physical embodiments, while at the same time is powerful
enough, in theory, to implement many useful protocols? (an informal description
of this model is given in Section 2.3; for a formal definition see [18]).

Overview of Paper. In Section 2, we give formal definitions of the functionalities
we would like to realize and the assumptions we make about the humans im-
plementing the protocols. Section 3 gives an informal description of the CRRT
protocols. In Section 4, we show how to amplify a weak CRRT protocol in order
to construct a strong CRRT protocol, and give some impossibility results and
lower bounds for strong CRRT protocols. Finally, a discussion and some open
problems appear in Section 5.

The formal protocol specification and proof of security for our Pollster-
Immune CRRT protocol appears in Appendix A. Due to space constraints, the
complete specifications and formal proofs for the other protocols will appear
only in the full version of this paper.

2 The Model

Ideal Functionalities. Many two-party functionalities are easy to implement us-
ing a trusted third party that follows pre-agreed rules. In proving that a two-
party protocol is secure, we often want to say that it behaves “as if it were
performed using the trusted third party”. The “Universal Composability” frame-
work, defined by Canetti [3], is a formalization of this idea. In the UC model,
the trusted third party is called the ideal functionality. If every attack against
the protocol can also be carried out against the ideal functionality, we say the
protocol realizes the functionality. Canetti’s Composition Theorem says that
any protocol that is secure using the ideal functionality, will remain secure if we
replace calls to the ideal functionality with executions of the protocol.

Defining the security guarantees of our protocols as ideal functionalities has
an additional advantage as well: it is usually easier to understand what it means
for a protocol to satisfy a definition in this form than a definition given as a
list of properties. Below, we describe the properties we wish to have in a CRRT
protocol, and give formal definitions in the form of ideal functionalities.

2.1 Cryptographic Randomized Response

A randomized response protocol involves two parties, a pollster and a responder.
The responder has a secret input bit b (this is the true response to the poll
question). In the ideal case, the pollster learns a bit ¢, which is equal to b with
probability p (p is known to the pollster) and to 1 — b with probability 1 — p.

2 Although the “indistinguishable envelope model” (also defined in [18]) is stronger
(e.g., oblivious transfer is possible in this model), it seems to be very hard to devise
a secure, physical realization of this functionality.

Polling with Physical Envelopes 93

Since p is known to the pollster, the distribution of responders’ secret inputs can
be easily estimated from the distribution of the pollster’s outputs.

The essential property we require of a Randomized Response protocol is
plausible deniability: A responder should be able to claim that, with reasonable
probability, the bit learned by the pollster is not the secret bit b. This should be
the case even if the pollster maliciously deviates from the protocol.

A Cryptographic Randomized Response protocol is a Randomized Response
protocol that satisfies an additional requirement, bounded bias: The probability
that ¢ = b must be at most p, even if the responder maliciously deviates from
the protocol. The bounded bias requirement ensures that malicious responders
cannot bias the results of the poll (other than by changing their own vote). Note
that even in the ideal case, a responder can always choose any bias p’ between p
and 1 —p, by randomly choosing whether to vote b or 1 —b (with the appropriate
probability).

Strong p-CRRT. In a strong CRRT protocol, both the deniability and boun-
ded bias requirements are satisfied. Formally, this functionality has a single
command:

Vote b. The issuer of this command is the responder. On receiving this com-
mand the functionality tosses a weighted coin ¢, such that ¢ = 0 with prob-
ability p. It then outputs b @ ¢ to the pollster and the adversary.

Unfortunately, we do not know how to construct a practical strong CRRT
protocol that can be implemented by humans. In Section 4, we present evidence
to suggest that finding such a protocol may be hard (although we do show an
impractical strong CRRT protocol, that requires a large number of rounds). The
protocols we propose satisfy relaxed conditions: The first protocol is immune to
malicious pollsters (it is equivalent to strong CRRT if the pollster is honest),
while the second is immune to malicious responders (it is equivalent to strong
CRRT if the responder is honest).

Pollster-Immune p-CRRT (Adapted from Weak CRRT in [1]). This
is a weakened version of CRRT, where a malicious pollster cannot learn more
than an honest pollster about the responder’s secret bit. A malicious responder
can bias the result by deviating from the protocol (halting early). A cheating
responder will be caught with fixed probability, however, so the pollster can ac-
curately estimate the number of responders who are cheating (and thus bound
the resulting bias). When the pollster catches the responder cheating, it out-
puts X instead of its usual output. Formally, the ideal functionality accepts the
following commands:

Query. The issuer of this command is the pollster, the other party is the re-
sponder. The functionality ignores all commands until it receives this one.
On receiving this command the functionality chooses a uniformly random
bit r and a bit v, such that v = 1 with probability 2p — 1. If the responder
is corrupted, the functionality then sends both bits to the adversary.

94 T. Moran and M. Naor

Vote b. On receiving this command from the responder, the functionality checks
whether v = 1. If so, it outputs b to the pollster, otherwise it outputs r to
the pollster.

Halt. This command captures the responder’s ability to cheat. On receiving
this command from a corrupt responder, the functionality outputs X to the
pollster and halts.

The functionality is slightly more complex (and a little weaker) than would
appear to be necessary, and this requires explanation. Ideally, the functionality
should function as follows: the responder casts her vote, and is notified of the
actual bit the pollster would receive. The responder then has the option to halt
(and prevent the pollster from learning the bit). Our protocol gives the corrupt
responder a little more power: the responder first learns whether the pollster will
receive the bit sent by the responder, or whether the pollster will receive a bit
fixed in advance (regardless of what the responder sends). The responder can
then plan her actions based on this information. The functionality we describe
is the one that is actually realized by our protocol (for p = %).

Responder-Immune p-CRRT. In this weakened version of CRRT, malicious
responders cannot bias the results more than honest responders, but a malicious
pollster can learn the responder’s secret bit. In this case, however, the responder
will discover that the pollster is cheating. When the responder catches the poll-
ster cheating, it outputs X to signify this. The functionality accepts the following
commands:

Vote b. The issuer of this command is the responder. On receiving this
command the functionality tosses a weighted coin ¢, such that ¢ = 0 with
probability p. It then outputs b & ¢ to the pollster and adversary.

Reveal. The command may only be sent by a corrupt pollster after the Vote
command was issued by the responder. On receiving this command, the
functionality outputs b to the adversary and X to the responder.

Test . The command may only be sent by a corrupt pollster, after the Vote
command was issued by the responder. On receiving this command:

— if z = b, then with prob. ; it outputs b to the adversary and X to the
responder, and with prob. é it outputs L to the adversary (and nothing
to the responder).

— if x = 1 — b the functionality outputs L to the adversary (and nothing

to the responder).

Ideally, we would like to realize responder-immune CRRT without the Test
command. Our protocol realizes this slightly weaker functionality (for p = 3).
It may appear that a corrupt pollster can cheat without being detected using
the Test command. However, for any corrupt pollster strategy, if we condition
on the pollster’s cheating remaining undetected, the pollster gains no additional
information about the responder’s choice (since in that case the response to the

Test command is always).

Polling with Physical Envelopes 95

2.2 Modelling Humans

The protocols introduced in this paper are meant to be implemented by humans.
To formally prove security properties of the protocols, it is important to make
explicit the abilities and limitations we expect from humans.

Following Instructions. The most basic assumption we make about the parties
participating in the protocol is that an honest party will be able to follow the in-
structions of the protocol correctly. While this requirement is clearly reasonable
for computers, it may not be so easy to achieve with humans (e.g., one of the
problems encountered with the original randomized response technique is that
the responders sometimes had difficulty understanding what they were supposed
to do). The ability to follow instructions depends on the complexity of the proto-
col (although this is a subjective measure, and hard to quantify). Our protocols
are secure and correct only assuming the honest parties are actually following the
protocol. Unfortunately, we do not know how to predict whether this assumption
actually holds for a specific protocol without “real” experimental data.

Random Choice. Our protocols require the honest parties to make random
choices. Choosing a truly random bit may be very difficult for a human (in
fact, even physically tossing a coin has about 0.51 probability of landing on
the side it started on [13]). For the purposes of our analysis, we assume that
whenever we require a party to make a random choice it is uniformly random.
In practice, a random choice may be implemented using simple physical means
(e.g., flipping a coin or rolling a die). In practice, the slight bias introduced by
physical coin flipping will not have a large effect on the correctness or privacy
of our protocols.

Non-requirements. Unlike many protocols involving humans, we do not assume
any additional capabilities beyond those described above. We don’t require par-
ties to forget information they have learned, or to perform actions obliviously
(e.g., shuffle a deck without knowing what the permutation was). Of particular
note, we don’t require the parties to watch each other during the protocol: this
means the protocols can be conducted by mail.

2.3 Distinguishable Envelopes

Our CRRT protocols require a physicial assumption: tamper-evident envelopes
or scratch-off cards. Formally, we model these by an ideal functionality we call
“Distinguishable Envelopes” (defined in [18]). Loosely speaking, a distinguish-
able envelope is an envelope in which a message can be sealed. Anyone can open
the envelope (and read the message), but the broken seal will be evident to
anyone looking at the envelope.

3 An Informal Presentation of the Protocols

It is tempting to try to base a CRRT protocol on oblivious transfer (OT), since
if the responder does not learn what the pollster’s result is, it may be hard to

96 T. Moran and M. Naor

influence it (in fact, one of the protocols in [1] is based on OT). However, OT is
impossible in the DE model [18]. As we show in Section 4.1, this proof implies
that in any CRRT protocol using distinguishable envelopes, the responder must
learn a lot about the pollster’s result. In both our protocols, the responder gets
complete information about the final result.

To make the presentation more concrete, suppose the poll question is “do you
eat your veggies?”. Clearly, no one would like to admit that they do not have a
balanced diet. On the other hand, pressure groups such as the “People for the
Ethical Treatment of Salad” have a political interest in biasing the results of the
poll, making it a good candidate for CRRT.

3.1 Pollster-Immune CRRT

This protocol can be implemented with pre-printed scratch-off cards: The re-
sponder is given a scratch-off card with four scratchable “bubbles”, arranged in
two rows of two bubbles each. In each row, the word “Yes” is hidden under one
bubble and the word “No” under the other (the responder doesn’t know which
is which). The responder scratches a random bubble in each row. Suppose the
responder doesn’t eat her veggies. If one of the rows (or both) show the word
“No”, she “wins” (and the pollster will count the response as expressing dislike of
vegetables). If both bubbles show “Yes”, she “loses” (and the pollster will count
the response as expressing a taste for salad). In any case, before returning the
card to the pollster, the responder “eliminates” the row that shows the unfavored
answer by scratching the entire row (she picks one of the rows at random if both
rows show the same answer) Thus, as long as the responder follows the protocol,

®, _ o0\ "
1

1. Polister prepares card | 2. Pollster seals card and sends to responder
3. Responder scratches 4. Responder scratches 5. Responder scratches out
random bubble in top row | random bubble in bottorn row | entire "bad” row

@ - 2

>qp

\F}#J I%h‘i

s
oy
Sed

e
QIR
|

@
e

6. Responder returns card to pollster 7. Pollster verifies and records

the "good" row

Fig. 1. Sample execution of pollster-immune protocol

Polling with Physical Envelopes 97

the pollster receives a card that has one “eliminated” (entirely scratched) row
and one row showing the result he will count. An example of protocol execution
appears in Figure 1.

Security Intuition. Note that in exactly Z of the cases the counted result will
match the responder’s intended result. Moreover, without invalidating the entire
card, the responder cannot succeed with higher probability. On the other hand,
this provides the responder with plausible deniability: she can always claim both
rows were “bad”, and so the result didn’t reflect her wishes. Because the pollster
doesn’t know which were the two bubbles that were scratched first, he cannot
refute this claim. An important point is that plausible deniability is preserved
even if the pollster attempts to cheat (this is what allows the responder to
answer the poll accurately even when the pollster isn’t trusted). Essentially, the
only way the pollster can cheat without being unavoidably caught is to put
the same answer under both bubbles in one of the rows. To get a feeling for
why this doesn’t help, write out the distribution of responses in all four cases
(cheating/honest, Yes/No). It will be evident that the pollster does not get any
additional information about the vote from cheating in this way.

On the other hand, the responder learns the result before the pollster, and
can decide to quit if it’s not to her liking (without revealing the result to the
pollster). Since the pollster does not know the responder’s outcome, this has
the effect of biasing the result of the poll. However, by counting the number of
prematurely halted protocol executions, the pollster can accurately estimate the
number of cheating responders.

The formal protocol specification and proof appear in Appendix A.

Generalizing to Any Rational p. The protocol above realizes Pollster-Immune
i—CRRT. In some cases we require a p-CRRT protocol for different values of p.
In particular, if we need to repeat the poll, we need the basic protocol to have
p closer to é (in order to maintain the plausible deniability).

The following protocol will work for any rational p = Z (assume k > én)
As in the former protocol, the pollster generates two rows of bubbles. One row
contains k “Yes” bubbles and n — k “No” bubbles in random order (this row is
the “Yes” row), and the other contains k£ “No” bubbles and n — k “Yes” bubbles
(this row is the “No” row). The rows are also in a random order. The responder’s
purpose is to find the row matching her choice. She begins by scratching a single
bubble in each row. If both bubbles contain the same value, she “eliminates”
a random row (by scratching it out completely). Otherwise, she “eliminates”
the row that does not correspond to her choice. The pollster’s output is the
majority value in the row that was not eliminated. The probability that the
pollster’s output matches the responder’s choice is exactly p.

Unfortunately, this protocol is completely secure only for a semi-honest poll-
ster (one that correctly generates the scratch-off cards). A malicious pollster can
cheat in two possible ways: he can replace one of the rows with an invalid row
(one that does not contain exactly & “Yes” bubbles or exactly k “No” bubbles),
or he can use two valid rows that have the same majority value (rather than
opposite majority values). In both cases the pollster will gain additional infor-

98 T. Moran and M. Naor

mation about the responder’s choice. This means the protocol does not realize
the ideal Pollster-Immune CRRT functionality.

If the pollster chooses to use an invalid row, he will be caught with probability
at least %(1 — p) (since with this probability the responder will scratch identical
bubbles in both rows, and choose to eliminate the invalid row). We can add
“cheating detection” to the protocol to increase the probability of detecting this
attack. In a protocol with cheating detection, the pollster gives the responder
¢ scratch-off cards rather than just one (each generated according to the basic
protocol). The responder chooses one card to use as in the basic protocol. On
each of the other cards, she scratches off a single row (chosen randomly), and
verifies that it contains either exactly & “Yes” bubbles or exactly £ “No” bubbles.
She then returns all the cards to the pollster (this step is necessary to prevent
the responder from increasing her chances by trying multiple cards until one
gives the answer she wants). A pollster that cheats by using an invalid row will
be caught with probability 1 — %.

A malicious pollster can still cheat undetectably by using two valid rows with
identical majorities. This gives only a small advantage, however, and in practice
the protocol may still be useful when p is close to ;

3.2 Responder-Immune CRRT

The responder takes three envelopes (e.g., labelled “1”7, “2” and “3”), and places
one card containing either “Yes” or “No” in each of the envelopes. If she would
like to answer “No”, she places a single “Yes” card in a random envelope, and one
“No” card in each of the two remaining envelopes. She then seals the envelopes
and gives them to the pollster (remembering which of the envelopes contained
the “Yes” card).

The pollster chooses a random envelope and opens it, revealing the card to
the responder. He then asks the responder to tell him which of the two remaining
envelopes contains a card with the opposite answer. He opens that envelope as
well. If the envelope does contain a card with the opposite answer, he records
the answer on the first card as the response to the poll, and returns the third
(unopened) envelope to the responder.

If both opened envelopes contain the same answer, it can only be because the
responder cheated. In this case, the pollster opens the third envelope as well. If
the third envelope contains the opposite answer, the pollster records the answer
on the first card as the response to the poll. If, on the other hand, all three
envelopes contain the same answer, the pollster rolls a die: A result of 1 to 4
(probability g) means he records the answer that appears in the envelopes, and
a result of 5 or 6 means she records the opposite answer. An example of protocol
execution (where both parties follow the protocol) appears in Figure 2.

Security Intuition. In this protocol, the responder gets her wish with probability
at most g no matter what she does. If she follows the protocol when putting
the answers in the envelopes, the pollster will choose the envelope containing
the other answer with probability é If she tries to cheat by putting the same
answer in all three envelopes, the pollster will roll a die and choose the opposite

Polling with Physical Envelopes 99

. — .
o | 9, v
2 J—
% -
N U > =
1 2 3 B
1. Respnder prepares 2. Responder seals and sends envelopes to pollster

envelopes

4, Pollster tells responder which
envelope was opene

ez

5. Responder replies whlch envelope | 6. Pollster opens enveIoF
contains other choi and checks its contents

. ®

No
3

7. Pollster returns unopened envelope to responder 8. Pollster records first
opened envelape

Fig. 2. Sample execution of responder-immune protocol

answer with probability ; The pollster, on the other hand, can decide to open
all three envelopes and thus discover the real answer favored by the responder.
If he does this, however, the responder will see that the seal on the returned
envelope was broken and know the pollster was cheating.

The pollster may also be able to cheat in an additional way: he can open two
envelopes before telling the responder which envelope he opened, and hope that
the responder will not require him to return an envelope that was already opened.
This attack is what requires us to add the Test command to the functionality.

Implementation Notes. This protocol requires real envelopes (rather than scratch-
off cards) to implement, since the responder must choose what to place in the
envelopes (and we cannot assume the responder can create a scratch-off card).
In general, tamper-evidence for envelopes may be hard to achieve (especially
as the envelopes will most likely be provided by the pollster). In this protocol,
however, the pollster’s actions can be performed in full view of the responder,
so any opening of the envelopes will be immediately evident. When this is the
case, the responder can tell which envelope the pollster opened first, so the
protocol actually realizes the stronger version of the Responder-Immune CRRT
functionality (without the Test command).

If the penalty for a pollster caught cheating is large enough, the privacy guar-
anteed by this protocol, may be enough to convince responders to answer accu-
rately in a real-world situation even with the weaker version of the functionality.
This is because any pollster cheating that can possibly reveal additional in-

100 T. Moran and M. Naor

formation about the responder’s choice carries with it a corresponding risk of
detection.

Generalizing to Any Rational p. When the pollster’s actions are performed in
view of the responder (in particular, when the responder can see exactly which
envelopes are opened by the pollster), this protocol has a straightforward gen-
eralization to any rational p = fu where k > %n: the responder uses n (rather
than 3) envelopes, of which & contain her choice and n — k contain its opposite.
After the pollster chooses an envelope to open, the responder shows him n — k
envelopes that contain the opposite value.

Note that when this generalized protocol is performed by mail, it does not
realize the ideal functionality defined in Section 2.1.

4 Strong CRRT Protocols

Ideally, we would like to have CRRT protocols that cannot be biased at all by
malicious responders, while perfectly preserving the responder’s deniability, even
against malicious pollsters. Unfortunately, the protocols described in Section 3
do not quite achieve this. At the expense of increasing the number of rounds, we
can get arbitrarily close to the Strong-CRRT functionality defined in Section 2.1.

Consider a protocol in which the pollster and responder perform the pollster-
immune p-CRRT protocol r times, one after the other (with the responder using
the same input each time). The pollster outputs the majority of the subprotocols’
outputs. If the responder halts at any stage, the pollster uses uniformly random
bits in place of the remaining outputs.

This protocol gives a corrupt responder at most O(\}T) advantage over an
honest responder. We give here only the intuition for why this is so: Clearly, if a
corrupt responder wants to bias the result to some bit b, it is in her best interest
to use b for all the inputs. Since the subprotocol securely realizes p-CRRT, the
only additional advantage she can gain is by halting at some round i. However,
halting affects the result only if the other » — 1 rounds were balanced (this is
the only case in which the outcome of the i*" round affects the majority). In
the case where p = ; it is easy to see that the probability for this occurring is
O(\}T) However, the probability that » — 1 independent weighted coin flips are

balanced is maximized when p = é Thus, the additional advantage that can be

gained by the adversary is at most O(\}r)

The problem with the amplification protocol described above is that the
probability that an honest responder will get the result she wants tends to 1
as the number of rounds grows, for any constant p > % Therefore, to preserve
plausible deniability we must use a p-CRRT protocol where p is very close to é,
such as the protocol described in Section 3.1 that works for any rational p. This
adds further complexity to the protocol (e.g., our generalized Pollster-Immune
protocol requires 2(}) bubbles on the scratch-off card for p = J +€). This, this
multi-round protocol is probably not feasible in practice.

Polling with Physical Envelopes 101

4.1 Lower Bounds and Impossibility Results

In this section we attempt to show that constructing practical strong CRRT
protocols is a difficult task. We do this by giving impossibility results and lower
bounds for implementing subclasses of the strong CRRT functionality. We con-
sider a generalization of the strong p-CRRT functionality defined in Section 2.1,
which we call (p,q)-CRRT. The (p, ¢)-CRRT functionality can be described as
follows:

Vote b. The issuer of this command is the responder. On receiving this com-
mand the functionality tosses a weighted coin ¢, such that ¢ = 0 with prob-
ability p. It then outputs b® c to the pollster. The functionality supplies the
responder with exactly enough additional information so that she can guess
¢ with probability ¢ > p.

In the definition of strong CRRT given in Section 2.1, we specify exactly how
much information the pollster learns about the responder’s choice, but leave
completely undefined what a cheating responder can learn about the pollster’s
result. The (p,q)-CRRT functionality quantifies this information: in a (p,p)-
CRRT, the responder does not gain any additional information (beyond her pre-
existing knowledge that the pollster’s result will equal her choice with probability
p). In a (p,1)-CRRT, the responder learns the pollster’s result completely. We
show that (p, p)-CRRT implies oblivious transfer (and is thus impossible in the
DE model), while (p,1)-CRRT implies strong coin-flipping (and thus we can
lower-bound the number of rounds required for the protocol). For values of ¢
close to p or close to 1, the same methods can still be used to show lower bounds.

(p,)-CRRT When ¢ Is Close to p. First, note that when p = ¢ we can view
the (p, ¢)-CRRT functionality as a binary symmetric channel (BSC) with error
probability 1 — p. Crépeau and Kilian have shown that a protocol for Oblivious
Transfer (OT) can be constructed based on any BSC [9]. However, it is impossible
to implement OT in the Distinguishable Envelope (DE) model [18]. Therefore
(p, p)-CRRT cannot be implemented in the DE model. It turns out that this is
also true for any ¢ close enough to p. This is because, essentially, the (p, ¢)-CRRT
functionality is a (1 — ¢, 1 — p)-Passive Unfair Noisy Channel (PassiveUNC), as
defined by Damgard, Kilian and Salvail [12]. A (v, 6)-PassiveUNC is a BSC
with error ¢ which provides the corrupt sender (or receiver) with additional
information that brings his perceived error down to v; (i.e., a corrupt sender can
guess the bit received by the receiver with probability 1 — ~, while an honest
sender can guess this bit only with probability 1 —). For v and é that are close
enough (the exact relation is rather complex), Damgard, Fehr, Morozov and
Salvail [11] show that a (v, §)-PassiveUNC is sufficient to construct OT. For the
same range of parameters, this implies that realizing (p, ¢)-CRRT is impossible
in the DE model.

(p, @)-CRRT When q Is Close to 1. When ¢ = 1, both the pollster and the
responder learn the poll result together. A (p, 1)-CRRT can be used as a protocol

102 T. Moran and M. Naor

for strongly fair coin flipping with bias p — é In a strongly fair coin flipping
protocol with bias €, the bias of an honest party’s output is at most € regardless
of the other party’s actions — even if the other party aborts prematurely. If
q is close to 1, we can still construct a coin flipping protocol, albeit without
perfect consistency. The protocol works as before, except that the responder
outputs his best guess for the pollster’s output: both will output the same bit
with probability q.

A result by Cleve [8] shows that even if all the adversary can do is halt pre-
maturely (and must otherwise follow the protocol exactly), any r-round protocol
in which honest parties agree on the output with probability % + € can be biased
by at least , ¢ ;. Cleve’s proof works by constructing 4r + 1 adversaries, each of
which corresponds to a particular round. An adversary corresponding to round
i follows the protocol until it reaches round 4. It then halts immediately, or after
one extra round. The adversary’s decision is based only on what the ourput of
an honest player would be in the same situation, should the other party halt af-
ter this round. Cleve shows that the average bias achieved by these adversaries
is 4,51, so at least one of them must achieve this bias. The same proof also
works in the DE model, since all that is required is that the adversary be able
to compute what it would output should the other player stop after it sends the
messages (and envelopes) for the current round. This calculation may require a
party to open some envelopes (the problem being that this might prevent the
adversary from continuing to the next round). However, an honest player would
be able to perform the calculation in the next round, after sending this round’s
envelopes, so it cannot require the adversary to open any envelopes that may be
sent in the next round.

Cleve’s lower bound shows that a (p, ¢)-CRRT protocol must have at least

4((1p:2; = }1 rounds. Since a protocol with a large number of rounds is impractical
for humans to implement, this puts a lower bound on the bias p (finding a CRRT
protocol with a small p is important if we want to be able to repeat the poll
while still preserving plausible deniability).

This result also implies that it is impossible to construct a (p,1)-CRRT pro-
tocol in which there is a clear separation between the responder’s choice and
the final output. That is, the following functionality, which we call p-CRRT with

confirmation, is impossible to implement in the DE model:

Vote b. The issuer of this command is the responder. On receiving this com-
mand the functionality outputs “Ready?” to the pollster. When the pollster
answers with “ok” the functionality tosses a weighted coin ¢, such that ¢ =0
with probability p. It then outputs b & ¢ to the pollster and responder.

p-CRRT with confirmation is identical to (p,1)-CRRT, except that the output
isn’t sent until the pollster is ready. The reason it is impossible to implement is
that this functionality can be amplified by parallel repetition to give a strongly
fair coin flipping protocol with arbitrarily small p. Since the amplification is in
parallel, it does not increase the number of rounds required by the protocol,
and thus contradicts Cleve’s lower bound. Briefly, the amplified protocol works

Polling with Physical Envelopes 103

as follows: the responder chooses k inputs randomly, and sends each input to
a separate (parallel) instance of p-CRRT with confirmation. The pollster waits
until all the inputs have been sent (i.e., it receives the “Ready?” message from
all the instances), then sends “ok” to all the instances. The final result will
be the xor of the outputs of all the instances. Since the different instances act
independently, the bias of the final result is exponentially small in k.

5 Discussion and Open Problems

Polling Protocols by Mail. The pollster-immune CRRT protocol requires only a
single round; This makes it convenient to use in polls through the post (it only
requires the poll to be sent to the responder, “filled out” and returned). The
responder-immune protocol presents additional problems when used through the
post. First, in this case the protocol realizes a slightly weaker functionality than
in the face-to-face implementation. Second, it requires two rounds, and begins
with the responder. This means, in effect, that it would require an extra half-
round for the pollster to notify the responder about the existence of the poll.
It would be interesting to find a one-round protocol for the responder-immune
functionality as well. It may be useful, in this context, to differentiate between
“information-only” communication (which can be conducted by phone or email),
and transfer of physical objects such as envelopes (which require “real” mail).

Efficient Generalization to Arbitrary p. We describe efficient p-CRRT protocols
for specific values of p: p = i in the Pollster-Immune case, and p = 3 in the
Responder-Immune case. Our generalized protocols are not very efficient: for
p= ; + € they require Q(i) envelopes. In a protocol meant to be implemented
by humans, the efficiency of the protocol has great importance. It would be
useful to find an efficient general protocol to approximate arbitrary values of p
(e.g., logarithmic in the approximation error).

Side-Channel Attacks. The privacy of our protocols relies on the ability of
the responder to secretly perform some actions. For instance, in the pollster-
immune protocol we assume that the order in which the bubbles on the card
were scratched remains secret. In practice, some implementations may be vul-
nerable to an attack on this assumption. For example, if the pollster uses a
light-sensitive dye on the scratch-off cards that begins to darken when the coat-
ing is scratched off, he may be able to tell which of the bubbles was scratched
first. Side-channel attacks are attacks on the model, not on the CRRT protocols
themselves. As these attacks highlight, when implementing CRRT using a phys-
ical implementation of Distinguishable Envelopes, it is important to verify that
this implementation actually does realize the required functionality.

Dealing with Human Limitations. Our protocols make two assumptions about
the humans implementing them: that they can make random choices and that
they can follow instructions. The former assumption can be relaxed: if the ran-
domness “close to uniform” the security and privacy will suffer only slightly

104 T. Moran and M. Naor

(furthermore, simple physical aids, such as coins or dice, make generating ran-
domness much easier). The latter assumption is more critical; small deviations
from the protocol can result in complete loss of privacy or security. Constructing
protocols that are robust to human error could be very useful.

Practical Strong CRRT Protocols. As we discuss in Section 4.1, for a range of
parameters p, ¢-CRRT is impossible, and for a different range of parameters it is
impractical. For some very reasonable values, such as i—Strong CRRT, we can
approximate the functionality using a large number of rounds, but do not know
how to prove any lower bound on the number of rounds required. Closing this
gap is an obvious open question. Alternatively, finding a physical model in which
efficient Strong CRRT is possible is also an interesting direction.

Acknowledgements

We would like to thank Adi Shamir and Yossi Oren for pointing out possible
side-channel attacks in the scratch-off card model, and the anonymous reviewers
for many helpful comments.

References

1. A. Ambainis, M. Jakobsson, and H. Lipmaa. Cryptographic randomized response
techniques. In PKC' 04, volume 2947 of LNCS, pages 425-438, 2004.

2. J. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections. In STOC 94,
pages 544-553, 1994.

3. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS ’01, pages 136—145, 2001.

4. R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In
CRYPTO ’97, volume 1294 of LNCS, pages 90-104, 1997.

5. R. Canetti and R. Gennaro. Incoercible multiparty computation. In FOCS ’96,
pages 504-513, 1996.

6. A. Chaudhuri and R. Mukerjee. Randomized Response: Theory and Techniques,
volume 85. Marcel Dekker, 1988.

7. D. Chaum. E-voting: Secret-ballot receipts: True voter-verifiable elections. IEFE
Security € Privacy, 2(1):38-47, Jan./Feb. 2004.

8. R. Cleve. Limits on the security of coin flips when half the processors are faulty.
In STOC ’86, pages 364-369, 1986.

9. C. Crépeau and J. Kilian. Achieving oblivious transfer using weakened security
assumptions. In FOCS ’88, pages 42-52, 1988.

10. C. Crépeau and J. Kilian. Discreet solitary games. In CRYPTO ’93, volume 773
of LNCS, pages 319-330, 1994.

11. I. B. Damgard, S. Fehr, K. Morozov, and L. Salvail. Unfair noisy channels and
oblivious transfer. In TCC 04, volume 2951 of LNCS, pages 355-373, 2004.

12. 1. B. Damgard, J. Kilian, and L. Salvail. On the (im)possibility of basing oblivious
transfer and bit commitment on weakened security assumptions. In Eurocrypt 99,
volume 1592 of LNCS, pages 56-73, 1999.

13. P. Diaconis, S. Holmes, and R. Montgomery. Dynamical bias in the coin toss, 2004.
http://www-stat.stanford.edu/~cgates/PERSI/papers/headswithJ.pdf.

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Polling with Physical Envelopes 105

J. A. Droitcour, E. M. Larson, and F. J. Scheuren. The three card method: Estimat-
ing sensitive survey items—with permanent anonymity of response. In Proceedings
of the American Statistical Association, Social Statistics Section [CD-ROM], 2001.
C. Dwork, M. Naor, and A. Sahai. Concurrent zero knowledge. In STOC 98,
pages 409-418, New York, NY, USA, 1998. ACM Press.

R. Fagin, M. Naor, and P. Winkler. Comparing information without leaking it.
Commaun. ACM, 39(5):77-85, 1996.

H. Kikuchi, J. Akiyama, G. Nakamura, and H. Gobioff. Stochastic voting protocol
to protect voters privacy. In WIAPP 99, pages 102-111, 1999.

T. Moran and M. Naor. Basing cryptographic protocols on tamper-evident seals.
In ICALP 2005, volume 3580 of LNCS, pages 285-297, July 2005.

M. Naor, Y. Naor, and O. Reingold. Applied kid cryptography, Mar. 1999.
http://www.wisdom.weizmann.ac.il/~naor/PAPERS /waldo.ps.

M. Naor and B. Pinkas. Visual authentication and identification. In CRYPTO 97,
volume 1294 of LNCS, pages 322-336, 1997.

M. Naor and A. Shamir. Visual cryptography. In Furocrypt ’94, volume 950 of
LNCS, pages 1-12, 1995.

K. Sako and J. Kilian. Receipt-free mix-type voting schemes. In EUROCRYPT
’95, volume 921 of LNCS, pages 393-403, 1995.

B. Schneier. The solitaire encryption algorithm, 1999. http://www.schneier.com/
solitaire.html.

S. Stamm and M. Jakobsson. Privacy-preserving polling using playing cards. Cryp-
tology ePrint Archive, Report 2005/444, December 2005.

S. Warner. Randomized response: a survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, pages 6369, 1965.

A A Pollster-Immune i—CRRT Protocol

A.1 Formal Specification

Let P be the pollster and R the responder. Denote P’s random bits pg, p; and
R’s random bits rg, 1, ro.

1.

To implement Query: P creates two pairs of envelopes, each pair containing
a 0 and a 1. The first pair contains (pg, 1 — po) and the second (p1,1 — p1).
‘P sends both pairs to R.

To implement Vote b: R opens a random envelope from each pair (the index

of the first envelope opened is given by r¢ and the second by r;. Denote the

values of the opened envelopes xg = pg ® ro and 1 = p1 D ry.

(a) If zp = 21 (i.e., both the opened values are equal), R chooses a random
pair and opens the remaining envelope in that pair (the first pair if ro = 0
and the second if ro = 1).

(b) If 9 # x1, R opens the remaining envelope in the pair whose open
envelope is not equal to b.

(¢) In both cases, R verifies that the envelopes in the completely opened
pair contain different values (i.e., that the pair is valid). If so, R then
sends all four envelopes back to P, otherwise R halts.

106 T. Moran and M. Naor

3. If R halted in the previous step, P outputs X and halts. Otherwise, P verifies
that exactly three of the four envelopes received from R are open. If so, P
outputs the contents of the open envelope in the pair that contains the sealed
envelope. If not, P outputs X.

A.2 Proof of Security

In this section we give the proof that the protocol securely realizes Pollster-
Immune i—CRRT in the UC model. The proof follows the standard outline for
a UC proof: we describe an ideal adversary, Z, that works in the ideal world
by simulating a real adversary, A (given black-box access to A), along with the
envelope functionalities used to implement the protocol in the real world. We
then show that no environment machine, Z (which is allowed to set the parties’
inputs) can distinguish between the case that it is communicating with A in the
real world, and the case where it is communicating with Z in the ideal world
(for a more in-depth explanation of the UC model, see [3]). We’ll deal separately
with the case when A corrupts P and when it corrupts R (since we assume the
corruption occurs as a first step). The proof that the views of Z in the real and
ideal worlds are identical is by exhaustive case analysis.

A Corrupts P

1. Z waits to receive ¢, the outcome of the poll from the ideal functionality. Z
now begins simulating Fpp and R (as if he were a real honest party). The
simulation runs until P sends four envelopes as required by the protocol (up
to this point R did not participate at all in the protocol).

2. If both pairs of envelopes are valid (contain a 0 and a 1), Z chooses one of
the pairs at random, and simulates opening the envelope in the pair that
contains ¢ and both envelopes in the other pair (there is an assignment to
the random coins of R which would have this result in the real world). It
then simulates the return of all four envelopes to P.

3. If both pairs of envelopes are invalid, Z simulates R halting (this would
eventually happen in a real execution as well).

4. If exactly one pair of envelopes is invalid, denote the value in the invalid pair
by z.

(a) If ¢ = z, T simulates opening both envelopes in the valid pair, and a
random envelope in the invalid pair (depending on the random coins of
R, this is a possible result in the real world). It then simulates the return
of all four envelopes to P

(b) If ¢ # 2, T simulates R halting (depending on the random coins of R,
this is also a possible result in the real world).

5. Z continues the simulation until A halts.

Note that throughout the simulation, all simulated parties behave in a manner
that is feasible in the real world as well. Thus, the only possible difference be-
tween the views of Z in the ideal and real worlds is the behavior of the simulated
R, which depends only on the contents of the four envelopes sent by P and the

Polling with Physical Envelopes 107

output of the ideal functionality (which in turn depends only on b). It is easy
(albeit tedious) to go over all 32 combinations of envelopes and input, and verify
that the distribution of R’s output in both cases (the real and ideal worlds) are
identical. We enumerate the basic cases below. All other cases are identical to
one of the following by symmetry:

1. A sends two valid pairs of envelopes. Assume it sends [(b, 1—b), (b, 1 —)] (the
other combinations follow by symmetry). Z returns the following distribution
(“*” denotes a sealed envelope):

(a) With probability 3 (c = b) it selects uniformly from
{[(b7 *)7 (ba 1- b)]a [(b7 1- b)a (bv *)]}
(b) With probability } (c # b) it selects uniformly from
{[(*a 1- b)7 (ba 1- b)]7 [(bv 1- b)7 (*a 1- b)]}
In the real world, the order of envelopes opened by R would be distributed
uniformly from one of the following sets (each with probability }):

(a) {[(1,%),(3,2)]}
(b) {I(L, %), (2,3)], [(1,3), (2,)]}
(¢) {13, 1), (2,)]}
(d) {I3:1), (,2)],[(x, 1), (3, 2)]}

Note that the observed result is distributed identically in both cases.
2. A sends two invalid pairs of envelopes: in this case, in both the real and ideal
worlds the adversary will see the responder halting with probability 1.

3. A sends one valid and one invalid pair of envelopes:

(a) A sends [(b,D), (b,1 —b)] (the other case where the invalid pair matches
b is symmetric). The distribution of the returned envelopes in the ideal
world is:

i. With probability 2 (c = b) it selects uniformly from
{[(bv *)’ (bv 1- b)}v [(*7 1- b)7 (b’ 1- b)]}
ii. With probability }1 (c #b) it halts.
In the real world, the order of envelopes opened by R would be distrib-
uted uniformly from one of the following sets (each with probability }1);
the sets marked with t lead to R halting:
1AL, %), (3,2)}

i {1, 2, (2,3).[(1,3), (2 T}

i {[(+1),(2,3)],(3,1), (2,%)]"}

iv. {[(+,1), (3,)]}

Note that in both worlds R halts with probability }1, and otherwise the
returned envelopes are identically distributed.

(b) A sends [(1 —b,1—0b),(b,1 —b)] (the other case where the invalid pair
matches 1 — b is symmetric). The distribution of the returned envelopes
in the ideal world is:

i. With probability }1 (c # b) it selects uniformly from
{10 = b,%), (b, 1 — b)), [(+, 1 —), (5,1 —)]}
ii. With probability 3 (c = b) it halts.
In the real world, the order of envelopes opened by R would be distrib-
uted uniformly from one of the following sets (each with probability i);
the sets marked with t lead to R halting:

108

T. Moran and M. Naor

{1 %), (3,2)] [(1,3), (+,2)]T}
ii. {[(1,3),(2,#)]1}
it {[(x,1),(3,2)],(3,1), (,2)]"}

Note that in both worlds R halts with probability i’ and otherwise the
returned envelopes are identically distributed.

<

A Corrupts R

1.

2.

7 waits to receive v and r from the ideal functionality (in response to the

Query command sent by the ideal P).

7 simulates R receiving four envelopes. The remainder of the simulation

depends on the values of v and r:

(a) If v =1, Z chooses a uniformly random bit ¢. The first envelope R opens
in the first pair will have the value ¢, and the first envelope opened in
the second pair will have the value 1 — t. The values revealed in the
remaining envelopes will always result in a valid pair.

(b) If v = 0, The first envelope R opens in each pair will have the value 7,
and the remaining envelopes the value 1 — r.

7 continues the simulation until R sends all four envelopes back to P. If R

opened exactly three envelopes, Z sends Vote b to the ideal functionality,

where b is calculated as by the pollster in the protocol description. If R did

not open exactly three envelopes, Z sends the Halt command to the ideal

functionality.

Note that throughout the simulation, all simulated parties behave in a manner
that is feasible in the real world as well. Furthermore, the outputs of the ideal
and simulated P are always identical. Thus, the only possible difference between

the

views of Z in the ideal and real worlds is the contents of the envelopes

opened by R. In the real world, the envelope contents are random. In the ideal
world, v and r are i.i.d. uniform bits. Therefore the order in which the envelopes

are

opened does not matter; any envelope in the first pair is independent of any

envelope in the second. Hence, the distributions in the ideal and real worlds are
identical.

QUAD: A Practical Stream Cipher with
Provable Security*

Coéme Berbain', Henri Gilbert!, and Jacques Patarin?

! France Telecom Research and Development,
38-40 rue du Général Leclerc, F-92794 Issy-les-Moulineaux, France
2 Université de Versailles,
45 avenue des Etats-Unis, F-78035 Versailles cedex, France

Abstract. We introduce a practical stream cipher with provable secu-
rity named QUAD. The cipher relies on the iteration of a multivariate
quadratic system of m equations in n < m unknowns over a finite field.
The security of the keystream generation of QUAD is provably reducible
to the conjectured intractability of the MQ problem, namely solving a
multivariate system of quadratic equations. Our recommended version
of QUAD uses a 80-bit key, 80-bit IV and an internal state of n = 160
bits. It outputs 160 keystream bits (m = 320) at each iteration until 2*°
bits of keystream have been produced.

1 Introduction

Stream ciphers represent, together with block ciphers, one of the two main classes
of symmetric encryption algorithms. Generally speaking stream ciphers seem to
allow faster encryption and to require lower computing resources than block
ciphers, and the fastest known stream ciphers (e.g. SEAL, RC4, SNOW 2.0, the
Shrinking Generator) are indeed significantly faster in software than an efficient
block cipher such as AES [27]. However, the design of secure stream ciphers is
not currently as well understood as the design of secure block ciphers. The state
of the art of the cryptanalysis of stream ciphers, e.g. LFSR based stream ciphers,
has evolved significantly over the last ten years and many recent proposals still
suffer from security weaknesses. This is illustrated by the fact that none of the
candidate stream ciphers submitted to the call for cryptographic primitives of
the European project NESSIE were retained since attacks more efficient than
exhaustive search were found for all candidates during the evaluation period.
This is also illustrated by the ongoing eSTREAM [11] call for stream ciphers
proposals of the European project ECRYPT. Stream ciphers complying with two
main profiles have been called for, namely stream ciphers allowing much faster
software encryption than existing block ciphers (profile 1) and stream ciphers
requiring much lower resources for hardware implementation than existing block

* The work described in this paper has been supported by the French Ministry of
Research RNRT X-CRYPT project and by the European Commission through the
IST Program under Contract IST-2002-507932 ECRYPT.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 109-128, 2006.
© International Association for Cryptologic Research 2006

110 C. Berbain, H. Gilbert, and J. Patarin

ciphers (profile 2). However, more than one third of the 34 submitted stream
ciphers, which cover these two profiles, have already been shown to be insecure.

Our aim is to propose a practical cipher with unusually strong security ar-
guments. The novel stream cipher we propose was designed with another trade-
off between security, speed and computing resources than reflected by the eS-
TREAM profiles 1 and 2. We slightly relax the requirements on speed and com-
puting resources, i.e. we only require a stream cipher that is sufficiently fast for
most practical purposes. But we introduce an unusually strong security require-
ment for symmetric cryptography (which is out of reach of the current state of
the art for block ciphers), namely that the security of the cipher be provably
reducible to the conjectured intractability of a well-known and studied mathe-
matical problem. The security of the novel stream cipher is provably reducible to
the intractability of the MQ problem [15], which consists of finding a solution (if
any) to a multivariate quadratic system of m quadratic equations in n variables
over a finite field GF'(q), typically GF'(2). The MQ problem is conjectured to be
difficult for suitably chosen values of n and m. In general the associated decision
problem is known to be NP-complete even in the case where the considered field
is GF'(2), and moreover no efficient algorithm to solve MQ with a significant suc-
cess probability is known to exist for sufficiently large values of n (say n > 100)
when the quadratic equations are randomly chosen. The implementation com-
plexity of our stream cipher is reasonable and the encryption speed (4.6 Mbit/s
for a software implementation in C on a standard PC), though lower than AES,
is more than sufficient for many practical purposes.

Constructing a provably secure stream cipher is not a novel topic. However,
designing a practical provably secure stream cipher is an open problem. Following
seminal work by Shamir, Blum and Micali [4], Yao [31], Levin and Goldreich [25]
in the 80’s, considerable research effort has been dedicated to the construction of
provably secure pseudo-random number generators (PRNG) that expand a short
seed (e.g. a key) into a larger bit string. This can be used as the keystream for
encryption purposes. Available security results typically state that if the iterated
function underlying the construction of a number generator satisfies suitable one-
wayness properties, then the generator is a secure PRNG, i.e. its L-bit output
is computationally indistinguishable from the uniform distribution over {0,1}L.
This research effort has led to remarkable generic results, e.g. the proof by Im-
pagliazzo, Levin, Luby and Hastad [21] that a secure PRNG can be constructed
based upon any one way function (OWF). It has also led to provably secure
PRNG constructions based on the conjectured intractability of specific prob-
lems. The first provably secure PRNG was introduced by Blum and Micali [4]
and relates the security of the PRNG to the one-wayness of exponentiation mod-
ulo a prime number. The provably secure PRNG proposed by L. Blum, M. Blum
and M. Shub [3] exploits the conjectured intractability of quadratic residuosity
modulo Blum integers. Alexi, Chor, Goldreich and Schnorr proposed a PRNG
construction with security that relies upon the RSA assumption. Impagliazzo
and Naor [24] and Fisher and Stern [13] proposed PRNG constructions respec-
tively relying on the difficulty of the subset sum problem and of the syndrome

QUAD: A Practical Stream Cipher with Provable Security 111

decoding problem. Even in the case of specific constructions, current provably
secure PRNGs are too inefficient to provide a practical stream cipher. This is
due to the fact that the function iterated by the PRNG is usually too computa-
tionally expensive, and that only a restricted number of bits can be produced at
each iteration (this number is generally at most proportional to the logarithm
of the input length n of the iterated function). However some efforts have been
made to improve the constructions. A first idea is to extract more than logn bits
at each round. Constructions based on the discrete logarithm problem makes it
possible to extract n — log(n) bits at each iteration instead of logn. Despite this
fact, the fastest generator based on discrete logarithm proposed by Gennaro [16]
is still impractical: it requires 350 multiplications of 3000-bit numbers to extract
2775 bits. Another problem for which it is possible to extract more than logn
bits is the syndrome decoding problem. A PRNG has been proposed by Fisher
and Stern in [13] but the number of extracted bits, although higher than logn, is
still small for practical values of n. Another recently proposed idea is to replace
a slow iterated function by some primitive which is much faster to compute.
Hastad and Néaslund proposed BMGL [30], a stream cipher with security that
relies on the difficulty of extracting the key from one plaintext ciphertext couple
in AES. Their practical construction consists of iterating AES and extracting
logn bits at each round. This cipher is fast, especially compared to other prov-
ably secure ciphers, but its security relies only on the security of the AES and
not on a simple and well-studied mathematical problem.

On the contrary, MQ is a simple and well-studied mathematical problem and
the values of n for which the problem is difficult are small (around 100 bits),
particularly when compared to discrete logarithm or factorisation, where at least
1024 bits are required. Furthermore a large number of bits (e.g. 7)) bits or even
more can be produced at each iteration.

This paper is organized as follows. We first give some preliminary background
on the status of the MQ problem and basic security definitions in a concrete
(non asymptotic) security model. Then we describe the new construction and
give a formal proof of security for the associated keystream generator. Finally
we give the encryption speed of software implementations of our stream cipher.

2 Preliminaries

2.1 Multivariate Quadratic Systems

We consider a finite field GF'(g). A multivariate quadratic equation (or equiva-
lently a multivariate quadratic form) in n variables over GF(q) is a polynomial

of degree at most 2 in GF(q)[z1,...,%,] which can be written as
Qz) = Z Q%5 + Z Bixy + v
1<i<j<n 1<i<n

with all the coefficients «; ;j, 8;, and v in GF(q). In the particular case ¢ = 2,
which will be considered in the sequel, the monomial forms x;x; and x; are equal.

112 C. Berbain, H. Gilbert, and J. Patarin

It is easy to see that the set Q of multivariate quadratic forms in n variables
is an N-dimensional vector space over GF'(q), where N = ”(n;?’) +1if g # 2
and N = "(”;1) + 1 if ¢ = 2. A basis of this vector space is given by the
N — 1 distinct monomial functions of degree 1 or 2 and the constant form 1.
Any element of Q can be represented by the N-tuple of its GF(q) coefficients
in this basis. Throughout the rest of this paper, we mean by a randomly chosen
quadratic form in n unknowns the quadratic form represented in the above basis
by a uniformly and independently drawn N-tuple of GF(q) coefficients.

A multivariate quadratic system S of m quadratic equations in n variables
over GF(q) is a set (Q1,...Qm) of m quadratic equations in n variables over
GF(q). In the sequel, we mean by a randomly chosen system of m quadratic
form in n unknowns, n independently and randomly chosen quadratic forms.
Such a system is represented by mN uniformly and independently drawn GF'(q)
coefficients.

A quadratic form @ over n unknowns over GF'(2) is called non degenerate iff)
is not equivalent to a quadratic form in strictly fewer than n linear combinations
of the n input variables. There exists a polynomial time algorithm to check
whether a given quadratic form is non degenerate and more generally to compute
the so-called rank of a quadratic form [26]. The number of solutions of the
quadratic equation Q = 0 associated with a non degenerate quadratic form @Q
over n unknowns is either 2"~1 or 271 42727 or 2n—1 _2"2° depending on the
parity of n and the value of «. Thus for sufficient large values of n, say n > 100,
non degenerate quadratic forms are either perfectly balanced (odd n values) or
have an undetectable bias (even n values).

2.2 Status of the MQ Problem

We define the problem of solving simultaneous multivariate quadratic equa-
tions (MQ problem) as follows: given a multivariate quadratic system of m
quadratic equations over GF(q) S = (Q1,...,Qm), find a value x € GF(q)",
if any, such that @;(z) =0 for all 1 <1i < m.

Depending on the respective values of n and m, instances of MQ can be either
easy or very difficult to solve. For m = 1 the number of solutions is known [20]
and it is quite easy to find one solution. When m is significantly smaller than n,
that is for an underdefined quadratic system, finding a solution is easy [6]. In the

. . . s e _ n(n+1)
opposite situation of an overdefined system (m > n) providing N = "',7 +1

(¢ = 2 case) or ”(";3) +1 (q # 2 case) linearly independent quadratic equations,
or more generally when nearly N linearly independent quadratic equations are
available, solving an MQ problem is easy by linearization. The total complexity
is then only O(n®%). However for general values of m and n the MQ problem is
known to be NP-hard, even when restricted to quadratic equations over GF(2)
[15] [14] or over any finite field [28].

Moreover, what seems to make the MQ problem particularly well suited to
cryptographic applications is that it is conjectured to be very difficult not only
asymptotically and in worst case, but already for small suitably selected values

QUAD: A Practical Stream Cipher with Provable Security 113

of m and n and in terms of the average complexity of solving a random instance.
The problem seems to be most difficult when m is close to n. For m = n and

q = 2 the complexity of the best known solving algorithms is 9n=O0(/(") anq
thus rather close to the 2™ complexity of exhaustive search, and totally out of
reach of existing computers for a random instance and n values larger than 100.
Even when ¢ = 2, m = kn and k > 1 is small enough compared with 7, the best
known computer algebra algorithms such as XL [10] and improved variants of
Buchbergers’s Groebner basis computation algorithm such as Faugere’s F4 and
F5 algorithms [12] are exponential in n for a randomly chosen quadratic system.
Much research has been dedicated in the past years to the above problem [9], [7].
Magali Bardet’s PHD thesis [1] provides an accurate analysis of the complexity
of the most efficient known Groebner basis computation algorithm for solving a
random system of m = kn equations in n unknowns. We will use some complexity
estimates of [1] when discussing practical recommendations of the parameter
values of our cipher.

Though we expect degenerate instances of the systems used in our construc-
tion leading to a weak stream cipher to be extremely unlikely, we suggest the
following extra precaution when drawing these systems at random to provide
some extra guaranties that some of the weakest instances are avoided: check
that each quadratic equation is non degenerate or at least has a high rank value
close to the one of a non degenerate form, and discard any quadratic equation
which would not satisfy this condition. In order to discard a slightly larger subset
of weak instance, one can also check that low weight linear combinations of the
selected quadratic equations satisfy the above rank conditions. Also check that
the obtained quadratic equations are linearly independent in Q.

2.3 Basic Security Notions

All the security definitions used throughout this paper relate to the concrete (non
asymptotic) security model. We are using the following basic security notions
that we state here informally. Two probability distributions D; and Dy over a
finite set {2 are said to be computationally distinguishable with computing
resources R and advantage € if there exits a probabilistic testing algorithm A
which on any input value x € {2 outputs a binary answer “1” (accept) or “0”
(reject) using computing resources at most R and satisfies

|Proep, (A(z) = 1) = Proep, (A(x) = 1)] > c.

Though this is not explicitly reflected in our notation, the above probabilities
are not only taken over x values distributed according to D; or Ds, but also
over the random choices of algorithm A. Algorithm A is called a distinguisher
with advantage e. If no such algorithm exists, then we say that D; and D
are computationally indistinguishable with advantage better than e. When the
computing resources R is not specified, we implicitly mean feasible computing
resources (i.e. say less than 280 simple operations).

Let n and L denote integers such that L > n. A n-bit to L-bit function G is
said to be a Pseudo Random Number Generator (PRNG) if for a ran-

114 C. Berbain, H. Gilbert, and J. Patarin

dom n-bit input variable x selected according to the uniform law on {0,1}™ the
probability distribution of the random variable G(x) is computationally indis-
tinguishable from the uniform law over {0, 1}.

3 QUAD: A New Stream Cipher

We now introduce the proposed stream cipher, named QUAD.

S =(Q1,...,Qkn) denotes a multivariate quadratic system of kn randomly
chosen equations in n variables over GF(q), and Sy and S7 denote two (k times
smaller) additional multivariate systems of n randomly chosen equations in n
variables over GF(q). S, Sp and S; are fixed and publicly known. During the
key and IV loading and the keystream generation, the internal register state is
ax=(r1,...,2,) n-tuple of GF(q) values.

3.1 Keystream Generation and Encryption

The keystream generation process simply consists in iterating the three following
steps in order to produce (k — 1)n GF(q) keystream values at each iteration.

— Compute the kn-tuple of GF(q) values S(x) = (Q1(x), ..., Qrn(x)) where
is the current value of the internal state;

— Output the sequence Sout(z) = (Qny1(x), ..., Qrn(x)) of (k —1)n GF(q)
keystream values

— Update the internal state x with the sequence of n GF(q) first generated

values Sit(x) = (Q1(x), ..., Qn(x))

The maximal keystream sequence that may be generated with a single (key,iv)
pair is L GF(q) values. In order to encrypt a plaintext of length | < L GF(q)
symbols, each of the first I GF(q) values of the keystream sequence is added
(using the GF(q) addition) with the corresponding plaintext value.

I

X

Sn@ Som(@)
L N

3.2 Key and IV Setup

Before generating any keystream we need to initialize the internal state x, with
the key K and the initialization vector I'V, which are respectively represented by
a sequence of GF(q) elements of length | K| and a binary sequence of {0, 1} values

QUAD: A Practical Stream Cipher with Provable Security 115

of length |IV|. We assume for the time being, for simplicity of the subsequent
proofs ! that |K| is chosen exactly equal to n.

The initialization is done as follows : we use two carefully randomly chosen
multivariate quadratic systems Sy and Sy of n equations over n unknowns. We
initially set the internal state value x to the n bit value K. Then for each of the
|[IV| bits IV to IV|;y| of the IV value the internal state x is updated as follows: if
1V; = 0, x is replaced by the GF (q)" value So(x) ; if I'V; = 1, x is replaced by the
GF(q)" value S1(z). These |IV| steps provide a key and IV dependent internal
state value z. We then clock the cipher |IV| additional times as described in
section 3.1, but without outputting the keystream in order to further transform
the internal state value x, and then enter the keystream generation mode to
produce the keystream.

4 Security

We now give a proof that for a randomly chosen multivariate quadratic system
our PRNG is secure. For simplicity of the proof we will work over GF'(2). The
proof can be divided in three parts, which can be informally outlined as follows.

In the first part (Theorem 1), we prove that if the L-bit keystream sequence
associated with a known fixed or randomly chosen system S of m = kn quadratic
equations and an unknown randomly chosen initial internal state x € {0,1}" is
distinguishable from the L-bit output of a perfectly uniform generator, then for
a known random quadratic system S of m = kn equations and an unknown
randomly chosen input value z € {0,1}", S(z) is distinguishable from a random
kn bit word.

In the second part (Theorem 2), we prove that if for a known randomly chosen
quadratic system S and an unknown randomly chosen z, S(x) is distinguishable
from a random kn bit word then, for any n-bit to 1-bit quadratic form R (in
particular any linear form R), one has the property that for a randomly chosen
n bit value z, R(z) can be predicted better than at random given S(z).

In the third part (Theorem 3), we prove that, for a known fixed or randomly
chosen S and a randomly chosen linear form R, R(x) can be predicted better
than at random given S(x), then with non negligible probability a preimage of
S(x) can be efficiently computed given S(z). Thus S is not strongly one way.
This part is essentially a proof of Goldreich-Levin’s theorem [25], in which a fast
Walsh transform computation is used to get a tighter reduction.

4.1 Distinguishing the Keystream Allows to Distinguish the Output
of a Random Quadratic System

Theorem 1 states that if one can distinguish the keystream of the generator based
on the iteration of a quadratic system S from a random L-bit sequence, then one

! Note however that we will consider later on, in section 4.5, an extended key loading
method allowing to set the key length to values strictly lower than n, for instance
to |K| = 7 if one wishes the key length to reflect the complexity of the best known
attack.

116 C. Berbain, H. Gilbert, and J. Patarin

can distinguish the output of S from a random m-bit sequence. Though we
consider a randomly chosen system .S because we need distinguishing properties
related to a random system for the sequel, the property we prove would also
hold if we considered a fixed system S. Our proof is inspired by the proof given
in [20] that a similar result holds for the generator based on iteration of any
fixed n-bit to m-bit function, where m > n, but provides a tighter bound for the
advantage.

Theorem 1. Let L = Ak — 1)n be the number of keystream bits produced in
time XT's using X\ iterations of our construction. Suppose there is an algorithm
A that distinguishes the L-bit keystream sequence associated with a known ran-
domly chosen system S and an unknown randomly chosen initial internal state
x € {0,1}" from a random L-bit sequence in time T with advantage €. Then
there exists an algorithm B that for a randomly chosen S distinguishes S(x)
corresponding to an unknown random input x, from a random value of size kn
in time T = T + ATs with advantage § .

Proof. We introduce the hybrid probability distributions D¥(S) over {0, 1}£xi.
For 0 < i <) respectively associated with the random variables

ti(sa 1‘) = (7"17 T2, .., T, Sout(x)a Sout(Sit(x))v B Sout(séiiil(x)))

where the r; and z are random independent uniformly distributed values of
{0,1}™ and the notational conventions that (r1,rg,...,r;) is the null string if
i = 0 and that (Sout(z), ..., Sout(Sﬁ_Z_l)(ac))) is the null string if ¢ = X. Con-
sequently D°(S) is the distribution of the L-bit keystream and D*(S) is the
uniform distribution over {0,1}*. We denote by p’(S) the probability that A
accepts a random L-bit sequence distributed according to D?(S), and denote by
p® the average value of p'(S) over the (k — 1)n(n (”;rl) + 1)-dimensional vector
space of quadratic systems S. We have supposed that algorithm A distinguishes
between D°(S) and D*(S) with advantage €, in other words that [p® — p*| > e.
Algorithm B works as follows : on input (z1,72) € {0,1}*" with z; € {0,1}"
and zp € {0,1}*=D7 it selects randomly an i such that 0 < i < X\ — 1 and
constructs the L-bit vector

t(sv 1’171'2) - (T17T27 ey Ty, T2, Sout(ml)v Sout(Sit((El))a ceey Sout(S;%iiiQ((El)))-

If (1, x2) is distributed accordingly to the output distribution of S, i.e. (x1,x2) =
S(x) = (Sit(x), Sout(z)) for a uniformly distributed value of x, then

t(S, x1,22) = (r1,79, .. -, i, Sout (T), Sout (Sit (), - - ., Sout(SZ-’\t_i_l(x)))

is distributed according to D*(S). Now if (z1, z2) is distributed according to the
uniform distribution, then

t(S, 1, 22) = (11,72, -+, Tis T2, Sout (1), Sout (Sit (1)), - - -, Sout (S5~ 2 (21))).

QUAD: A Practical Stream Cipher with Provable Security 117

Thus (S, 1, x2) is distributed according to DiT*(S). In order to distinguish the
output distribution of S from the uniform law, algorithm B calls algorithm A
with inputs (S,¢(S, z1,22)) and returns the value returned by A. Thus

[Prs.«(B(S,S(x)) = 1) = Prs e, 2,(B(S, (1, 72)) = 1)|

14 1 1 €
i i 0 by
= — = — > .
|>\i:Op ¢§:1p| >\|P P A

Thus B distinguishes the output distribution of S from the uniform distribution
with probability at least | in time 7"+ ATg.

4.2 Distinguishing the Output of a Random Quadratic System
Allows to Predict Any Quadratic Equation

Now we prove that if there exists a distinguisher between S(z) and a kn-bit ran-
dom value such as the one considered in the above theorem, it can be converted
into an algorithm that predicts the result of any quadratic polynomial (and in
particular any linear polynomial).

Theorem 2. Suppose there is an algorithm A that, given a randomly chosen
known multivariate quadratic system S of kn equations in n unknowns, distin-
guishes S(x), where x is an unknown random input value, from a random string
of length kn with advantage at least € and in time T'. Then there is an algorithm
B that, given a randomly chosen quadratic system S of kn equations in n un-
knowns, any n-bit to 1-bit quadratic form R, and y = S(x) where x is a random
input value, predicts R(z) with success probability at least % + 3 using al most
T' =T + 2Ts operations.

Proof. We first show that there exists an algorithm A’ which returns 1 on input
(S,5(z)) with probability at least 5 4+ § and returns 1 on input (S, u) for some
random u with probability é: if the acceptance probability of A is larger (by at
least €) on an input (.5, S(z)) than on a random input. Then it suffices to consider
A" which on input (S,r) either returns A(S,r) or draws a random value u and
returns 1 — A(S, u) with probability % for each case. In the opposite situation, it
suffices to consider A" which on input (S,r) either returns 1 — A(S,r) or draws
a random value and returns A(S,u) with probability for each case.

Algorithm B works as follows. On input S = (Q1,...Qkn),R and a kn-bit
value y, B selects a random kn-bit vector a = (a1,...,ar,) and a random bit
b, which represents an hypothesis for R(z). Then it computes for all ¢ from 1
to kn the quadratic equation P; = @; + (a; - R). All the equations P; form
the quadratic system S’. Then B invokes the algorithm A’ with input the new
quadratic system S’ and the value y+ (b- a). Finally B returns what A’ returns.

Now assume that y = S(x) where = is an unknown random value. We have
Vi, 2, Pi(x) = Qux) + (as - R(x)) = i + (a - R(x)).

Suppose b is really equal to R(zx), then S’(x) = y+ (b-a) so the distinguisher
A’ has been fed with the random quadratic system S" = (Py,- -+, Py,,) and S’ (x):

118 C. Berbain, H. Gilbert, and J. Patarin

1
Prs.ccu, (B(S, S(), R) = B(@) = Prssucu, (A(5,8'@) = 1)> | + 5.
On the contrary, suppose b is not equal to R(z), then S'(z) =y + ((1+b)-a) =
(y + (b-a)) + a. Thus there is an error of a on the value furnished to A’ as
compared with S’(z). Because a is randomly chosen, we have:

Prs zeu, (B(S,S(x), R) = R(z)) = Prs: zeu, (A'(S", 5" (z) + a) = 0)
1

= Prs ieu,, (A'(S',t) = 0) = 5

Thus we have:

Prseu, (B(S. 8. 1) = R@) = 5 ((5+5) +5) =5+ §

The total running time of B is at most T 4 2T, since computing the kn P;
requires for each i to compute all the "("2_1) monomials of Q; and R, which does

not cost more than two evaluations of the system for some entry.

4.3 A Linear Form Is a Hard Core Bit for Any One Way Function

Now we show that if for a fixed or random quadratic system S and more generally
any fixed or random n-bit to m-bit function f there exists a predictor such as
the one considered in the former theorem, i.e. a predictor allowing, given an
n-bit to 1-bit linear form R, to predict R(z) with a success probability (over
all S and values) strictly larger than }, then a preimage of S(z) (resp. f(x))
can be efficiently computed, so that S (resp f) is not one way. This result is
the Goldreich-Levin theorem [25] that we prove as to get a tight reduction.
Before proving the theorem, which relates to the computation, given the image
S(z) or f(x) for a random unknown value x and a random system S, of a list
containing x, we first establish a lemma representing the technical core of the
proof in which a fixed (unknown) value of x is considered. Our proofs are inspired
by the simplified treatment of the original Goldreich-Levin proofs developed by
Rackoff, Goldreich[18] and Bellare [2], and also by the proofs provided by Hastad
and Néslund in their BMGL paper [30].

Lemma 1. Let us denote by x a fized unknown n-bit value and denote by f
a fized n-bit to m-bit function. Suppose there exists an algorithm B that given
the value of f(x) allows to predict the value of any linear equation R over n
unknowns with probability ; + € over R, using at most T operations. Then there
exists an algorithm C, which given f(x) produces in time at most T’ a list of
at most 4n%e~2 values such that the probability that x appears in this list is at

least 1/2.
2n? 2n 2n
T — 2 <T+10g<62>+2)+62Tf

QUAD: A Practical Stream Cipher with Provable Security 119

The proof of lemma 1 is given in the Appendix. Lemma 1 applies to a fixed
x and a fixed system S (or a fixed n-bit to m-bit function f). However, the
success probability of the predictor of Theorem 2 is taken over all (x, S) pairs
for any linear form R. Consequently, we need a theorem allowing us to exploit
the existence of such a predictor to show the applicability of the lemma to a
non-negligible fraction of (x,S) pairs.

Theorem 3. Suppose there is an algorithm B, that given a randomly chosen
quadratic system S of m quadratic equations, a randomly chosen n-bit to 1-
bit quadratic form R and the image S(x) of a randomly chosen (unknown) n-
bit value x, predicts the value of R(x) with probability at least % + € over all
possible (x, S, R) triplets using T operations. Then there is an algorithm C', which
given the image S(x) of a randomly chosen (unknown) n-bit value x produces a
preimage of S(x) with probability at least €/2 (over all possible values of x and

S) in time T" .
8n? 8n 8n
T — .2 <T+log<62>+2)+62Tf

Proof. The assumption about algorithm B can be written as

1
PT(JJ,S,R)E{O,I}"‘*""N‘*'" {B(S’ S(l‘), R) = R(l‘)} > 9 +e

Tt results that for a fraction at least € of all the (z,.5) pairs one has

1 €
Prrejoyn {B(S,S(z), R) = R(x)} > 5 + o
Otherwise, there would exist a fraction at least 1 — e of the (z,S) pairs which
associated prediction probability over the R values would be strictly less than
5 + 5, and therefore Pr, s ryefo,13n+mv+n {B(S, S(x), R) = R(z)} would be up-
per bounded by (1—¢€)(4 + §)+€ =} +e— €, which contradicts the assumption
about Algorithm B.
Thus for a fraction at least € of all the (x, S) pairs the conditions of lemma 1 are
met and algorithm C' of the lemma provides a preimage of S(x) with probability
at least 1/2.

4.4 A Security Proof for the Proposed PRNG

Now it is easy to see that if we sequentially apply theorems 1, 2, and 3, we
obtain the following reduction theorem, which states that if, for a random system
and a random initial value, the L-bit keystream sequence was distinguishable
from a random L-bit sequence then there would exist an efficient algorithm
allowing to find a preimage of the image of a random n-bit input value by
a random quadratic n-bit to m-bit system, which for suitably chosen values
of n would contradict the assumptions made in Section 2 on the difficulty of
solving MQ.

120 C. Berbain, H. Gilbert, and J. Patarin

Random Quadratic
Keystream Thm. 1
L . System Output
Distinguisher . .
Distinguisher
Thm. 4 Thm. 2
i Thm. 3 Linear Bit
Inversion oo
Prediction

Theorem 4. Let L = A(k — 1)n be the number of keystream bits produced by in
time XTs using X\ iterations of our construction. Suppose there exists an algo-
rithm A that distinguishes the L-bit keystream sequence associated with a known
randomly chosen system S and an unknown randomly chosen initial internal
state x € {0,1}"™ from a random L-bit sequence in time T with advantage €.
Then there exists an algorithm C, which given the image S(x) of a randomly
chosen (unknown) n-bit value x by a randomly chosen n-bit to m-bit quadratic
system S produces a preimage of S(x) with probability at least 5, over all pos-
sible values of x and S in time upper bounded by T".
27n2\2 27n\?

, 27n\?
T = (T s g (T) 2) 4 Ty

€
Proof. Theorems 1 to 3 state that if an algorithm X exists, then another al-
gorithm Y exists. In the case of Theorem 1, the resulting algorithm Y can be
directly play the role of algorithm X in Theorem 2. In the case of Theorem 2,
the resulting algorithm Y, named algorithm B, has the property

€

1
VR € {0, 1}N Pri, s)c0.1yn+mn {B(S, S(z),R) = R(z)} > —

which implies
1 e
Priz,s mefoymemven {B(S,5(2), R) = R(2)} = , +

Thus algorithm Y can play the role of algorithm X in Theorem 3, and if we
compose the distinguishing probability and complexity expressions of the three
concatenated theorems, we obtain the claimed distinguishing probability and
complexity bounds.

Discussion. Theorem 4 above relates to the keystream generation part of QUAD,
i.e. to the expansion of a randomly chosen initial state into the keystream and
does not include the key and IV loading for deriving the initial state. Moreover
it does not guarantee the strength of a particular instance of QUAD associated
with a fixed system S but (informally) it shows that if MQ is intractable then
most instances of QUAD are secure.

QUAD: A Practical Stream Cipher with Provable Security 121

4.5 Specifying the Parameter Values for QUAD

We now propose concrete parameters n, k, L, | K| and |IV| for our construction.
We restrict ourselves to the GF(2) case. We want to ensure a security level of at
least 230, More precisely we want Theorem 4 to ensure that if for a random sys-
tem and a random initial internal state value at the beginning of the keystream
generation there exists a testing algorithm that allows us to distinguish an L-bit
keystream produced by QUAD from a uniformly drawn keystream sequence with
an advantage of more than € = |/ in time less than 7' = 28 this would im-
ply the existence of an inversion algorithm of non negligible success probability
¢ = ,5, allowing, given a random n-bit to kn-bit system of quadratic equations
and the S(z) image by S of a random input value z, to find a preimage by S of
S(z) in time T” lower by a factor of more than ¢’ than the best known inversion
algorithms for the MQ problem, and thus result in the existence of a large set
of weak instances of MQ.

Depending on the intended application of the stream cipher, the maximum
keystream length L can vary from a few hundreds bits for a mobile phone appli-
cation to up to 240 bits. Consequently the allowed parameter values for n and k
will also vary, since it is much more demanding to get a security argument for
L = 2% bits than for L = 1000 bits. We will however retain the latter value
L = 240 for a first estimate of the corresponding required value of n.

In her thesis, Magali Bardet [1] shows that the best Groebner basis algo-
rithm to solve a system of kn equations in k unknowns has (in the case of

a regular system) a complexity of T'(k,n) = (("gl))z:w, where D is close to
(—k — - %\/QkQ — 10k — 1+ 2(k + 2)\/k(k + 2)) n. To obtain a contradic-

tion, we need to have T lower than ¢'T'(k,n). For k = 2 and with the previous
values of L = 2%, T = 2% and e = |, we get ¢ = 27*? and we need to have
n greater than 350. For n = 256 and k& = 2, we only get a contradiction if we
produce less than L = 222 = 4 Mbits of keystream for each key and IV pair.

Practical Values. For practical use of QUAD we recommend an internal state
length of n = 160 bits and an expansion factor k£ of 2 and a maximum
keystream length L = 2%°. We further recommend an IV length |IV| of 80
bits. For such n, k and L values, we do not get a contradiction as for the for-
mer parameter values. However our proof reduction is not optimal, and we ex-
pect that these parameter values suffice to provide the desired security level of
about 280,

If instead of the n-bit key length assumed (for simplicity of the security ar-
guments) in sections 2 and 3, a keylength |K| strictly lower than n is preferred
in order for |K| to better reflect the expected security level, we suggest the fol-
lowing extension of the key loading method described in section 3: periodically
repeat the |K| bits of K to get an expanded key of length n, and apply the key
and IV procedure of section 3 to this expanded key. We suggest, if this extended
key loading method option is retained, to select a key length |K| = 80. Though
the shorter key option weakens the security arguments of section 4 and can thus

122 C. Berbain, H. Gilbert, and J. Patarin

be considered less conservative than the full length n = 160-bit key, we are not
aware of any major security weakness resulting from this option.

An indication of the advantages of the use of the MQ problem for construct-
ing a provably secure stream cipher, in terms of the required internal state size,
is given by a comparison with the fastest known provably secure stream ci-
pher, namely a discrete log based construction proposed by Gennaro in [16]
with internal state length n = 3000 bits (to be compared with the n = 350
and 256 internal state lengths derived above) and which produces 2775 bits per
iteration and applies 335 modular multiplications of 3000-bit numbers at each
iteration. Moreover the security argument of [16] does not assume the existence
of a keystream sequence distinguishing algorithm in time 7" = 2%° to get a con-
tradiction, but only a distinguishing algorithm in time 7' = 3.5 - 100 ~ 235,
Another advantage of MQ is that MQ is NP-hard, whereas the Discrete Loga-
rithm Problem is only in NP N co-NP. Moreover the best known algorithm to
solve the Discrete Logarithm problem are subexponential, while for MQ, those
algorithm are exponential.

5 Cryptanalysis

In this section, we consider various attacks and verify whether they are applica-
ble to our construction. We focus on security aspects not covered by the proof
of security of the former section, e.g. the protection against resynchronization
attacks provided by the key and IV loading mechanism.

Resistance Against Algebraic Attacks. QUAD was designed to resist al-
gebraic attack techniques. As a matter of fact, the key and IV loading and
keystream generation mechanisms of QUAD are based upon the iteration of
quadratic systems whose associated equations are conjectured to be computa-
tionally impossible to solve 2. In more details, recovering the initial state x of the
keystream generator from the whole keystream is more difficult than recovering
x from S(x), i.e. solving an intractable quadratic system of kn equations. As for
the key and IV loading mechanism, it is possible to express any keystream block,
as a set of (k — 1)n algebraic equations on the | K| > 80 key bits. However since
the key and IV setup consists of 2|K| rounds of a quadratic function, this set
consists of (k — 1)n equations of degree |K| or nearly |K| on the | K| key bits. It
is quite natural to conjecture that such a system is highly intractable.

Correlation Attacks and Distinguishing Attacks. We expect QUAD to
be immune to such attacks except for extremely unlikely degenerate instances
of the quadratic system S, for example if one of the n-bit to 1-bit quadratic
forms of S,y: or a linear combination of these (k — 1)n quadratic forms has an
exceptionally low rank and therefore (for even values of n) a detectable bias.

2 except for a small fraction of degenerate instances of S, So and S1 whose occurrence
is extremely unlikely if these systems are selected as described in section 4.5.

QUAD: A Practical Stream Cipher with Provable Security 123

Time-Memory-Data Tradeoffs and other Generic Attacks. The internal
state of our construction has a size n of at least 160 bits in order to resist against
generic time-data tradeoff, which have a complexity of 22 .

Since QUAD is based upon the iteration of the quadratic system S, the
keystream sequences it produces are ultimately periodic. Moreover, since S;; is
not one to one, the order of magnitude of the period can be expected to be 22
(k — 1)n-bit keystream blocks. One of the consequences of specifying a maximal
keystream length L << 22 (a typical order of magnitude is L = 2%°) is that the
detection of short cycles is extremely unlikely.

Guess and Determine Attacks. The analysis of attacks of this type allows us
to fix an upper bound on k. Let us assume that an adversary is able to guess p
bits of the internal state. Then this adversary gets a system of (k—1)n equations
in the (n — p) remaining internal state variables. If the number of monomials
generated by these n — p variables n, = 3 (n —p)(n —p+1) is close to (k — 1)n,
the adversary can linearize the system and recover the internal state. Solving

np, = (k — 1)n gives us a number py = n + 1_\/1+§n(k_1) such that for p > pg

the linearization is possible. The complexity C' of the resulting “attack” is about
270 ((k — 1)n)*, where w is between 2 and 3. If C' is lower than 2/%1, then the
attack is better than exhaustive search. Consequently, k£ has to be chosen such
that C be larger than 2/%l. For instance for n = 160 and |K| = 80, k < 21
implies that po > 80, and therefore C' >> 280, More conservative (i.e. lower)
values of k than the one given by this simple bound are of course recommended.

Unsurprisingly, the attack would become more efficient for unlikely degenerate
instances of S, for instance if several quadratic forms of S could be all expressed
as quadratic functions of substantially less than n linear combinations of the n
state variables.

Resistance to Resynchronization Attacks with Chosen IVs. Our proof
does not cover the Key and IV setup but only the keystream generation. They
provide a strong argument towards the conjecture that the keystream sequence
resulting from any single known or chosen IV value cannot be distinguished
from a random sequence, but do not provide guarantees regarding the indepen-
dence of the sequences resulting from several chosen IVs and the resistance of
QUAD against resynchronization attacks. However the following informal ar-
gument indicates that the key and IV setup construction of QUAD prevents
such resynchronization attacks, or more generally any detectable statistical bias
on the joint distribution of the keystream sequences resulting from the same
key and several chosen IVs. Let us consider any t-tuple (IV!,--- IV?) of t
distinct IV values and one randomly chosen n-bit initial state value before IV
loading x. By applying the security proofs of section 4 to the S = (Sp, S1) sys-
tem of 2n quadratic equations, the n-bit to 2n-bit mapping Sy, 57 is a strong
pseudorandom generator. However, the key and IV loading consists of applying
a tree-based construction proposed by Goldreich, Goldwasser and Micali [19] to
this generator, so that we can expect the distribution of the (z!,--- , a!) t-tuple
of internal state values resulting from the loading of 2 and IV to IV! to be

124 C. Berbain, H. Gilbert, and J. Patarin

indistinguishable from a t-tuple of random independent values. Moreover, the
subsequent runnup rounds during which the keystream generator is run with-
out outputting keystream bits provide an extra security margin, since only high
degree functions of ! to 2t are available to an adversary instead of quadratic
functions. If instead of the proposed key and IV setup the key and IV values the
IV had been loaded into the initial state and an insufficient number of quadratic
mappings had been applied to the initial state before activating the keystream
generation, then chosen-IV attacks exploiting the higher degree differential prop-
erties of low degree functions could have been mounted.

Dual Ciphers. Because of the structure of the QUAD equations, it is easy to
find dual ciphers of QUAD, i.e. simple (e.g. linear) transformations f and g of
the key K and the keystream as to ensure that for each triplet of quadratic
systems (5, Sp, S1) there exist quadratic systems (S’, S}, S7) such that for any
key K and any IV value IV, the keystream associated with (f(K), IV, S’ S}, S1)
is the image by ¢ of the keystream associated with (f(K), IV, S, So, S1). We do
not expect this property to represent a security threat for QUAD.

6 Performance

In this Section we give performance results for our recommended version of
QUAD, which has 160 bits of internal state, an expansion factor of 2 and a 80-
bit key and IV length. On a Pentium IV clocked at 2.5GHz with 512 kByte of
cache and using the Intel compiler, our recommended version of QUAD reaches
a speed of 4347 cycles/byte (4.6 Mbit/s). On a Pentium 4 with 1MByte of
cache, the same version reaches a speed of 2915 cycles/byte (5.7 Mbit/s). This
cache effect is due to the fact that the quadratic system used contains more
than 4 millions of binary coefficients, which requires around 1MByte to store.
A version of QUAD running on an Opteron clocked at 2.1 GHz with a 64-bit
architecture reaches the speed of 2176 cycles/byte (quite close from 1MByte/s).
An optimised version of Blum Blum Shub’s generator with an internal state of
1024 bits, which is far from the number of bits of the internal state required for
proven security, reaches 30374 cycles/byte. In his paper[16], Gennaro claimed
his discrete logarithm based generator to be twice faster for these parameters.
We can therefore assume that this generator runs at about 15000 cycles/byte.
Though QUAD is significantly slower than AES, which runs at 25 cycles/byte,
it is much more efficient than other provably secure pseudo random generator.
Moreover, implementations of QUAD with quadratic system over larger fields
(e.g. GF(16) or GF(256)) are much faster and even reach 106 cycles/byte.

7 Conclusion

In this paper we introduced QUAD, a novel synchronous stream cipher based
on MQ with a security proof in the concrete security model. Eventhough this
construction relies on a mathematical problem and has a proof of security, its

QUAD: A Practical Stream Cipher with Provable Security 125

internal state is of small size n and it extracts a small multiple of n bits at
each round. A software implementation of our recommended version of QUAD
reaches a speed of 4.6 Mb/s on a standard PC. This makes QUAD of great
interest for applications where security is the main concern. We do not preclude
that it might be possible to derive tighter bounds in some parts of the proof,
which would allow us to further reduce the internal state size and increase the
number of extracted bits.

We would like to thank Matt Robshaw and Olivier Billet for helpful comments.

References

10.

11.

12.

13.

. Magali Bardet. Etude des systéemes algébriques surdéterminés. Applications aux

codes correcteurs et a la cryptographie. PhD thesis, Université Paris VI, 2004.

. Mihir Bellare. The Goldreich-Levin Theorem.

http://www-cse.ucsd.edu/users/mihir/courses.html, 1999.

. Lenore Blum, Manuel Blum, and Mike Shub. A simple unpredictable pseudo-

random number generator. SIAM J. Comput., 15(2):364-383, 1986.

. Manuel Blum and Silvio Micali. How to generate cryptographically strong se-

quences of pseudo-random bits. SIAM J. Comput., 13(4):850-864, 1984.

. Don Coppersmith, Shai Halevi, and Charanjit S. Jutla. Cryptanalysis of stream

ciphers with linear masking. In Moti Yung, editor, Advances in Cryptology —
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 515-532.
Springer-Verlag, 2002.

. Nicolas Courtois, Louis Goubin, Willi Meier, and Jean-Daniel Tacier. Solving

underdefined systems of multivariate quadratic equations. In Public Key Cryptog-
raphy, pages 211-227, 2002.

. Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient

algorithms for solving overdefined systems of multivariate polynomial equations. In
Bart Preneel, editor, Advances in Cryptology — EUROCRYPT 2000, volume 1807
of Lecture Notes in Computer Science, pages 392-407. Springer-Verlag, 2000.

. Nicolas Courtois and Willi Meier. Algebraic attacks on stream ciphers with linear

feedback. In Eli Biham, editor, Advances in Cryptology — EUROCRYPT 2003, vol-
ume 2656 of Lecture Notes in Computer Science, pages 345-359. Springer-Verlag,
2003.

. Nicolas Courtois and Jacques Patarin. About the XL Algorithm over GF(2). In

Marc Joye, editor, Topics in Cryptology — CT-RSA 2003, volume 2612 of Lecture
Notes in Computer Science, pages 141-157. Springer-Verlag, 2003.

Claus Diem. The XL-Algorithm and a Conjecture from Commutative Algebra. In
Pil Joong Lee, editor, Advances in Cryptology — ASIACRYPT 2004, volume 3329
of Lecture Notes in Computer Science, pages 323-337. Springer-Verlag, 2004.
ECRYPT. eSTREAM: ECRYPT Stream Cipher Project, IST-2002-507932. Avail-
able at http://www.ecrypt.eu.org/stream/, Accessed September 29, 2005, 2005.
Jean-Charles Faugere, Hideki Imai, Mitsuru Kawazoe, Makoto Sugita, and Gwénolé
Ars. Comparison Between XL and Grbner Basis Algorithms. In Pil Joong Lee,
editor, Advances in Cryptology — ASIACRYPT 2004, volume 3329 of Lecture Notes
in Computer Science, pages 338-353. Springer-Verlag, 2004.

Jean-Bernard Fischer and Jacques Stern. An efficient pseudo-random generator
provably as secure as syndrome decoding. In EUROCRYPT, pages 245-255, 1996.

126 C. Berbain, H. Gilbert, and J. Patarin

14. Aviezri S. Fraenkel and Yaacov Yesha. Complexity of solving algebraic equations.
Inf. Process. Lett., 10(4/5):178-179, 1980.

15. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness, chapter 7.2 Algebraic Equations over GF(2).
W H Freeman & Co, 1979.

16. Rosario Gennaro. An improved pseudo-random generator based on discrete log.
In CRYPTO, pages 469-481, 2000.

17. Oded Goldreich. Three xor-lemmas an exposition. Technical report, Weizmann
Instritute of Science, Revohot, Israel, 1995.

18. Oded Goldreich. Fondationsof Cryptography, volume 1. Cambridge University
Press, 2001.

19. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792-807, 1986.

20. Shafi Goldwasser and Mihir Bellare. Lecture notes on cryptography. Available at
http://www-cse.ucsd.edu/users/mihir/courses.html, 2001.

21. Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364-1396,
1999.

22. Russel Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random gener-
ation from one-way functions. In D.S.Johnson, editor, 21th ACM Symposium on
Theory of Computing — STOC ’89, pages 12-24. ACM Press, 1989.

23. Russel Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as
secure as subset sum. Journal of Cryptology, 9(4):199-216, 1996.

24. Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as
secure as subset sum. J. Cryptology, 9(4):199-216, 1996.

25. Leonid A. Levin and Oded Goldreich. A hard-core predicate for all one-way func-
tions. In D. S. Johnson, editor, 21th ACM Symposium on Theory of Computing —
STOC ’89, pages 25-32. ACM Press, 1989.

26. Rudolf Lidl and Haradl Niederreiter. Finite Fields. Cambride University Press,
1997.

27. National Institute of Standards and Technology. FIPS-197: Advanced Encryption
Standard, November 2001. Available at http://csrc.nist.gov/publications/
fips/.

28. Jacques Patarin and Louis Goubin. Asymmetric cryptography with s-boxes. In
ICICS, pages 369-380, 1997.

29. Jacques Patarin and Louis Goubin. Asymmetric cryptography with s-boxes. In
ICICS, pages 369-380, 1997.

30. Johan Hastad and Mats Néaslund. Bmgl: Synchronous key-stream henerator with
provable security. submitted to Nessie Project, 2000.

31. Andrew Yao. Theory and applications of trapdoor function. In Foundations of
Cryptography FOCS 1982, 1982.

Appendix. Proof of Lemma 1

We denote by L;, 1 < i < n the n-bit to 1-bit linear forms defined by L;(z)=x;,
where z is represented by the binary string xixs - - - x,. The idea of the proof is
to call algorithm B sufficiently many times to recover all the x; = L;(z) one by
one. To do so, we introduce a parameter ¢, whose order of magnitude is logn
which will be specified later. We use t randomly chosen n-bit to 1-bit linear forms

QUAD: A Practical Stream Cipher with Provable Security 127

Ry, ..., R; to randomize our requests to algorithm B. For each L;(x) we want to
retrieve, we call algorithm B 2¢ times, using the 2 linear combinations €9 ;o R,
of the Ry forms in order to randomize L;. Suppose we know the ¢ values for
Rj(z), then for any a we can also compute the value of B, a;R;(z) and add
this value to B(D; o R; & L;, f(x)). We denote

C(i @%R @ L;, f(x @@a]

If we make a correct assumption on the ¢ values Rl(x) to Ry(x) and if B returned
the right value of (P, a;R; ® L;)(x) , then we have

o) = (@ o Ry @ Li)(z) @ EB%‘R
EBEB&J @@a] L;(x).

For all the possible « values, we collect the vote C (i,) for the value of L;(x).
Since algorithm B is supposed to answer correctly most of the time, taking the
majority of the votes C(i,a) will provide us with the value of L;(z) with a high
probability if we assume that 2! requests are enough. The counterpart of this
technique is that we have to guess the real values of R;(x) for all j but since ¢
is of logarithmic size this is achievable.

We now give a more formal proof with a small difference: we use fast Walsh
transform computations to simultaneously compute the 2! results of the votes on
the C(i,) values for all the 2! possible ¢-tuples of assumptions R;(x), 1 < j <,
instead of computing them independently.

Before we give the proof, we need to recall some results on the Walsh trans-
form. Given a real function of ¢ binary variables g(z1,...,z:), the Walsh trans-
form of g is the real function of ¢ binary variables G = W(g) defined by

Gug,...,u) = Z floy, ... x)(—1)ramrttues
z1,...,2¢.€{0,1}*
It is known that the time needed to compute the Walsh transform of a function
of t binary variables is ¢ - 2%.
Proof. The algorithm C' works as follows : first it randomly selects ¢ elements
Ry, ..., R of the n-dimensional vector space over GF'(2) of the n-bit to 1-bit
linear forms.

Then for each i = 1,. .., n it executes the following process: for all the 2¢ pos-
sible v = (v, . ..) t-tuples € {0, 1} store (—1)F®; «m®Lif @) iy 4 table of
size 2, say (co, . ..cor_1) (thus the coefficient associated with « is Cyet aj,Qj,l).

=0 @
Then it applies the Walsh transform to this table (which represents a function
of a. This gives 2 numbers (85, ..., 3% ;) such that

5!2 = Z(—l)B(®j ajRj@me(r))(_l)<k,a>

= {alC(i, @) = 0} = {alC(i,a) = 1}

128 C. Berbain, H. Gilbert, and J. Patarin

B is the difference of the number of 0 votes and 1 for L;(z) corresponding to the
assumption that R;(x) = k; for all j comprised between 1 and ¢. Consequently
if i is positive, then C sets bit i of the n-bit candidate value Cj, associated with
the assumption k to Cf = 0, otherwise this bit is set to C} = 1.

After this process has been completed for all the n values of i, one is left
with a list of 2! n-bit candidate values for z corresponding to each of the 2
assumptions for Ry (x) to R¢(x). For each candidate value Cy, algorithm C' then
computes f(Ck) and compares it to f(z). If a match occurs, C keeps Cj in the
list of at most 2! candidate values for z it outputs, otherwise Cj is discarded
from the list.

The total running time of algorithm C' is n2"(T +t + 2) + 2Ty where T is
the time needed to compute f(y) for an n-bit value y.

Let us now upper bound the probability that algorithm C' fails to select x in
the list of pre-images of f(x) it produces. Over the 2" assumptions for Rj(z) to
R;(x), only the correct one is to be considered. The failure probability of C' is
upper bounded by the sum of the n probabilities p; that the vote for L;(x) is
incorrect and we have:

— pr {{a|c<zya> = Lil@)}] < 22}

{a|C(i,a) = L;i(z)}| is the sum of the 2! pairwise independent 0-1 variables

C(i,a) ® Li(z) ® 1 of average value 11q > 5 + § and variance vq = ; — f. Thus
2

pi has average value p = 2! (} + §) and variance o2 = 2 (}1 -) By applying

Chebyshev’s inequality, we have

2t
i = P ', Li 1
» r{%:c*(z Q)@ Li(z) &1 < 2}
=Pr{Y Cl,a)®Li(z)®1—p< e
= .) i K 9
2t6 < o? < 1
2 [(2t5)2 T 2te
Thus the failure probability of C' is upper bounded by ote2 - If we want to have

a probability of success for algorithm C higher than , then we have to choose
t such that 2t = 5. Finally the total complexity of algorlthm C is given by

ZCza ®Li(z)dl—p

o2n? 2n 2n
2 (T+log(€2)—|—2> + €2Tf

How to Strengthen Pseudo-random Generators
by Using Compression*

Aline Gouget™ and Hervé Sibert

France Telecom Research and Development,
42 rue des Coutures, BP6243, F-14066 Caen Cedex 4, France
{aline.gouget, herve.sibert}@francetelecom.com

Abstract. Sequence compression is one of the most promising tools for
strengthening pseudo-random generators used in stream ciphers. Indeed,
adding compression components can thwart algebraic attacks aimed at
LFSR-based stream ciphers. Among such components are the Shrink-
ing Generator and the Self-Shrinking Generator, as well as recent vari-
ations on Bit-Search-based decimation. We propose a general model
for compression used to strengthen pseudo-random sequences. We show
that there is a unique (up to length-preserving permutations) construc-
tion that reaches an optimal trade-off between output rate and security
against several attacks.

1 Introduction

The huge amount of work impulsed by the ECRYPT call for stream ciphers [5]
shows how much progress has been made in stream ciphers analysis in the recent
years. While researchers in the area are still willing to design new proposals with
innovative, yet not always secure, ideas. If cryptanalysis seems to put the fate
of stream ciphers at stake, this is also the consequence of a lack of theoretical
security results for stream ciphers and pseudo-random generators.

Compression of sequences can strengthen pseudo-random generators used in
stream ciphers. In particular, adding compression components can thwart al-
gebraic attacks aimed at LFSR-based stream ciphers [1,4]. Such components
include decimation components such as the Shrinking Generator [3] and the
Self-Shrinking Generator [15]. Decimation has come back in focus recently with
the Bit-Search Generator [9] and subsequent variations on it [10].

Compression mechanisms may suffer from timing attacks [12] since the speed
of the output is variable in a manner that depends on the generator’s state. Thus,
LFSR-based ciphers involving a decimation mechanism may be easily breakable
in case of leakage of the number of times LFSRs are clocked for each output.
However, such side channel attacks are usually alleviated by buffering the output,
as described for instance in [14]; these issues are not discussed in this paper.

* Work partially supported by the French Ministry of Research RNRT X-CRYPT
Project and by the European Commission under contract IST-2002-507932 via the
ECRYPT Network of Excellence.

** Current e-mail address: aline.gouget@gemplus.com

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 129-146, 2006.
© International Association for Cryptologic Research 2006

130 A. Gouget and H. Sibert

Our main purpose is to propose a general model for compression used in the
generation of pseudo-random sequences, in order to build compression compo-
nents upon theoretical results. In Section 2, we detail related work on the subject
including the Shrinking Generator and the Bit-Search generator variation used
in the DECIM proposal to the ECRYPT stream cipher project. In Section 3, we
construct our framework for compression components using prefix codes dedi-
cated to pseudo-random generation. In Section 4, we focus on the case when the
compression output is 0 or 1. We show that there is then a unique (up to length-
preserving permutations) construction that reaches an optimal trade-off between
output rate and security against several attacks, including entropy-based recon-
struction, linear equations retrieval, and FBDD attacks. In Section 5, we apply
our results to the Self-Shrinking Generator and Bit-Search based decimation.

2 Related Work

Generation of pseudo-random sequences using compression techniques relies on
the use of a compression function. A compression function is a function that com-
presses m-bit inputs (m is not necessarily a fixed value) to n-bit outputs, where
m > n. The properties required for such functions depend on the application
context. For instance, one-wayness is required for cryptographic hash functions,
whereas compression functions for data compression must not be one-way. The
properties of a compression function to be used to shrink pseudo-random se-
quences are yet to be defined.

Decimation components are a particular case of compression components. The
Shrinking Generator (SG) [3] compresses two sources of pseudo-random bits to
create a third source of potentially better quality than the original sources; the
term quality stands for the difficulty of predicting the pseudo-random sequence.
Similarly, the Self-Shrinking Generator (SSG) [15], the Bit-Search Generator
(BSG) [9] and its variants such as the ABSG [10] all compress a single source
of pseudo-random bits in order to produce a second source of potentially bet-
ter quality. The ABSG is used in the DECIM stream cipher proposed to the
ECRYPT stream cipher project. The general running of DECIM is to produce a
pseudo-random bit sequence from an LFSR filtered by a Boolean function which
is next compressed by the ABSG.

The output rate is usually considered to compare the efficiency of compression
components. The BSG and the ABSG have the advantage over the SG and the
SSG that they operate at a rate 1/3 instead of 1/4 (i.e. producing n bits in the
output requires on average 3n bits of the input sequence instead of 4n bits).

Security criteria are crucial for cryptographic compression components. Since
many stream ciphers are LFSR-based, most theoretical results on compression
components concern the period or the linear complexity of the sequences ob-
tained by applying these components on the output of a maximal length LFSR.
First, algebraic results show that regular decimation is not suitable [16]. Then,
several attacks on stream cipher based on a compression component are known.
The first type of attack focuses on the properties of the compression function

How to Strengthen Pseudo-random Generators by Using Compression 131

when assuming that the input sequence is uniformly chosen. For instance, FBDD-
attacks, proposed by Krause [13], rely on properties of the compression function
in the context of LFSR-based generators. The attacks given in [10, 11] use the
most probable case (when it exists) in order to reconstruct the input sequence
in the context of LFSR-based generators. A second type of attack exploits more
information on LFSR-based generators. For instance, the attack on the SG given
in [3] exploits the knowledge of the feedback polynomials, and the attack on the
SSG given in [6, 7] applies only for particular feedback polynomials.

3 A Compression Model for Pseudo-random Generation

One usually expects data compression techniques to transform an input sequence
into a very short output sequence while keeping the ability to recover the input
from the output, which means no information on the input shall be lost.

In the context of pseudo-random generation, the purpose is different. We focus
on the use of the compressed output as the keystream used to cipher a message
in a stream cipher. The input sequence s is supposed to be the pseudo-random
output of a public mechanism with secret parameters (e.g., the output of an
LFSR initialized with a secret key and an initialization vector). This mechanism
may have weaknesses with respect to attacks aiming at correlation or algebraic
properties of its output. Our aim is to delete from s enough information to
prevent such attacks that may apply to s, by hiding algebraic properties of the
input sequence. At the same time, our output should not be too short compared
with its input, so that it can be used for the same applications as s.

Thus, our aim is opposite to usual data compression: we expect the compres-
sion algorithm to process the input into an output sequence which delivers as
little information on the input as possible, while remaining as long as possible.

In the sequel, we call random input sequences those sequences that follow the
uniform distribution of binary words: each word w is a prefix of a random input
sequence with probability 1/ 21wl and all words are assumed to be independent.

3.1 Prefix Codes and Binary Trees

A binary code is a subset of words of {0,1}*. The language C* of a binary code
C is the set of all binary words that are concatenation of words in C. A code C
is a prefiz code if no codeword has a strict prefix in C. Notice that, in this case,
the words of C* parse into codewords in a unique manner. A code is mazimal
prefiz when no other prefix code properly contains it. A code C is right complete
if every word w can be completed into a word v = ww’ that belongs to C* or,
equivalently, if every word w with no prefix in C has a multiple v = ww’ in C.

Proposition 1. A code is mazimal prefix if, and only if, it is prefiz and right
complete.

Proof. Suppose C is maximal prefix. Let w be a non-empty word which has no
prefix in C. As C is maximal prefix, CU{w} is not a prefix code, so w has a right
multiple in C. Hence, C is right complete.

132 A. Gouget and H. Sibert

Conversely, let C be prefix and right complete, and C’ be a prefix code that
contains C. Let w € C’. As C is right complete, w has a right multiple w’ in C*.
Let then m be the smallest prefix of w’ in C. As C’ is prefix, this implies m = w,
so we have w € C, and consequently C’ = C. Therefore, C is maximal prefix. 0O

Throughout the paper, we will see that all suitable codes for our constructions
are maximal prefix codes. There is a natural bijection between binary prefix
codes and binary trees called coding trees, in which a node either is a leaf, or it
has two children. This bijection links the words of the code and the leaves of the
tree. Thus, we often use the equivalence between binary prefix codes and binary
trees in the sequel. An example of a coding tree is given in Figure 1.

Fig. 1. ABSG code tree

3.2 General Framework

We consider an infinite input sequence of bits s = (s;);>0, a binary prefix code C
and a mapping f : C — {0,1}* called the compression function. We call f(C) the
output set. The sequence s parses into a sequence of codewords w = (w;);>0, each
w; being the unique codeword such that wy . ..w; is a prefix of s that belongs to
C*. Each w; is then mapped by f to its image in f(C). The output sequence is
(f(ws))i>o0, seen as a bit sequence. We denote this output sequence by

y = Ence ¢(s).

The framework extends to finite input sequences, by parsing the input se-
quence in the same way, until the remainder has no prefix in C.

Definition 1. The output rate of the pair (C, f), denoted by Rate(C,), is the
average number of output bits generated by one bit of a random input sequence.

Obviously, not all binary codes and functions are suitable for this framework. For
instance, choosing C = {00} does not enable to process a sequence containing
ones. As for the function, choosing the projection onto the empty word e produces
an empty output sequence. In order to apply the framework to every possible
input sequence, it is then necessary to determine what the requirements on the
following components are:

How to Strengthen Pseudo-random Generators by Using Compression 133

1. the choice of C must enable the parsing of every random input sequence,
2. the choice of f must be such that, for uniformly distributed input sequences,
the corresponding output sequences also follow the uniform distribution.

3.3 Requirements on C

First, there are some straight requirements on C. In our framework, we consider
prefix codes only. Indeed, if C contained two distinct words w and w’ with w a
prefix of w’, then w’ would never appear in the decomposition w of s. Therefore,
we may delete from C all the codewords that already have a prefix in C with
no loss of generality, thus transforming C into a binary prefix code. Next, we
want every random input sequence to be processable. This implies that C is
right complete. Overall, in order to effectively process any random input, we
introduce the following definition:

Definition 2. A binary code C is suitable if it is prefiz and if the expected
length E(C) of an element of C in the decomposition of a random input sequence
1s finite.

Proposition 2. For a suitable code C, the following equality holds:

1
ZQlezl

weCl

Proof. Let us consider the binary tree corresponding to C. We denote by L,

and N, respectively the number of leaves and nodes of depth n. Then, we have

Ly =0, Ng =1, and for every n > 1, the relation L,, + N, = 2N,,_1 holds. Let
L, _ Nn-1 N,

L : . N
S, = Zogkgn on - Then, we have 5 = 5= — o», which gives S, = No— o =

1— . so we only have to prove N,, = o(2").

Now, N, is the number of nodes of depth n, and a random input sequence
begins with n bits corresponding to such a node with probability]2\7::’. For each
one of these nodes, the first word of the input sequence recognized as a word of
C has length at least n. Thus, these nodes contribute at least ng[: to E(C). As

E(C) is finite, this implies that g,:” tends to 0 when n tends to oco. O

Therefore, in the case of a suitable code, F(C) is equal to the mean length of
the words of C for the uniform distribution on the alphabet {0,1}, so we have:

Proposition 3. Let C be a suitable code. Then, we have the equality

EC)=Y 2'7‘;".

wel

Remark 1. If a prefix code C satisfies the equality in Proposition 2 (for binary
codes, otherwise 2 is replaced by the size of the alphabet), then it is maximal
prefix, and the equivalence holds when C is finite (see for instance [2]). Thus,
suitable codes are maximal prefix, and the converse is true for finite codes, with
E(C) then being given in Proposition 3. However, being maximal prefix may not
be sufficient for E(C) to converge when C is infinite, as Example 1 will show.

134 A. Gouget and H. Sibert

Example 1. Let us consider the code C defined iteratively as follows: for every n
starting from n = 0, C contains all the words w12", where w is a word of length
2™ with no prefix already in C. The defined code is prefix, and every word w
with no prefix in C with 2"~! < |w| < 2" can be completed into a word of C by
concatenating enough 1’s to reach length 2"*!, so C is right complete. Therefore,
C is maximal prefix. However, the number of words of length 2"*! in C being at

most 2", we get
1 1
Z 2|w| < Z 92m7
wel n>0

this last sum being strictly less than 1. Thus, a random binary sequence may
never fall into C with non-zero probability. Hence, F(C) is infinite, and it is no
longer equal to the mean length of code words, which, here, is finite. The code
C is an example of maximal prefix code which is not suitable.

3.4 Requirements on f

As for C, there are also several immediate requirements on f(C). However, they
are more practical than theoretical: at first glance, f(C) may be any set of binary
words, including €. Now, it must obviously contain at least two non-empty words,
one beginning with 0, and the other with 1, in order to make it possible for the
output to look random for random inputs. Moreover, it must be possible to
construct every binary sequence with the elements of f(C).

In order to be able to process every random input sequence, we introduce the
following definition, which corresponds to the requirement of Definition 2:

Definition 3. Suppose C is a suitable code. Let f be a compression function
f:C —{0,1}*. We say that the pair (C, f) is a proper encoder if the expected
length E(f(C)) of the image by [of an element of C in the decomposition of a
randomly chosen input sequence is finite and nonzero.

As we review the properties of the output sequences with respect to uniformly
distributed input sequences, we have:

Proposition 4. For a proper encoder (C, f), the expected length of the image by
f of an element of C in the decomposition of a randomly chosen input sequence,
denoted by E(f(C)), is given by

Definitions 2 and 3 ensure the finiteness of E(C) and E(f(C)), so we get:

Proposition 5. The output rate of a proper encoder (C, f) is given by

E(£(0)

Rate(C, f) = E(C)

How to Strengthen Pseudo-random Generators by Using Compression 135

Now, we are going to determine an optimal choice for the output set f(C) against
reconstruction of the input. To every word in the output corresponds a set of
preimages in C. Knowing an output word thus reduces the possible choices of
preimages to one particular set. We will show that, in order to minimize the
information rate, the set f(C) should be as small as possible.

In order to ensure that the distribution of the output sequences satisfies ran-
domness properties such as those described in [8], each bit of the output sequence
must have equal probability to be 0 or 1. Therefore, we need, for every n > 1:

1 1
Z 9wl = Z 2lw|’

weC,|f(w)|2n, f (w)n=0 wEC,|f(w)|2n, f (w)n=1
where f(w)y, is the n-th bit of the word f(w).

The prefix code output case. First, we consider the case where f(C) is a
prefix code. If it contains two elements, the only possible choice such that the
probability distribution of the output for random inputs is that of a random
sequence is f(C) = {0,1}. In this case, 0 and 1 must have probability é to
appear in the output sequence for a random input sequence.

Suppose now that f(C) has more than 2 elements. We want to prove that,
given a random input sequence, knowing the output sequence, we can retrieve
more information on the first element of C than in the case f(C) = {0,1}.

Proposition 6. Let (C, f) be a proper encoder, and, for x € f(C), let P(x) =
Zwef—l(m) 2&“ . Then, for a random input sequence s, each word of the decompo-
sition of s over C has average length E(C), and it is known with an average entropy

+ Y P(z)log P(a).
z€ f(C)
Proof. For © € f(C), let us denote by C, the preimage of x in C. Then, the
probability that the first element of C recognized in a random input sequence is

mapped by f to x is P(x) =}, cc. 2|w| Similarly, the expected length of an

element in the preimage of x is E(Cy) = P(lm) >

the entropy on the elements in C,:

1 1 1
HE) == 2 payet 8 playaes = 2 paye (871 4 1)

weCy

_ 1 lw| | log P(x) 1
" P(a) u;Cm glw] T P(z) wEZCm olw] = E(Cy) + log P(z).

||

wee, olwl - At last, we compute

The average number of bits retrieved is therefore 3, . ;) P(2)E(Cz) = E(C) for
a random input sequence, so it does not depend on f(C). The average entropy is

> Pa ») +log P(z)) = + Y P(x)log P(x),
z€f(C) z€f(C)
with ¢ ;o) Pl2) = 1. u|

136 A. Gouget and H. Sibert

It is always possible, given a suitable code C, to divide C into two equiprobable
subsets (the probabilities of leaves in the tree being of the form 21n with n > 1,
and their sum being 1). Thus, for every suitable code, there exists a mapping
f:C — {0,1} such that 0 and 1 are output with probability J.

Therefore, in order to maximize the entropy for a given suitable code C, the
value of [}, ¢ ;) P(z)log P(z)| should be as small as possible, which implies
#(f(C)) = 2. Therefore, the optimal choice of the output set is f(C) = {0, 1},

with 0 and 1 having probability % to be output for a random input sequence.

The non-prefix output case. We now consider the case where f(C) does not
contain the empty word ¢, but f(C) is not a prefix code. Let C(y) be the set of
words of C such that, for every w € C(y), the sequence y begins with w. Then,
the probability that s begins with w depends on y.

Ezample 2. Suppose f(C) = {0,01,10,11} with Py = Py; = zl,) and Py; = Pjg =
é. Then, the first word of the finite output sequence 010 corresponds to a pair
of words (w,w’) of C, with either f(w) =0 and f(w') = 10, or f(w) = 01 and
f(w') = 0. As we have PyPig = Po1 Py, the probabilities that f(w) = 0 and
f(w) = 01 are equal whereas Py > Po1.

Thus, it is no longer possible to determine with certainty each word (f(w;)) in
the image of the input sequence. However, a path similar to that of Section 3.4
can be followed. The corresponding Proposition 12 and its proof are provided
in Appendix A. They lead to the same conclusion as Section 3.4, namely that
the optimal choice of the output set is f(C) = {0,1} (thus being prefix), with 0
and 1 having probability é to appear in the output sequence for a random input
sequence. This case is discussed in Section 4.

General case. We now suppose that £ can belong to the output set f(C).

Proposition 7. Let (C, f) be a proper encoder such that f(C) contains €. Then,
there exists a proper encoder (C', f') such that f'(C") does not contain ¢ and that,
for every infinite binary sequence s, we have

E’I’LCC’f (S) = E’I’LCC/’f/ (S)

Moreover, defining P. = we have

1
wef~1(e) 2wl

1 1
()=, |, B, and B(f(€) = | |, E(FO)).
Proof. Denote by C. the set of preimages of €, and by Cs the complement of C. in
C. Let C' be the binary code defined by C’ = CZCx, that is, the set of binary words
that parse into a sequence of words of C., followed by a word of Cs. Consider
the function f’ that maps each element ww’ of €', with w € C¥, and w' € C;,
to f(w'). As the decomposition is unique, f’ is well-defined. Moreover, for every
input sequence s, the equality Ence, ¢(s) = Encer f(s) is obviously satisfied. At
last, we have f(C') = f(C)\{e}, so the image of f” does not contain ¢.

How to Strengthen Pseudo-random Generators by Using Compression 137

There remains to show that the new pair (C’, f’) is also a proper encoder.
First, C' is also a prefix code because of unicity of the decomposition over C.
Next, as the length of € is 0, we have

Ly [f(w)| _ (1)" [fw)] _ E(f(C))

E(f (C)) - Z v +|w| Z Z 2lv] X Z olwl T 1 - P
veCr wele n>0 wveC. weCs

As the two encoders (C, f) and (C’, f') are equivalent, they have the same output

rate, which yields the same relation between E(C’) and E(C). Hence, (C’, f) is

a proper encoder. O

Proposition 7 shows that we can suppose without loss of generality that f(C)
does not contain e. Therefore, the optimal choice for f(C) is

f(€)={0,1}.

4 The {0,1}-Case

In this section, we focus on the optimal choice of the proper encoder (C, f) when
f(C) ={0,1}, with 0 and 1 equiprobable relatively to the uniform distribution
over the input sequence. We first give the results that arise from Section 3 in this
case, and we study the security of the framework against well-known attacks:
exhaustive reconstruction, most probable case reconstruction, equations retrieval
and FBDD attacks. Then, using these security results, we deduce the optimal
choice for (C, f) against these attacks.

4.1 Parameters of the {0,1}-Case

Firstly, we give some general properties of the framework in the {0,1} case. We
denote by Cy and C; the two sets of preimages of respectively 0 and 1 by f. We
also define C}' = {w € Cp, |[w| = n} and D} = #(C}}).

Proposition 8. Let (C, f) be a proper encoder with f(C) = {0,1}. Then, for
a random input sequence s, the average length and entropy of each word of the
decomposition of s over C are respectively E(C) and E(C) — 1.

This result comes from Proposition 6 when applied to the case f(C) = {0,1},
with 0 and 1 being equiprobable. This equiprobability also implies:
Proposition 9. Given a bit b of the output sequence, a word w € Cp is the
preimage of b with probability 2‘1}‘,1 .

Proof. Each word w of C appears in the input sequence with probability 2&”‘,
and the probability that w belongs to Cp is é, which gives the result. O

4.2 Security Analysis

This section is dedicated to the general analysis of the security provided by the
compression component. We also focus on the case when the input sequence is
the output of a maximal length LFSR.

138 A. Gouget and H. Sibert

Exhaustive reconstruction. FExhaustive reconstruction consists in reconst-
ructing consecutive bits of the input sequence from the output sequence starting
from a fixed point in the output sequence. When a bit b appears in the output,
the expected length and the entropy on the preimage of b in the input sequence
are respectively equal to

|w] 1 1
By = Z 2lw|-1 and Hy = — Z 2lw|-1 10g2(2|w|—1)'

weCy weCy

Developing Hy gives

lw| —1
Hy = Z olwl—1 — By — 1.
weCy

Therefore, for a bit b in the output, one can deduce FEj bits in the input, with
entropy Ej — 1.

Suppose that the input sequence is given by a LFSR of length L with a public
feedback polynomial and with the secret key as its initial state. Let E = EO;E .
It is therefore possible to retrieve the complete state of the LFSR with an attack
of average complexity O(2 "' L), requiring O(é) consecutive output bits.

Moreover, when Ey # F; holds, the complexity of the attack can be reduced
by seeking for a sequence where mostly bits b appear, with b such that E, < Ej.
This yields an attack with better complexity, but requiring the knowledge of more
output bits. The general running of this attack consists in taking a window of
consecutive bits in the keystream sequence where most bits are b. The difficulty
when mounting this attack is to determine the better trade-off between the
length of the window and the required number of bits b in this window in order
to retrieve L equations involving consecutive bits of the input sequence. Such an
attack is described in [10] in the case of the BSG decimation algorithm.

Reconstruction based on the most probable case. Another reconstruction
attack consists in betting each time that the preimage of a bit b is (one of) the
most probable. Consequently, for each bit b, we set £, = min{|w|,w € Cp}, and
cihort = fw € Gy, |w| = £3}. Contrary to the previous attack, we cannot choose
the point from which consecutive input bits will be effectively reconstructed.

For a bit b in the output, the preimage of b is w € C3°™ with probability
1/2%=1. Thus, we recover £, bits of the input with probability 1/2%1.

Suppose now that the input sequence is given by a LFSR of length L. Let
= ZO;E1 . It is then possible to retrieve the complete state of the LFSR with an
attack of average complexity (’)(QEZIL)7 requiring (’)(2221]4) output bits (namely,
enough for the bet to succeed). In the case where not all the preimages of b have
the same length, we have ¢, < Ej, so the complexity of this attack is less than
that of exhaustive reconstruction.

Like in exhaustive reconstruction, when £y # ¢1 holds, the attack complexity
can be reduced by seeking sequences where most bits are b, such that £, < /3.

How to Strengthen Pseudo-random Generators by Using Compression 139

Equations retrieval. In some cases, and in particular when the input sequence
is given by a maximum-length LFSR, it is sufficient to retrieve linear equations
on bits that are not consecutive in the input sequence.

However, it is not necessarily easier to retrieve bits that are apart in the
input sequence, because the compression process creates entropy on the length
of the preimages of words in the output sequence. Thus, retrieving bits that are
apart means that we are able to control the length of the gaps between the bits
retrieved in the input sequence.

For a bit b in the output, the preimage of b has length n with probability 2?; 1
where D} is the number of preimages of b of length n. Now, if the preimage of b
has length n, then we can derive a number ¢} of linear equations on the input
bits satisfying

max (0,n — (D — 1)) < ¢} < n— log(Dp)]-

Therefore, we can retrieve at least n + 1 — D} equations with probability 2?§ 1-
For a bit b in the output, the average number of retrieved linear equations is

thus Drgr
P b7
¢b - Z gn—1 ’

n>1

the entropy on the length of the preimage of b being

length b b
T S RN
n>1
In the best case (which can always be achieved by properly choosing C and f),
where ¢} is the least possible, we obtain:

Proposition 10. Consider a proper encoder (C, f) such that f(C) = {0,1},
with 0 and 1 having the same probability for random input sequences. Let ¢y, and
H;ength be the average number of retrieved linear equations for a bit b and the
associated entropy on the length of the preimage of b. Then, we have

_ , Dr o .
op = Ep — 6?, with 6 = Z 27:1 min(n, Dy — 1),
n>1

and

Dy n
nfl log Dy .

n>1

Moreover, 6? and (52S are both positive, and they satisfy (52S > 6f.

Proof. The formulas for 6? and 6{1 both follow from straight computation. Now,
we always have D < 2%, so log D} is always at most n. Moreover, for every
integer z > 1, we have x — 1 > logz. So, for every n such that D' # 0, we have
min(n, D — 1) > log D}'. |

140 A. Gouget and H. Sibert

These results link the complexity of equations retrieval attacks with exhaustive
reconstruction by way of Fj. As a consequence of this proposition, when 0 and 1
have the same number of preimages of each given length, retrieving L equations

159
has complexity at least (Q(QEEi&‘f5 L), while exhaustive reconstruction of L bits
has complexity O(2"=' L), Thus, for §% = 0, equations retrieval is not more
effective than exhaustive reconstruction. This happens only when each bit has
at most one preimage of each length.

Suppose now the input sequence is given by a LFSR of length L. It is therefore
possible to retrieve L linear equations on the input bits of the LFSR with an
attack of average complexity

length length
H Hy)L

CXQ(6 T & 2)7

requiring O(L) consecutive output bits.

Like in the previous attacks, when lei’gth + H}Z;“lgth holds, the complexity of
the attack can be reduced by seeking for a sequence where mostly bits 0 or 1
appear (depending on the inequality direction). The attack thus obtained has

better complexity, but requires the knowledge of more output bits.

Example 3. We consider the ABSG code tree. For every length n > 2, there is
exactly one preimage of 0 and one preimage of 1 of length n. We obtain

N n length n—1 g
Po = Z on—1 =3=Ep, and H, o= Z on—1 = ¢y = H,.
n>2 n>2

The equations retrieval attack is thus as difficult as exhaustive reconstruction
for the ABSG.

FBDD attacks. Krause [13] introduced the FBDD-attack (standing for Free
Binary Decision Diagram) which is a cryptanalysis method for LFSR-based gen-
erators, i.e., a generator LG that, for each initial state x € {0,1}", outputs a
linear bitstream LG(x), and a compression function which compresses the linear
bitstream. The cryptanalysis method relies on two assumptions called the FBDD
Assumption and the Pseudo-randomness Assumption (see [13] for details).

The cost of the cryptanalysis depends on two properties of the compression
function that are a parameter «y linked to the maximal length of the sequence
output by the compression function when applied on all sequences of length m,
and some parameter « (see [13] and some details in [10]); the two parameters
« and v are reals between 0 and 1. Then, the time and space complexity of
the FBDD-attack is LO(217a L and it requires [ya~ L] consecutive bits of the
keystream in order to compute L consecutive bits of the input sequence.

When the probability that the image of a randomly chosen finite input se-
quence is a prefix of a given output sequence varies according to the output
sequence, it is not clear whether the original FBDD-attack may be improved to
be more efficient.

How to Strengthen Pseudo-random Generators by Using Compression 141

4.3 Optimal Choices

In this part, we construct an optimal proper encoder in light of the attacks
considered previously.

Requirements based on security analysis. In order to thwart attacks based
on asymmetry between the preimage of 0 and that of 1, each output bit must
have the same number of preimages of a given length.

Next, in order to maximize the complexity of most probable case attacks while
keeping a good output rate, the length of the shortest word in C should be as
close as possible to the average length of the words in C.

Example 3 shows that the ABSG compression mechanism is optimal regarding
equations retrieval attacks, meaning that it is not easier to retrieve equations
than to reconstruct consecutive bits of the input sequence.

In the general case, equations retrieval attacks can have a better complexity
than exhaustive reconstruction. However, as shown in Proposition 10, in order to
lessen their efficiency, each bit should have at most one preimage of each length.

Construction of an optimal framework. For an output rate at least %,

the number of choices for the proper encoder are finite, because of symmetry
requirements, and the output rate is either equal to 1 or é exactly. For Rate =1,
there are two proper encoders, with C = {0, 1}, which is insecure. For Rate = é,
one can construct 6 proper encoders. The suitable code is C = {00,01, 10,11},
and the function f is such that 0 and 1 have two preimages each. For each choice,
as the length of the preimages is constant, we can apply the equations retrieval
attack and solve the corresponding system. The complexity is then O(L).

Let then h be the minimal depth of leaves in the tree. As each output bit must
have the same number of preimages of a given length, the number of preimages
of 0 and 1 of depth A in C is the same. Then, the complexity of reconstruction
using the most probable case is O(hgl L). In order to maximize the output rate,
we have to choose h = 2, and no level in the tree should have only internal
nodes. This implies that, at every depth more than 2, the tree must have exactly
2 leaves, until the last level with depth d, where it has 4 leaves. We denote by
T3 the set of code trees of depth d, and exactly 2 leaves of depth 2,3,...,d — 1
(hence 4 leaves of depth d for d < 00). The ABSG code tree belongs to 75°. In
order to obtain proper encoders using these codes, one only has to use functions
f such that the number of preimages of 0 and 1 of each depth in C is the same.

This optimal code can be adapted for smaller output rates, beginning at
depth h > 2. This makes most probable case attacks more complex, though
another way of complexifying them is to act on the input sequence using, for
instance, a longer LFSR. The tree considered then has exactly 2"~! leaves of
depth h,...,d — 1 and maximal depth d (reached by exactly 2" leaves when d
is finite). Notice that the trees T;Li can be constructed by putting 272 trees of
T2d+2*h at depth h — 2 in a tree with all internal nodes until depth h — 2.

However, equations retrieval attacks are more efficient for h > 2:

Proposition 11. Consider a proper encoder (C, f) such that the code tree of C
15 a T,fl tree, and that 0 and 1 have the same number of preimages of each given

142 A. Gouget and H. Sibert

length. Suppose also that C is such that the number of equations linking the
preimages of b of length n is the least possible, namely ¢) = max(0,n+1—D}').
Then, we have:

1. for every h > 2, the entropy on the length of the preimage of a given output
bit b is H'em9th = 2 — 2hti=d,

2. for 2 < h < 4, we have ¢p = h + 2 — 2"=2 — 2h=d _ 92h=d=2 "yypich is equal
to 3 for h=3 and d = .

Proof. These are the results of straight, yet tedious computations. a

As a consequence of these results, and namely of the entropy remaining less than
2, the complexity of equations retrieval attacks does not grow fast when the
output rate decreases. Therefore, the optimal framework against these attacks
is reached when the code tree belongs to T5°. However, the attack complexity
remains at least O(2%) for trees in T¢ with d > 2.

Definition 4. We say that a proper encoder (C, f) is an optimal encoder if the
associated code tree belongs to T5°, and if 0 and 1 have exactly one preimage by
f of length ¢, for £ > 2.

In Table 1, we provide the characteristics of proper encoders constructed on
the basis of general Tﬁl trees as defined in Proposition 11. We also provide a
comparison with the SSG. We left aside polynomial terms in the computational
complexity. One should also note than most probable case attacks require much
known keystream, whereas the other attacks considered require only a number
of bits linear in L, where L is the number of bits we want to retrieve. The results
for FBDD attacks are taken from [13,10] for the SSG and ABSG. Moreover,
the complexity of FBDD attacks is the same for all optimal encoders, including
the ABSG. We see that equations retrieval attacks are more powerful against
Tyl trees than exhaustive reconstruction, which is why we did not consider them
as optimal. However, they may be easier to protect against timing attacks than
optimal encoders, because the length of their codewords is bounded.

5 Applications

5.1 Bit-Search-Based Generators

In [9], the BSG algorithm was proposed, and was presented together with the
ABSG, which was then described in [10]. Both share the same code tree pre-
sented in Figure 1, which belongs to 75°, and thus fits in our framework. The
corresponding code is C = {01%0,10¥1, k > 0}.

In the case of the BSG, the compression function fpse maps codewords of
length 2 to 0, and the other codewords to 1. Therefore, it is not an optimal en-
coder. This asymmetry resulted in several attacks [10, 11]. For instance, the equa-
tions retrieval attack takes advantage of it and it is especially efficient against
the BSG, with complexity O(23L).

How to Strengthen Pseudo-random Generators by Using Compression 143

Table 1. Characteristics and attack exponent against T¢ trees filtering LFSRs

Output Exhaustive Most probable Equations FBDD
rate reconstruction case retrieval attacks
T h+1712’1*d hi}fl;;de hglL see Prop.11 n/a
Tie it i L L see Prop.11 n/a
s 37212% gig;:jl’ éL ;:;gi;L n/a
T5° (ABSG) 3 3L s L 3L ~ 0.532L
T5° ! 3L 2L 2L ~ 0.615L
SSG i 3L 3L 3 L(see Section 5.2) ~ 0.656L

In the case of the ABSG, the compression function fapse maps codewords
to their second bit, so it is an optimal encoder. Therefore, the ABSG is optimal
against the attacks we described. Their complexity is given in table 1.

5.2 Self-shrinking Generator

Let us set C = {00,01, 10,11}, and define f : C — {0,1,¢} by : f(00) = f(01) =
e, f(10) =0 and f(11) = 1. The Self-Shrinking Generator is exactly the scheme
corresponding to the pair (C, f) in our framework.

The pair (C, f) is a proper encoder, but it contains e. Following the trans-
formation described in Proposition 7, we set ¢’ = {(0{0,1})*1{0,1}}, and we
define f': C’ — {0,1} by f(w) =b for w € {(0{0,1})*1b}.

The pair (C’, f') is a proper encoder that has an optimal output set and
satisfies the symmetry requirement: at every level of the corresponding tree,
described in Figure 2, there are exactly as many preimages of 0 and 1.

The SSG is neither an optimal encoder, nor is it optimal among proper en-
coders having the same output rate. This comes from the fact that one out of
two levels in the tree is empty. Let us compare the corresponding scheme to the
optimal choice for the same output rate (}1 for the SSG), whose code tree is a T5°
tree. For both schemes, the complexity of the exhaustive reconstruction attack
is the same, namely (’)(23’;). However, the complexity of the most probable case

Fig. 2. SSG code tree

144 A. Gouget and H. Sibert

attack against the SSG is O(2%), requiring O(22) bits of the output. For the
Tg° choice, this attack has complexity O(23%), and requires O(23%) output bits.
Therefore, the SSG is not optimal against most probable case attacks.

Moreover, for each output bit, the input has length 2n with probability 21”,
in which case one can recover n 4+ 1 equations. This yields that 3 equations are
known on average, with an entropy of 2. Therefore, the equations retrieval attack
has complexity O(23%), which is the same as T5°, but also as T5° (ABSG). As
this attack requires a number of bits linear in L, it is as practical as exhaus-
tive reconstruction. Notice that the equations retrieval attack against the SSG
has almost the same complexity as the FBDD attack of Krause [13], while not
requiring a large amount of memory.

Therefore, an optimal encoder such as the ABSG is as secure against the
attacks considered in this paper as the Self-Shrinking Generator (apart from
FBDD-attacks), while providing a better output rate (§ instead of).

6 Conclusion and Further Work

In this paper, we have extensively studied how to compress efficiently and se-
curely the output of pseudo-random generators. It turns out that the ABSG,
which was introduced in [9,10], and is part of the DECIM proposal to the
ECRYPT stream cipher project [5], has the optimal properties against several
well-known attacks. But it is also possible to design several other optimal en-
coders with the same properties, using code trees taken from the 75° infinite
family. At last, we have also shown compression components based on these
trees are almost as secure as the Self-Shrinking Generator [15], while providing
an output rate of é instead of }l. We consider two main directions for research
in this area. First, one could use another generator to choose the compression
function at each iteration, while keeping the same code tree. The idea is thus to
generalize this framework by using other pseudo-random generators to control
compression. This should provide us with comparisons with the Shrinking Gen-
erator [3]. Second, if the compression function and the code are chosen properly,
a compression component may also erase the bias of a pseudo-random generator
that does not produce every bit sequence with equal probability. It then seems
possible to construct a general design for bias-erasing compression.

References

1. F. Armknecht, M. Krause, Algebraic Attacks on Combiners with Memory, Advances
in Cryptology — CRYPTO’03 Proceedings, LNCS 2729, Springer-Verlag, (2003),
162-176.

2. J. Berstel, D. Perrin, Theory of Codes, Academic Press, (1985).

3. D. Coppersmith, H. Krawczyk, Y. Mansour, The Shrinking Generator, Advances
in Cryptology — CRYPTO’93 Proceedings, LNCS 773, Springer-Verlag, (1993),
22-39.

How to Strengthen Pseudo-random Generators by Using Compression 145

4. N. Courtois, W. Meier, Algebraic Attacks on Stream Cliphers with Linear Feedback
Advances in Cryptology - EUROCRYPTO’03 Proceedings, LNCS 2656, Springer-
Verlag, (2003), 345-359.

5. eStream, Stream cipher project of the European Network of Excellence in Cryp-
tology ECRYPT, http://wuw.ecrypt.eu.org/stream/.

6. P. Ekdahl, T. Johansson, W. Meier, Predicting the Shrinking Generator with Fized
Connections, Advances in Cryptology — EUROCRYPT 2003 Proceedings, LNCS
2656, Springer-Verlag, E. Biham, ed., (2003), 330-344.

7. P. Ekdahl, T. Johansson, W. Meier, A note on the Self-Shrinking Generator, In
Proc. of International Symposium on Information Theory, page 166, IEEE, (2003).

8. S. Golomb, Shift Register Sequences, Revised Edition, Aegean Park Press, (1982).

9. A. Gouget, H. Sibert, The Bit-Search Generator, In The State of the Art of Stream
Ciphers: Workshop Record, Brugge, Belgium, October 2004, pages 60-68, (2004).

10. A. Gouget, H. Sibert, C. Berbain, N. Courtois, N. Debraize and C. Mitchell, Analy-
sis of the Bit-Search Generator and sequence compression techniques, Proceedings
of FSE’05, LNCS 3557, Springer-Verlag, (2005).

11. M. Hell, T. Johansson, Some attacks on the Bit-Search Generator Proceedings of
FSE’05, LNCS 3557, Springer-Verlag, (2005).

12. P. Kocher, Timings attacks on implementations of Diffie—Hellman, RSA, DSS and
other systems, Proceedings of Crypto 1996, LNCS 1109, Springer-Verlag, (1996).

13. M. Krause. BDD-based Cryptanalysis of Keystream Generators, In EURO-
CRYPT 2002, pp. 222-237, LNCS 2332, Springer, (2002).

14. 1. Kessler, H. Krawczyk, Minimum Buffer Length and Clock Rate for the Shrinking
Generator Cryptosystem, IBM Research Report, RC 19938 (88322), (1995).

15. W. Meier, O. Staffelbach, The Self-Shrinking Generator, Advances in Cryptology
— EUROCRYPT’94 Proceedings, LNCS 950, Springer-Verlag, (1994), 205-214.

16. R. A. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, (1986).

A Choice of the Output Set: Non-prefix Case

We consider the case where f(C) is not a prefix code and does not contain
the empty word . Thus, it is no longer possible to determine with certainty
each word (f(w;)) of the image of the input sequence. For statistical reasons,
f(C) contains at least one word beginning with 0, and one beginning with 1.
Moreover, as it is not prefix, it also contains two words beginning with the same
bit. Therefore, f(C) contains at least three elements.

Proposition 12. Let (C, f) be a proper encoder such that f(C) is a non-prefix
set that does not contain the empty word . Then, the average expected length of
the first word of the decomposition of the input sequence over C is E(C) when
the input sequence is chosen uniformly. This word is known with average entropy

E(C) + A(C), with A(C) < —1.

Proof. For x € f(C), we denote by C, the set of preimages of x in C, and we
define P(z) = }_, cc. Q&M. Let y be the output sequence corresponding to a
randomly chosen input sequence s. Let C(y) be the set of words of C such that,
for every w € C(y), the sequence y begins with w.

146 A. Gouget and H. Sibert

Let Py(x) denote the probability that the image by f of the first element of
C recognized in s is x, given y. Then, we have Z Py(x) =1.
z€C(y)
Now, each element in C, has probability P(x;2|w| to be the preimage of z.
Thus, the average length of the first element of C recognized in s, given y, is

|wl
Py (.
97,2 P 2 pe
Output sequences are chosen following the uniform distribution on input se-
quences, so the average length of the first element of C recognized in a random
input sequence knowing the output is E(C) = > QI‘%I‘. Hence, the average
value of E,, for random input sequences is E(C), which is the first result.

Next, the entropy on the first element of C recognized in s, given y, is:

1 Py(x)
= 2 2 B@ piorl 198 poul

zeC(y)wGC
Z Z 2|w| (Jw| + log P(x) — logPy(x))
z€C(y) weCy
= Ey(C) + Z Py (z)(log P(x) — log Py (x)).
z€C(y)

The average value of H, for uniformly chosen input sequences is thus the sum

of E(C) and of the average value of Ay (C) = Z Py (x)(log P(x) — log Py(x)).
z€C(y)

for random input sequences. Let b be the first bit of y. Then, C(y) is included in

the subset C(bx) of C consisting of those words that are mapped by f to a word

whose first bit is b. For statistical reasons, we have > 3, which

1
zeC(bx) 2lzl =
yields

1 1
> ool S o - (1)

z€C(y)

Moreover, as there are at least 3 elements in f(C), there are some output se-
quences y such that the inequality in Equation (1) is strict.

Using equality >, cc(,) Py(z) =1 and inequality (1), we obtain Ay < —1 for
every output y, the inequality being strict when that of (1) is. Therefore, the
average value of A, for all random input sequences is strictly less than —1. O

Hence, the optimal choice of the output set, even if non-prefix output sets are
considered, is still f(C) = {0,1}, with 0 and 1 having probability j to appear in
the output sequence for a random input sequence.

Efficient Computation of Algebraic Immunity for
Algebraic and Fast Algebraic Attacks

Frederik Armknecht!, Claude Carlet?, Philippe Gaborit®, Simon Kiinzli*,
Willi Meier*, and Olivier Ruatta®

! Universitit Mannheim, 68131 Mannheim, Germany
armknecht@th.informatik.uni-mannheim.de
2 INRIA, Projet CODES, BP 105, 78153 Le Chesnay Cedex;
also with Univ. of Paris 8, France
claude.carlet@inria.fr
3 Université de Limoges, 87060 Limoges, France

{gaborit, olivier.ruatta}@unilim.fr

4 FH Nordwestschweiz, 5210 Windisch, Switzerland
{simon.kuenzli, willi.meier}@fhnw.ch

Abstract. In this paper we propose several efficient algorithms for as-
sessing the resistance of Boolean functions against algebraic and fast
algebraic attacks when implemented in LFSR-based stream ciphers. An
algorithm is described which permits to compute the algebraic immu-
nity d of a Boolean function with n variables in O(D?) operations, for
D~ (Z), rather than in O(D?) operations necessary in all previous algo-
rithms. Our algorithm is based on multivariate polynomial interpolation.
For assessing the vulnerability of arbitrary Boolean functions with re-
spect to fast algebraic attacks, an efficient generic algorithm is presented
that is not based on interpolation. This algorithm is demonstrated to be
particularly efficient for symmetric Boolean functions. As an application
it is shown that large classes of symmetric functions are very vulnerable
to fast algebraic attacks despite their proven resistance against conven-
tional algebraic attacks.

Keywords: Algebraic Attacks, Algebraic Degree, Boolean Functions,
Fast Algebraic Attacks, Stream Ciphers, Symmetric Functions.

1 Introduction

Many keystream generators consist of combining several linear feedback shift
registers (LF'SRs) and possibly some additional memory. One example is the Eg
keystream generator which is part of the Bluetooth standard. LFSRs are very
efficient in hardware and can be designed such that the produced bitstream
has maximum period and good statistical properties. Various approaches to the
cryptanalysis of LFSR-based stream ciphers were discussed in literature (e.g.,
time-memory-tradeoff, fast correlation attacks or BDD-based attacks). For some
keystream generators, algebraic attacks and fast algebraic attacks outmatched
all previously known attacks [3,12,13].

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 147-164, 2006.
© International Association for Cryptologic Research 2006

148 F. Armknecht et al.

For LFSR-based filter or combining generators, their security mainly relies
on a nonlinear Boolean output function f filtering the contents of one LFSR, or
combining the outputs of several ones. The present paper studies the resistance
of this kind of stream ciphers to (fast) algebraic attacks.

In view of algebraic attacks, the notion of algebraic immunity (or annihila-
tor immunity) has been introduced (the algebraic immunity AZ of a Boolean
function f is the minimum value of d such that f or f 4+ 1 admits a function
g of degree d such that fg = 0). The construction of Boolean functions for
LFSR-based stream ciphers with large algebraic immunity achieved much atten-
tion recently, [5,6,7,15,17]. However, many of these functions do not allow for
other good cryptographic properties like large non-linearity or large orders of
resiliency, and as will be shown later, have undesirable properties with regard to
fast algebraic attacks. It seems therefore relevant to be able to efficiently deter-
mine the immunity of existing and newly constructed Boolean functions against
algebraic and fast algebraic attacks.

Until now, the best algorithms known for computing the algebraic immunity d
of a function with n variables work roughly in O(D?) operations, where D ~ (3)
This is impractical for functions with 20 or more variables. In this paper, we give
an algorithm which computes the AZ of a function in O(D?) operations. The
algorithm is based on multivariate polynomial interpolation, and it is applied
to two particular families of Boolean functions: the inverse functions and the
Kasami power functions. The quadratic nature of the algorithm is experimentally
verified, and for the first time, the AZ of a function with 20 variables is computed
to be AZ =9.

Resistance against fast algebraic attacks is not fully covered by algebraic im-
munity, as has been demonstrated, e.g., by a fast algebraic attack on the eS-
TREAM candidate SFINKS, [11]. For determining immunity against fast alge-
braic attacks, we give a new algorithm that is based on methods different from
interpolation, and that for general Boolean functions allows to efficiently assess
immunity against fast algebraic attacks. The complexity of our second algorithm
is in O(DE?), where E ~ (Z) and e in many cases of interest is much smaller than
d. This compares favorably with the known algorithms, which are in O(D?). The
algorithm is applied to several of the above mentioned classes of Boolean func-
tions with optimal algebraic immunity, including symmetric Boolean functions,
like the majority functions. Symmetric functions are attractive as the hardware
complexity grows only linearly with the number of input variables. However, it
is shown in this paper that the specific structure of these functions can be ex-
ploited in a much refined algorithm for determining resistance against algebraic
attacks that is particularly efficient. It is concluded that large classes of symmet-
ric functions are very vulnerable to fast algebraic attacks despite their optimal
algebraic immunity. A symmetric function would not be implemented by itself
but rather in combination with other nonlinear components in stream ciphers. It
seems nevertheless essential to know the basic cryptographic properties of each
component used.

Efficient Computation of Algebraic Immunity 149

The paper is organized as follows. In Section 2, the basics of algebraic and
fast algebraic attacks are described. Section 3 derives an algorithm for effi-
cient computation of the algebraic immunity as well as a modified algorithm
to determine all minimal degree annihilators. In Section 4, an algorithm for ef-
ficient computation of immunity against fast algebraic attacks is presented. In
Section 5, the algorithm is adapted and improved for symmetric functions, and
it is proven that the class of majority functions which have maximum A7 is very
vulnerable to fast algebraic attacks. We finally conclude in Section 6.

2 Algebraic Attacks and Fast Algebraic Attacks

2.1 Algebraic Attacks

For an LFSR L with N entries filtered by a Boolean function f with n variables,
algebraic attacks consist of two steps [12]:

— First step. Finding functions g of low degree d such that fg = 0 or (f +
1)g = 0. Until this paper, the complexity of this step was roughly in D3, for
D =% (%) (which is about (7) for d < n/2) and where 3 is taken for
the exponent of the matrix inversion.

— Second step. Solving a nonlinear system of multivariate equations g(L*
(21,...,2N)) = 0 for adequate i, induced by the functions g of the anni-

hilator sets Ann(f) and Ann(f + 1). Usually this system is solved by lin-

earization with a complexity of D3, for Dy = Z?:o (N) The number of

i
required bits of keystream is proportional to Dy, whereas this value can be
reduced if several annihilators of f and/or f @ 1 with minimum degree are
known. Alternatively, this system can be solved by Grobner basis, but then

the complexity of solving is difficult to evaluate, see [4,19].

The lowest degree of the function g # 0 for which fg =0or (f+1)g = 0 is called
the algebraic (or annihilator) immunity AZ of f. In [12] it has been shown that
for any function f with n-bit input vector, functions g # 0 and h exist, with
fg = h such that e and d are at most [n/2]. This implies that AZ(f) < [n/2].

2.2 Fast Algebraic Attacks

Fast algebraic attacks were introduced by Courtois in [13]. They were confirmed
and improved later by Armknecht in [3] and Hawkes and Rose in [20]. A prior
aim of fast algebraic attacks is to find a relation fg = h with e := deg g small and
d := degh larger. In classical algebraic attacks, the degree d of A would neces-
sarily lead to considering a number of unknowns of the order of Dy . In fast alge-
braic attacks, one considers that the sequence of the functions h(Li(z1,- -+ ,zn))
can be obtained as an LFSR with linear complexity Dy. One uses then the
Berlekamp-Massey algorithm to eliminate all monomials of degree superior to
e in the equations, such that eventually one only needs to solve a system in
En =3, (Jy) unknowns. The complexity of fast algebraic attacks can be

summarized in these four steps:

150 F. Armknecht et al.

— Relation search step. One searches for functions g and h of low degrees
such that fg = h. For g and h of degrees e and d respectively, with associated
values D := 3¢ (") and E == Y%, ("), such g and h can be found
when they exist by solving a linear system with D + E equations, and with
complexity O((D + E)?). Usually one considers e < d.

— Pre-computation step. In this step, one searches for particular linear re-
lations which permit to eliminate monomials with degree greater than e in
the equations. This step needs a sequence of 2Dy bits of stream and has a
complexity of O(Dy log?(Dy)), see [20].

— Substitution step. At this step, one eliminates the monomials of degrees
greater than e. This step has a natural complexity in O(E% Dy) but using
discrete Fourier transform, it is claimed in [20] that a complexity O(ExyDn
log(Dy)) can be obtained.

— Solving step. One solves the system with Fy linear equations in O(E%;).

Notice that, for arbitrary non-zero functions f, g, h, the relation fg = h implies
fh = h, thus we have d > AZ(f) and we can restrict to values e with e < d. Fast
algebraic attacks are always more efficient than conventional algebraic attacks
if d=AZ(f) and e < d — 1. In case that e turns out to be large for this d, it is
of interest to determine the minimum e where d is slightly larger than AZ(f).

3 Efficient Computation of the Algebraic Immunity

In this section, we present an algorithm which computes the algebraic immunity
AT of a Boolean function in O(D?) operations. In particular, the algorithm re-
turns a non-zero annihilator of minimum degree d, without necessitating a prior
guess of d. The algorithm is based on the notion of multivariate polynomial inter-
polation, it generalizes the classical incremental Newton interpolation algorithm
to the multivariate case. We also explain how to modify the algorithm to return
the set of all non-zero annihilators with minimum degree. Eventually we give
experimental results of our algorithm.

3.1 Multivariate Lagrange Interpolation

Before stating what is the multivariate Lagrange interpolation problem when
it is specified to binary polynomials, we need to introduce some notation. We
denote by IF the finite field GF(2) and by IF* the vector space of dimension k over

IF. Consider = := x1, ..., a set of k binary variables, o := (ay,...,0a3) € FF a
multi-index, z := (z1,..., z) an element of F¥. We denote 2% := z{* - - - 2* and
2% =20 2% Let E = {aq,...,ap} C F* be a set of multi-indices, then we
denote by z¥ := {z®1 ... 9P} the set of associated monomials. We identify

the ring of boolean functions in n variables with F[z]/(x?

i —.I‘Z‘,i = 1,...,77,),
the quotient ring of the ring of polynomials with coefficients in IF by the ideal
generated by the relations 7 — x;, i € {1,...,n}. We will use, explicitly or not,
several times this identification. In our framework, the multivariate Lagrange

problem can be stated as follows:

Efficient Computation of Algebraic Immunity 151

Problem 1. Let E := {a1,...,ap} C F", Z := {z,...,2p} C F"” and v :=
(v1,...,vp) € FP. Does there exist a polynomial g € F[zy, ..., z,] whose mono-
mial support is included in ¥ and such that g(z;) = v;, Vi € {1,...,D}?

Remark 1. The general multivariate Lagrange interpolation problem has been
addressed in [23], but the proposed algorithm has cubic complexity (on the

number of monomials). We will present an algorithm with a quadratic complexity
over I instead.

An answer to Problem 1 in terms of existence and uniqueness is presented by
means of the following definition:

Definition 1. Let Z := {z1,...,zp} C F" and F := {o1,...,ap} C F", we
define the Vandermonde matriz as

201 0P
Vegp:=| - ..) (1)
P
and we define the Vandermonde determinant to be vz g = det(Vz g).

Proposition 1. There exists an unique solution g € F[x] to Problem 1 if vz g #
0. Furthermore, the solution g is given by g(z) = @;‘3:1 Ga, T, where the vector
G:=(Gays- - 9ap)t is the only solution of the system

Vzpg=v. (2)
Remark 2. Given the set Z := {z1,...,zp} C F”, the existence of a set F :=
{a1,...,ap} C F™ such that vz g # 0 is ensured since it is enough to take for

E the set of monomials which are not in the monomial ideal generated by the
leading monomials of a Grobner basis of the ideal of the polynomials vanishing
at each point of Z.

With the following proposition, the minimum annihilator problem can be re-
duced to a multivariate Lagrange interpolation problem:

Proposition 2. Let f be a Boolean function, Z := f~1(1) and E such that =¥
s the complementary of the monomial ideal generated by the leading monomials
of a Grobner basis for a graduated order of the ideal of the polynomials vanishing
at each point of Z. Then, if § & E is of minimum weight, the function Rg defined
below is a minimum-degree annihilator of f,

P TP
zlﬂ 2zt z7P

Rﬂ = det . .
B o1 ap

%D %D ZD

Furthermore, Rz = xP @ g where g is the solution of Problem 1 with v =

(zlﬁ,zg,...,zg).

152 F. Armknecht et al.

Proof. The function Rg(z) is an annihilator of f, as for an argument = € Z the
above matrix becomes singular. In addition, Rg has minimum degree because
FE is the complementary of the monomial ideal generated by the leading terms
of a Grébner basis for a graduated monomial order. The relation Rz = 2% @ g
is obtained by developing the determinant defining Rg with respect to the first
row, and by considering g obtained with Cramer’s rule in Eq. 2. O

3.2 General Description of the Algorithm

The general idea of the algorithm is to apply Prop. 2 incrementally with a
linear complexity at each step. Let us introduce some more notation: E? is
the set of all a of weight equal to d. Then E<? := EOU ... U E? (ordered by

increasing weight) and E; := {a1,...,q;}, which are the first i elements of E<9.
Let Z := f~1(1) C F" (with arbitrary ordering) and Z; := {z1,...,2}. We
assume vz, g, # 0 for all i € {1,...,|Z|}, this condition® is sufficient to apply

Prop. 2 on the sets Z;, E;.

Then the algorithm works as follows: apply Prop. 2 for an intermediate set
of points Z; and an associated set of exponents E;, with 8 = «a;11. A particular
solution g; = Rg ® x” is an intermediate annihilator of f on the set Z;. If one
can verify that g; is also an annihilator of f on the global set Z, then a minimum
degree annihilator of f is found. Otherwise, one considers a new point z; 1 and
Z; 11 with associated set of exponents F;;1, until an annihilator of f on Z is
found.

Remark 3. Notice that the original interpolation problem with v = 0 is turned
into a sequence of interpolation problems with (in general) non-zero v, depending
on the exponent ;1 used at each step. In particular, the fact ¥ = 0 on f~1(1)
is used implicitly in the computation of the ordered set E associated to f~1(1).

For each intermediate step, the updating procedure can be done in linear time,
resulting in an overall complexity of O(D?) rather than O(D?). In fact, this
is a multivariate generalization of the Newton interpolation scheme: recall that
a Newton basis for the polynomial interpolation problem allows to introduce
interpolation nodes one by one (without the requirement to recalculate previous
coefficients). In addition, the Newton basis leads to a triangular Vandermonde
matrix, which can be solved in quadratic time (on the number of interpolation
nodes).

3.3 Computing a Minimum Degree Annihilator

Define V; := Vz, g,, and consider an LU-decomposition of V;, i.e. V; = L;U;,
where Uj; is triangular superior and L; is triangular inferior. Then, the system
Vig; = v; with v; := (v1,...,v;) is equivalent to U;g; = Li_lﬁi, and the solution
gi can be found by solving two triangular systems (i.e computing the inverses of
U; and L;). If the polynomial associated to g; is not an annihilator of f, then we

1 Such kind of ordered sets of points and exponents always exists and can be computed
incrementally in quadratic time (see [23]), so we do not lose any generality.

Efficient Computation of Algebraic Immunity 153

solve the system for V1 and ©;41 = (T;, v;11,). However, instead of computing
a complete LU-decomposition of V; 1, we write

v = (Vi Cia) _ (Li O (U L7'Ciya
AR) T \0) \RB 2T

with Gy i= (27, 27) and R; = (20, ..., z%). Consequently, knowl-
edge of an LU-decomposition of V; yields an almost LU-decomposition of V;1
(with the exception of R;). This is a basic fact usually exploited to design efficient
LU-factorization algorithms.

In our framework, one can avoid a direct computation of L; as follows. Denote

Xii=(x1,..., xi)t7 where the elements z; are considered as indeterminate, and
denote P;(z1,...,x;) = L;lXi. Then we have
L; 0 U, P, zab+17...7zq”1
z+1 i+1 z+1

e (59) ().

Consequently, the system of equations V;11g;+1 = 9;41 is equivalent to

U; Pzt 28N Pi(vy, ..., v
(aq ! a; (! 71-%—17 ') gi+1 = Z(1" ’ l) . (5)
Zit1 "Rt Zit1 Vit1

Triangulation of the left matrix is an easy task since U; is triangular (it is
achieved by elimination of the 7 first entries of the last row by row operations).
The same operations are carried out on the right matrix. This yields U;y; and
Pi+1($1, e $i+1), and the system Uit1Gi+1 = Pi+1(’01, R Ui+1) can be solved.
If the polynomial associated to g;y1 is not an annihilator of f (ie. if 3z € Z
such that g(z) # 0), the subsequent elements in E<? and Z are added and so
on. Practically, the only points introducing new constraints on the annihilator
are those for which the input polynomial does not vanish already. The method
terminates because the degree of the annihilator is bounded. Denote by ¢ be the
number of iterations of Alg. 1.

As an input of the algorithm, we do not take a monomial expansion of f, but
the vector of its evaluation at points z;. In the case ¢t = | Z|, this vector can be
computed with asymptotically O(tlog(t)) operations using a method based on
fast Fourier transform, and more easily in O(tN,,) operations over the ground
field (where N,, is the number of monomials in the algebraic normal form of f) by
simply adding the evaluation of each monomial at the ¢ points. The algorithm
incrementally computes the values of the annihilator at every point and lifts
them in the monomial basis in order to compute the power expansion. Let us
discuss the most costly operations at the i*" step of the algorithm:

— The triangulation in step 4 requires i arithmetic operations. As U; is already
a upper triangular matrix, we only need to eliminate the first ¢ — 1 entries
in the last row, and update the entry in the bottom right corner. This is
done by replacing 2, ...,z """ by 0 and 2{" by 2{" — Z; 11 2" - P; ; where
(Pi,1;~~ _PZZ 1) P(21 ,...722_11).

154 F. Armknecht et al.

Algorithm 1. Computation of an annihilator of minimum degree

Input: f, Z:= f1(1), ES[n/21,
Output: An annihilator of f of minimum degree.
1: Initialization: Uy « (27'), v1 < f(z1) ® 1, g« 1, P — (z1), 4 < 1.

2: while the polynomial associated to g is not an annihilator of f do
3 1 «— 1+ 1.
Ui P(Zai, ceey Z,?‘_L) TOW Op. UZ oy oy
* (e) = o o PG ET)) = Ui
5: Use the same row operations from (P(217,..., 2%), 2{") — P(2%,...,2{") to
perform the update (P(vi,...,vi—1),v;) — P(vi,...,v;).
6: Solve U;gi = P(’U1, .. .,Ui) with gi = (gl, . 797;)-
7: end while ‘
8: Output g(z) := Pj_, g;z%7.

— The updating process of P requires ¢ arithmetic operations.

— Solving the system in step 6 basically requires i? arithmetic operations. How-
ever, this is also feasible with ¢ arithmetic operations by the following remark,
allowing to correct g; in order to compute g;;1:

Ui Pi(z0 0 20N (d) Pi(v1,...,v;)
Uit1 git+1 = 0 " = Vit .

We do not introduce any new complex computation to check whether g is an
annihilator of f. Namely, we compute the values of g at points which are not
introduced yet. This can be done by updating a vector storing the evaluations
of g at each point considered so far, where a new step leads to a linear number
of operations (corresponding to the number of coordinates). Again, the overal
cost of this computation is quadratic on the number of points.

The arithmetic complexity AC(NN) of the proposed algorithm is given by
AC(N) = AC(N — 1) + const - i + O(D). An simple computation shows that
AC(N) = O(t? + tD). Since t is the number of monomials occurring in a mini-
mum degree annihilator of f, ¢ has the same order of magnitude as D. This is
summarized in the following proposition:

Proposition 3. The arithmetic complezity of Alg. 1 to compute the minimum
degree d of an annihilator of f is O(D?).

In order to obtain the quadratic behavior, it is necessary to handle memory
allocation with care (in particular, management of the extension operations on
the matrix are delicate, and a bad memory allocation leads to an implementation
cubic in space and time). We finally remark that the above method can also be
used to construct functions with high algebraic immunity.

3.4 Computing All Minimum Degree Annihilators

In this section, we explain how to modify Alg. 1 to compute all minimum-degree
annihilators g of a polynomial f. Notice that Ann(f,d) := {g € <$Egd> c

Efficient Computation of Algebraic Immunity 155

F[z]|fg = 0} is a vector space. Consequently, we only have to compute a ba-
sis of Ann(f,d), and this for the minimum value of d. The idea of the method
proposed here is to run Alg. 1 until we find the first annihilator together with
d. Then, the algorithm searches for further annihilators, considering only expo-
nents in F=¢. In addition, if «; is the exponent lastly introduced and resulting
in an annihilator, we can execute a further search without «; (this can be im-
plemented by backtracking the last update). The reason is that if g and ¢’ # g
are both annihilators which contain z®¢, then one can construct another annihi-
lator g @ ¢’ which is independent of z%. Hence, the new algorithm can still be
run incrementally, and it terminates after introduction of a”. As the number of
steps required to find the first annihilator is of the same order of magnitude as
D, the asymptotic performance of the new algorithm does not increase. This is
resumed in the following proposition:

Proposition 4. The above modifications of Alg. 1 allow to compute the min-
imum degree d of an annihilator of f, and a basis of Ann(f,d), using O(D?)
arithmetic operations.

3.5 Experimental Results

In this section, we apply Alg. 1 to two particular families of Boolean power func-
tions: the inverse functions and the Kasami type functions (see [10]). We veri-
fied that an implementation of the algorithm in C code followed the announced
quadratic time complexity on the number of variables.

The inverse function is of particular interest, since this function is used with
n = 8 variables in the S-box of AES, and almost directly as a filtering function
in SFINKS [6]. For different values of n, Tab. 1 lists the power exponent of
the function f (which is equal to —1 here), its weight, its algebraic degree, its
nonlinearity and its algebraic immunity.

The Kasami functions in n variables have exponents of the form 22¢ — 2% 41
with ged(k,n) = 1 and k < n/2. These functions are of interest since we can see

Table 1. Computation of the weight, degree, nonlinearity and algebraic immunity for
the inverse function and some Kasami power functions for 12 < n < 20

Inverse function Kasami power functions
n exp. weight deg. nonlin. AZ exp. weight deg. nonlin. AZ
12 —1 2048 11 1984 5 993 2048 11 1984 5
13 —1 4096 12 4006 993 4096 6 22 -2° ¢
14 —1 8192 13 8064 4033 8192 6 213 -27 ¢
15 —1 2% 14 16204 4033 o4 o4 _ 98 7
16 —1 2% 15 215 _98 oM _97 41 2ot o _ o7 7
17 —1 2% 16 65174 oM _97 41 216 216 _ 98 g
18 —1 27 17 217 —9° 216 _98 11 ol7 217 _ 99 8
19 —1 2 18 261420 216 98 41 218 218 _ 929 9
20 —1 219 19 219 _ 910 218 _ 9941 219 19 219929 ¢

—_
o Y

NI~
O ©

156 F. Armknecht et al.

that, for the number n of variables which is currently usual in cryptography, they
have a high algebraic immunity.? We consider several Kasami type exponents
(where ged(k,n) may be different from 1), see Tab. 1. For n = 12,16, 20, we
converted non-balanced functions to balanced ones by flipping the first entries
in the truth tables. For the first time, we accomplish computation of the AZ of
a function with 20 variables, A7 = 9 and good nonlinearity.

4 Efficient Computation of Immunity Against Fast
Algebraic Attacks

Let us first introduce some notation for this section. Any Boolean function f
with an n-bit input vector = := (z1,...,x,) can be characterized by its truth
table T(f) := (f(0),...,f(2" — 1)) € F?" or by its algebraic normal form
f(z) = B, fax™, with coefficients f, € F, multi-indices & € F” (which can
also be identified by their integers) and the abbreviation 2 := z{* - - - z2~. Con-
sequently, we define the coefficient vector of f by C(f) := (fo,..., fon_1) € F?".

Given a Boolean function f with n input variables, the goal is to decide
whether g of degree e and h of degree d exist, such that fg = h. The known
function f is represented preferably by the truth table T'(f), which allows to
efficiently access the required elements, and the unknown functions g and h are
represented by the coefficient vectors C'(g) and C(h), which leads to the simple
side conditions gz = 0 for |3] > e and hy, = 0 for |y| > d. In order to decide
if g and h exist, one has to set up a number of linear equations in gg and h,.
Such equations are obtained, e.g., by evaluation of f(2) - Py gz’ = @D, hy2?
for some values of z. There are D + E variables, so one requires at least the
same number of equations. The resulting system of equations can be solved by
Gaussian elimination with time complexity O((D + E)3) = O(D3). If any D+ E
equations are linearly independent, then no nontrivial g and h of corresponding
degree exist. Otherwise, one may try to verify a nontrivial solution. Certainly,
there are more sophisticated algorithms, namely we are able to express a single
coeflicient h. as a linear combination of coefficients gg. If these relations hold
for any value of -y, one may choose v with |y| > d such that h, = 0, in order to
obtain relations in gg only. Consequently, equations for coefficients of g can be
completely separated from equations for coefficients of h. As there are only F
variables gg, one requires at least /' equations, and the system of equations can
be solved in O(E?). Depending on the parameters n, d, e and on the structure
of f, there are different strategies how to efficiently set up equations.

4.1 Setting Up Equations

In this section, we consider the product fg = h where f, g and h are arbitrary
Boolean functions in n variables. Here are some additional notational conven-
tions: For o, 8,7 € F", let @ C (3 be an abbreviation for supp(a) C supp(3),

2 However, it is shown in [24] that Kasami functions have bad algebraic immunity
when n is very large.

Efficient Computation of Algebraic Immunity 157

where supp(a) = {ilay = 1}, and let a V 8 := (a1 V B1,...,a, V 3,). For
B,C € F?", we define the scalar product B - C := @iigl[B]k - [C]k. All expres-
sions are modulo 2 here. With the following theorem, we are able to express a
single coefficient ., as a linear combination of coefficients gz, where the linear
combination is computed either with T'(f) or with C(f).

Theorem 1. Let f(z) = @, fazx® and g(x) = EBngxﬂ. Set h(z) = €D,
hyx? = f(x) - g(x). With A;; € F and B; ; € F2", we have for each v

b= ()40 (6)

B

Aij = Bi;-T(f) = Bii-j-C(f) (7)

() ()

Proof. The binary Moebius transform relates the ANF of a Boolean function
with the corresponding truth table, namely considering Lucas’ theorem f(k) =
D, (z)fa = Dack fo and fi = D, (i)f(a) = @D.cy. f(a). We obtain the
relation hy = @, f(a)g(a). With g(a) = Bsc, g8, this becomes h, =
@agw @ﬁga gsf(a). Rearranging the coefficients, we finally have the prod-
uct hy = @y, 98 Dpcacy F(@) = By (3)98By,6 - T(f). In order to prove
the second relation, we multiply the ANF of both functions and obtain h, =
GBCXV/@:’Y fagp. This binary sum can then be partitioned according to h, =

sC 9B @ag'y;a\/ﬁz'y fa. With Lucas’ theorem again, we have the relation h, =

@ﬂg'y 9p @’y—ﬁgagy foa = @5 (g)gﬂB%'y—ﬂ -C(f). o

4.2 Determining the Existence of Solutions

We propose an efficient algorithm to determine the existence of g and h with
corresponding degrees, see Alg. 2. The algorithm is based on the equation hy =
Dsc, 98 Dpscacs (@), which is a variant of Th. 1.

Let us discuss the complexity of Alg. 2. Initialization of G takes at most O(E?)
time and memory, and Z can be constructed in O(E) time. Iteration initiates by
choosing a fixed 7 of weight d + 1, this step will be repeated E times to set up
the same number of equations. Notice that the set {~: |y| = d + 1} is sufficient
to choose E different values of v, as E < (,},) in the case of e < d and d = n/2
(which is the typical scope of fast algebraic attacks). Thereafter, one chooses a
fixed B of weight b. This step will be repeated for all (dtl) elements of weight b,
and for all b = 0, ..., e. Given this choice of v and 3, we find | A| = 2971~ which
corresponds to the number of operations to compute A. Overall complexity of
the iteration becomes E 3"y o (*11)29+170 < B(e + 1)(“11)29+! < DE?, where
the last inequality holds in the specified range of parameters. Time complexity
of the final step of Alg. 2 is O(E?). The dominating term, and hence complexity
of Alg. 2 corresponds to O(DE?). Compared to the complexity O(D?) of Alg. 2
in [21], Alg. 2 is very efficient for g of low degree.

158 F. Armknecht et al.

Algorithm 2. Determine the existence of g and h for any f

Input: A Boolean function f with n input variables and two integers 0 < e < AZ(f)
and AZ(f) <d<n.

Output: Determine if g of degree at most e and h of degree at most d exist such that
fg=h.

1: Initialize an F x E matrix G, and let each entry be zero.

2: Compute an ordered set Z — {8 : |8 < e}.

3: for i from 1 to E do

4: Choose a random v with |y| =d+ 1.

5: Determine the set B« {8: 5 C~, |8] <e}.

6: for all #in B do

7 Determine the set A — {a: 8 C a C ~}.

8: Compute A — @ , f(a).

9: Let the entry of G in row ¢ and column [(in respect to Z) be 1 if A = 1.
10: end for

11: end for

12: Solve the linear system of equations, and output no g and h of corresponding

degree if there is only a trivial solution.

4.3 Experimental Results

In [15], a class of (non-symmetric) Boolean functions f with maximum algebraic
immunity is presented; these functions will be referred here as DGM functions.
Application of Alg. 2 on their examples for n = 5,6,7,8,9,10 reveals that h
and g exist with d = AZ(f) = [n/2] and e = 1. We point out that this is
the most efficient situation for a fast algebraic attack. Explicit functions g with
corresponding degree are also obtained by Alg. 2, see Tab. 2 (where dim denotes
the dimension of the solution space for g of degree e). A formal expansion of
f(z) - g(x) was performed to verify the results. A reaction on this attack is
presented in [16].

Table 2. Degrees of the functions h and g for DGM functions f with n input variables

n deg f degh degg g dim
5 4 3 1 14z 4
6 4 3 1 14 4
7 5 4 1 14+ x4+ x5 1
9 8 5 1 za4+x5+a6+27 1
10 8 6 1 zs4+xz6+ax7r+a8 1

5 Efficient Computation of Immunity for Symmetric
Functions

Consider the case that f(x) is a symmetric Boolean function. This means that
f(z) = f(z1,...,x,) is invariant under changing the variables z;. Therefore,

Efficient Computation of Algebraic Immunity 159

we have f(y) = f(v') if ly| = |¢/| and we can identify f with its (abbreviated)
truth table T5(f) := (£5(0),..., f*(n)) € F**! where f*(i) := f(y) for a y with
ly| =i. Let o;(x) := ®Ia|:i x® denote the elementary symmetric polynomial of
degree i. Then, each symmetric function f can be expressed by f(z) = @ ffoi(x)
with f? € F. Similarly to the non-symmetric case, f can be identified with its
(abbreviated) coefficient vector C*(f) := (fg,..., f3) € T+l

In this section, we present a general analysis of the resulting system of equa-
tions for symmetric functions and propose a generic and a specific algorithm in
order to determine the existence of g and h of low degrees.

5.1 Setting Up Equations

One can derive a much simpler relation for the coefficients h, in the case of
symmetric functions f.

Corollary 1. Let f(z) = @, , ffoi(z) be a symmetric function and g(z) =
D; gprP. Set h(z) = @D, hya? = f(z) - g(x). Then, with A} ; € F and B} ; €
FtL we have for each ~y

hy = @ (;) Abyie1 95 ©)

Ay =Bl T°(f) = B - C°(f) (10)

ii—j "

mlo= (1) (1)

Proof. Notice that Th. 1 holds for any function f, including symmetric functions.
Computation of A, 3 = B g-T(f) for symmetric functions may be simplified by
collecting all terms of the truth table with the same weight. Therefore, let i := ||
and j := |B] and define [B}]y := €D, —x[By,8la, such that A, 5 = A7, :=
B; ;- T*(f). For j < i we have @, _, () (g) = 4|=k5cacy 1. Counting the
number of choices of the k elements of the support of «, we find that the above
sum equals (,Z:JJ) The proof of A7 ; = B}, - C*(f) is similar. ad

5.2 Determining the Existence of Solutions

Given a symmetric function f, the existence of g and h with corresponding
degrees can be determined by an adapted version of Alg. 2 (which will be referred
as Alg. 2°): step 7 is omitted, and step 8 is replaced by A « A7 ;. The discussion
of this slightly modified algorithm is similar to Sect. 4.2. However, computation
of A7 ; requires only n + 1 evaluations of the function f, which can be neglected
in terms of complexity. Consequently, time complexity to set up equations is
only about O(E?), and overall complexity of Alg. 2° becomes O(E?).

Next, we will derive a method of very low (polynomial) complexity to deter-
mine the existence of g and h of low degree for a symmetric function f, but with

160 F. Armknecht et al.

the price that the method uses only sufficient conditions (i.e. some solutions
may be lost). More precisely, we constrict ourselves to homogeneous functions
g of degree e (i.e. g contains monomials of degree e only), and Eq. 9 becomes
hy = A‘F’YLe.@lBl:.e (g)gg. Remember that hy, = 0 for |v] > d, so th.e homoge-
neous function g is determined by the corresponding system of equations for all
~ with |y| = d + 1,...,n. In this system, the coefficient A‘Igvl’e is constant for

(I:I) equations. If Afvl . = 0, then all these equations are linearly dependent

(i.e. of type 0 = 0). On the other hand, if Af’yl,e = 1, then a number of (I:I)
additional equations is possibly linearly independent. Consequently, if the sum
of all possibly linearly independent equations for |y| = d + 1,...,n is smaller
than the number of variables (Z)7 then nontrivial homogeneous functions g exist.

This sufficient criterion is formalized by

;A <n) = (n> ' (12)

Given some degree e, the goal is to find the minimum value of d such that Eq. 12
holds. This can be done incrementally, starting from d = n. We formalized Alg. 3
of polynomial complexity O(n?). This algorithm turned out to be very powerful
(but not necessarily optimal) in practice, see Sect. 5.4 for some experimental
results.

Algorithm 3. Determine the degrees of g and h for symmetric f
Input: A symmetric Boolean function f with n input variables.
Output: Degrees of specific homogeneous functions g and h such that fg = h.
1: for e from 0 to [n/2] do
2: Let d < n, number of equations < 0, number of variables « (7).
while number of equations < number of variables and d + 1 > 0 do
Compute A «— A7 ..
Add A- (1) to the number of equations.
d«—d-1.
end while
Output degg = e and degh = d + 1.
end for

For a specified class of symmetric Boolean functions f, it is desirable to prove
some general statements concerning the degrees of g and h for any number of
input variables n. In the next section, we apply technique based on Alg. 3 in
order to prove a theorem for the class of majority functions.

5.3 Fast Algebraic Attacks on the Majority Function

We denote by f the symmetric Boolean majority function with n > 2 input vari-
ables, defined by f°(i) :=0if i < |n/2| and f*(i) := 1 otherwise. For example,
T5(f) :==(0,0,1) for n =2, and T*(f) := (0,0,1,1) for n = 3. The algebraic de-
gree of this function is 21°2") . In [7] and [17], it could be proven independently

Efficient Computation of Algebraic Immunity 161

that f has maximum algebraic immunity?®. However, in the following theorem, we
disclose the properties of f (and related functions) with respect to fast algebraic
attacks.

Theorem 2. Let f be the majority function with any n > 2 input variables.
Then there exist Boolean functions g and h such that fg = h, where d := degh =
[n/2] +1 and e := deg g = d— 27, and where j € NY is mazimum so that e > 0.

Proof. According to Eq. 9 for symmetric functions, we set up a system of equa-
tions in the coefficients of g only. The coefficients A7 ; of Eq. 10 have a sim-

ple form in the case of the majority function, namely A7, = ®k2d (;C:JJ) =
Brza (i21) +Brza (0151 = (T00) +2@2a (0551 = (GZ20) fori > d.
Additionally, we assume that g is homogeneous of degree e := d — 27 where j is
chosen maximum such that e > 1. According to Lucas’ theorem, we find A7, . =
0 for 1 < i < d — e. Consequently, only equations with |y| = 2d —e,...,n may
impose conditions on the coefficients gg. As we can show that Zf;& (") < ("),

1 e
the sufficient criterion (12) is satisfied, and nontrivial solutions exist. O

Algebraic and fast algebraic attacks are invariant with regard to binary affine
transformations in the input variables. Consequently, Th. 2 is valid for all Boolean
functions which are derived from the majority function by means of affine trans-
formations. We notice that such a class of functions was proposed in a recent
paper, discussing design principles of stream ciphers [5, 6].

5.4 Experimental Results

Application of Alg. 2% reveals that Th. 2 is optimal for the majority function
where d = |n/2] + 1 (verification for n = 5,6,...,16). An explicit homogeneous
function g can be constructed according to g(x) = [];_; (w21 +x2;). We verified
that Alg. 3 can discover the solutions of Th. 2.

In [7], a large pool of symmetric Boolean functions with maximum algebraic
immunity is presented (defined for n even). One of these functions is the ma-
jority function, whereas the other functions are nonlinear transformations of
the majority function. Application of Alg. 3 brings out that Th. 2 is valid for
all functions f (verification for n = 6,8,...,16). For some functions f, Alg. 3
finds better solutions than predicted by Th. 2 (e.g. for T*(f) := (0,0,0,1,1,0,1)
where d = 3 and e = 1), which means that Th. 2 is not optimal for all sym-
metric functions. All solutions found by Alg. 3 can be constructed according to
the above equation. Furthermore, Alg. 2° finds a few solutions which are (pos-
sibly) better than predicted by Alg. 3 (e.g. for T*(f) := (0,0,0,1,1,1,0) where
d = 3 and e = 2), which means that Alg. 3 is not optimal for all symmetric
functions.

3 Notice that for n odd, it is verified in [17] up to n = 11 that the majority function
is the only symmetric Boolean function with maximum AZ.

162 F. Armknecht et al.
6 Conclusions

In this paper, several efficient algorithms have been derived for assessing resis-
tance of LFSR-based stream ciphers against conventional as well as fast algebraic
attacks. This resistance is directly linked to the Boolean output function used.
In many recent proposals, the number of inputs for this function is about 20
or larger. For such input sizes, verification of immunity against (fast) algebraic
attacks by existing algorithms is infeasible. Due to improved efficiency of our
algorithms, provable resistance of these stream ciphers against conventional and
fast algebraic attacks has become amenable. Our algorithms have been applied
to various classes of Boolean functions. In one direction the algebraic immunity
of two families of Boolean power functions, the inverse functions and Kasami
type functions, have been determined. For the first time, the algebraic immunity
AZ of a highly nonlinear function with 20 variables is computed to be as large
as AT = 9. In another direction, our algorithms have been applied to demon-
strate that large classes of Boolean functions with optimal algebraic immunity
are very vulnerable to fast algebraic attacks. This applies in particular to classes
of symmetric functions including the majority functions.

Acknowledgments

The first author has been supported by grant Kr 1521/7-2 of the DFG (German
Research Foundation). The fourth and fifth author are supported in part by
grant 5005-67322 of NCCR-MICS (a center of the Swiss National Science Foun-
dation). The fifth author also receives partial funding through GEBERT RUF
STIFTUNG. We would like to thank Subhamoy Maitra for valuable discussions.

References

1. F. Armknecht, and G. Ars. Introducing a New Variant of Fast Algebraic Attacks
and Minimizing Their Successive Data Complexity. In Progress in Cryptology -
Mycrypt 2005, LNCS 3715, pages 16-32. Springer Verlag, 2005.

2. F. Armknecht. Algebraic Attacks and Annihilators. In WEWoRC 2005, volume
P-74 of LNI, pages 13—21. Gesellschaft fiir Informatik, 2005.

3. F. Armknecht. Improving Fast Algebraic Attacks. In Fast Software Encryption
2004, LNCS 3017, pages 65-82. Springer Verlag, 2004.

4. G. Ars. Application des Bases de Grébner a la Cryptographie. Theése de I’Université
de Rennes, 2005.

5. A. Braeken, and J. Lano. On the (Im)Possibility of Practical and Secure Nonlinear
Filters and Combiners. In Selected Areas in Cryptography - SAC 2005, LNCS 3897,
pages 159-174. Springer Verlag, 2006.

6. A. Braeken, J. Lano, N. Mentens, B. Preneel, and I. Verbauwhede. SFINKS:
A Synchronous Stream Cipher for Restricted Hardware Environments. In eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/026. Available at http://
WWW.eCrypt.eu.org/stream.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Efficient Computation of Algebraic Immunity 163

. A. Braeken, and B. Preneel. On the Algebraic Immunity of Symmetric Boolean

Functions. In Progress in Cryptology - INDOCRYPT 2005, LNCS 3797, pages
35—48. Springer Verlag, 2005.

. P. Camion, C. Carlet, P. Charpin, and N. Sendrier. On Correlation-Immune Func-

tions. In Advances in Cryptology - CRYPTO 1991, LNCS 576, pages 86-100.
Springer Verlag, 1991.

. A. Canteaut, and M. Videau. Symmetric Boolean Functions. In IEEE Transactions

on Information Theory, volume 51/8, pages 2791-2811, 2005.

C. Carlet, and P. Gaborit. On the Construction of Boolean Functions with a
Good Algebraic Immunity. In Boolean Functions: Cryptography and Applications
- BFCA, 2005.

N. Courtois. Cryptanalysis of SFINKS. To appear in Information Security and
Cryptology - ICISC, 2005.

N. Courtois, and W. Meier. Algebraic Attacks on Stream Ciphers with Linear
Feedback. In Advances in Cryptology - EUROCRYPT 2003, LNCS 2656, pages
345-359. Springer Verlag, 2003.

N. Courtois. Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In
Advances in Cryptology - CRYPTO 2003, LNCS 2729, pages 176-194. Springer
Verlag, 2003.

N. Courtois, and J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. In Advances in Cryptology - ASIACRYPT 2002, LNCS
2501, pages 267—287. Springer Verlag, 2002.

D. K. Dalai, K. C. Gupta, and S. Maitra. Cryptographically Significant Boolean
Functions: Construction and Analysis in Terms of Algebraic Immunity. In Fast
Software Encryption 2005, LNCS 3557, pages 98—-111. Springer Verlag, 2005.

D. K. Dalai, K. C. Gupta, and S. Maitra. Notion of Algebraic Immunity and its
Evaluation related to Fast Algebraic Attacks. In Second International Workshop
on Boolean Function Cryptography and Applications, 2006.

D. K. Dalai, S. Maitra, and S. Sarkar. Basic Theory in Construction of Boolean
Functions with Maximum Possible Annihilator Immunity. To appear in Design,
Codes and Cryptography. Springer Verlag, 2006.

N. J. Fine. Binomial Coefficients Modulo a Prime. In The American Mathematical
Monthly, volume 54, pages 589-592, 1947.

J.-C. Faugere, and G. Ars. An Algebraic Cryptanalysis of Nonlinear Filter Gener-
ators using Grobner bases. In Rapport de Recherche INRIA, volume 4739, 2003.
P. Hawkes, and G. G. Rose. Rewriting Variables: The Complexity of Fast Algebraic
Attacks on Stream Ciphers. In Advances in Cryptology - CRYPTO 2004, LNCS
3152, pages 390-406. Springer Verlag, 2004.

W. Meier, E. Pasalic, and C. Carlet. Algebraic Attacks and Decomposition of
Boolean Functions. In Advances in Cryptology - EUROCRYPT 2004, LNCS 3027,
pages 474-491. Springer Verlag, 2004.

W. Meier, and O. Staffelbach. Nonlinearity Criteria for Cryptographic Func-
tions. In Advances in Cryptology - EUROCRYPT 1989, LNCS 434, pages 549-562.
Springer Verlag, 1990.

B. Mourrain, and O. Ruatta. Relations Between Roots and Coefficients, Interpola-
tion and Application to System Solving. In J. Symb. Comput., volume 33/5, pages
679-699, 2002.

Y. Nawaz, G. Gong, and K. Gupta. Upper Bounds on Algebraic Immunity of
Power Functions. To appear in Fast Software Encryption 2006. Springer Verlag,
2006.

164 F. Armknecht et al.

25. P. J. Olver. On Multivariate Interpolation. In Stud. Appl. Math., volume 116,
pages 201-240, 2006.

26. T. Siegenthaler. Correlation-Immunity of Nonlinear Combining Functions for Cryp-
tographic Applications. In IEEE Transactions on Information Theory, volume
30/5, pages 776-780, 1984.

27. T. Siegenthaler. Decrypting a Class of Stream Ciphers Using Ciphertext Only. In
IEEE Transactions on Computer, volume 34/1, pages 81-85, 1985.

VSH, an Efficient and Provable
Collision-Resistant Hash Function

Scott Contini', Arjen K. Lenstra?, and Ron Steinfeld!

! Department of Computing, Macquarie University, NSW 2109, Australia
2 EPFL IC LACAL, INJ 330, Station 14, 1015-Lausanne, Switzerland

Abstract. We introduce VSH, very smooth hash, a new S-bit hash func-
tion that is provably collision-resistant assuming the hardness of finding
nontrivial modular square roots of very smooth numbers modulo an S-
bit composite. By very smooth, we mean that the smoothness bound is
some fixed polynomial function of S. We argue that finding collisions for
VSH has the same asymptotic complexity as factoring using the Number
Field Sieve factoring algorithm, i.e., subexponential in S.

VSH is theoretically pleasing because it requires just a single multi-
plication modulo the S-bit composite per £2(S) message-bits (as opposed
to O(log S) message-bits for previous provably secure hashes). It is rel-
atively practical. A preliminary implementation on a 1GHz Pentium IIT
processor that achieves collision resistance at least equivalent to the dif-
ficulty of factoring a 1024-bit RSA modulus, runs at 1.1 MegaByte per
second, with a moderate slowdown to 0.7MB/s for 2048-bit RSA security.

VSH can be used to build a fast, provably secure randomised trapdoor
hash function, which can be applied to speed up provably secure signa-
ture schemes (such as Cramer-Shoup) and designated-verifier signatures.

Keywords: hashing, provable reducibility, integer factoring.

1 Introduction

Current collision-resistant hash algorithms that have provable security reduc-
tions are too inefficient to be used in practice. One example [17,20] that is
provably reducible from integer factorisation is of the form z™ mod n where m
is the message, n a supposedly hard to factor composite, and x is some pre-
specified base value. A collision z™ = 2™ mod n reveals a multiple m — m’ of
the order of (which in itself divides ¢(n)). Such information can be used to
factor n in polynomial time assuming certain properties of x.

The above algorithm is quite inefficient because it requires on average 1.5
multiplications modulo n per message-bit. Improved provable algorithms ex-
ist [7] which require a multiplication per O(loglogn) message-bits, but beyond
that it seems that so far all attempts to gain efficiency came at the cost of losing
provability (see also [1]). We propose a hash algorithm that uses a single multi-
plication per f2(logn) message-bits. It uses RSA-type arithmetic, obviating the
need for completely separate hash function code such as SHA-1. Our algorithm
may therefore be useful in embedded environments where code space is limited.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 165-182, 2006.
© International Association for Cryptologic Research 2006

166 S. Contini, A.K. Lenstra, and R. Steinfeld

We say that an integer is wvery smooth if its prime factors are bounded by
(logm)© for a fixed constant c. We use VSH, for very smooth hash, to refer to
our new hash because finding a collision (i.e., strong collision resistance) for
VSH is provably as difficult as finding a nontrivial modular square root of a
very smooth number modulo n. We show that the latter problem, which we call
VSSR, is connected to integer factorisation, and that it is reasonable to believe
that VSSR is hard as well (until quantum computers are built). We emphasize
that VSH is ‘only’ collision-resistant and not suitable as a substitute for a random
oracle.

Given the factorisation of the VSH-modulus, collisions can be created (cf.
trapdoor hashes in [20]). Therefore, for wide-spread application of a single VSH-
modulus one has to rely on a trusted party to generate the modulus (and not to
create collisions). Or one could use [2] to generate a modulus with knowledge of
its factorisation shared among a group of authorities. For a one time computation
the overhead may be acceptable. If each party would have it own VSH-modulus,
the repudiation concerns are the same as those concerning regular RSA.

On the positive side, we show how VSH can be used to build a provably secure
randomised trapdoor hash function which requires only about 4 modular multi-
plications to evaluate on fixed-length messages of length k < log, n bits (com-
pared to the fastest construction in [20], which requires about k£ multiplications).
Randomised trapdoor hash functions are used in signature schemes to achieve
provable security against adaptive chosen message attack [20], and in designated-
verifier signature schemes to achieve privacy [11,21]. Our function can replace
the trapdoor function used in the Cramer-Shoup signature scheme [6], maintain-
ing its provable security while speeding up verification time by about 50%.

We also present a variant of VSH using a prime modulus p (with no trapdoor),
which has about the same efficiency and is provably collision-resistant assuming
the hardness of finding discrete logarithms of very smooth numbers modulo p.

Related Work. Previous hash functions with collision resistance provably related
to factoring have lower efficiency than VSH. The 2" mod n function mentioned
above appeared in [17,20]. A collision-resistant hash function based on a claw
free permutation pair (where claw finding is provably as hard as factoring an
RSA modulus) was proposed in [9]—this function requires 1 squaring per bit
processed. In [7] the construction is generalised to use families of r > 2 claw free
permutations, such that log,(r) bits can be processed per permutation evalu-
ation. Two factoring based constructions are presented, which require 2 multi-
plications per permutation evaluation. In the first construction the modulus n
has 1 + log,(r) prime factors and thus becomes impractical already for small
log,(r). The second one uses a regular RSA modulus, but requires publishing r
random quadratic residues modulo n. This becomes prohibitive too for relatively
small log,(r); as a result the construction requires a multiplication modulo an
S-bit RSA modulus n per O(logS) message-bits while consuming polynomial
space (r = O(poly(S))). The constructions in [1] are more efficient but are only
provably collision-resistant assuming an underlying hash function is modeled as
a random oracle (we make no such assumption).

VSH, an Efficient and Provable Collision-Resistant Hash Function 167

Section 2 introduces VSSR. VSH and its variants are presented in Section 3.
Section 4 describes a VSH-based randomised trapdoor hash function which
speeds up the Cramer-Shoup signature scheme. Section 5 concludes with im-
plementation results.

2 Security Definitions

Notation. Throughout this paper, let ¢ > 0 be a fixed constant and let n be
a hard to factor S-bit composite for an integer S > 0. The ring of integers
modulo n is denoted Z,,, and its elements are represented by {0,1,...,n—1} or
{-n+1,-n+2,...,0}. It will be clear from the context which representation
is being used. The ith prime is denoted p;: p1 =2, p2 =3, ..., and pg = —1. An
integer is pi-smooth if all its prime factors are < pi. We use

L[n, a] = el@to)logn)!/* (loglogn)*/*

for constant o > 0 and n — oo, and where the logarithms are natural.

Definition 1. An integer b is a very smooth quadratic residue modulo n if the
largest prime in b’s factorisation is at most (logn)® and there exists an integer
x such that b = 22 mod n. The integer is said to be a modular square oot of b.

Definition 2. An integer x is said to be a trivial modular square root of an
integer b if b = 22, i.e. b is a perfect square and x is the integer square root of b.

Trivial modular square roots have no relation to the modulus n. Such identities
are easy to create, and therefore they are not allowed in the security reduction. A
sufficient condition for a very smooth integer b representing a quadratic residue
not to have a trivial modular square root is having some prime p such that p
divides b but p? does not. Another sufficient condition is that b is negative.
Our new hardness assumption is that it is difficult to find a nontrivial modular
square root of a very smooth quadratic residue modulo n. Before formulating
our assumption, we give some relevant background on integer factorisation.

Background. General purpose integer factoring algorithms are used for the
security evaluation of RSA, since they do not take advantage of properties of
the factors. They all work by constructing nontrivial congruent squares modulo n
since such squares can be used to factor n: if 2,y € Z are such that 22 = 32 mod n
and x #Z +y mod n, then ged(xz £y, n) are proper factors of n. To construct such
x,y a common strategy uses so-called relations. An example of a relation would
be an identity of the form

2 = H pf”(v) mod 7,

0<i<u

where u is some fixed integer, v € Z, and (e;(v))¥%, is a (v + 1)-dimensional
integer vector. Given u + 1 + ¢ relations, at least ¢ linearly independent depen-
dencies modulo 2 among the u + 1 + ¢ vectors (e;(v));—, can be found using

168 S. Contini, A.K. Lenstra, and R. Steinfeld

linear algebra. Each such dependency corresponds to a product of v2-values that
equals a product modulo n of p;’s with all even exponents, and thus a solution
to 22 = y? mod n. If z # 4y mod n, then it leads to a proper factor of n. A
relation with all even exponents e;(v) leads to a pair z, y right away, which has,
in our experience with practical factoring algorithms, never happened unless n
is very small. It may safely be assumed that for each relation found at least one
of the ¢;(v)’s is odd—actually most that are non-zero will be equal to 1.

For any u, relations are easily computed if n’s factorisation is known, since
square roots modulo primes can be computed efficiently and the results can be
assembled via the Chinese Remainder Theorem. If the factorisation is unknown,
however, relations in practical factoring algorithms are found by a determinis-
tic process that depends on the factoring algorithm used. It is sufficiently un-
predictable that the resulting x,y may be assumed to be random solutions to
z? = y? mod n, implying that the condition x # £y mod n holds for at least half
of the dependencies. Despite the lack of a rigorous proof, this heuristic argument
has not failed us yet. A few dependencies usually suffice to factor n.

The expected relation collection runtime is proportional to the product of u
(approximately the number of relations one needs) and the inverse of the smooth-
ness probability of the numbers that one hopes to be p,-smooth, since this prob-
ability is indicative for the efficiency of the collection process. For the fastest
factoring algorithms published so far, the Number Field Sieve (NFS, cf. [13,5]),
the overall expected runtime (including the linear algebra) is minimised—based
on loose heuristic grounds—when, asymptotically for n — oo, v behaves as
L[n,0.96...]. For this u, the running time is L[n,1.923...], i.e., the square of u.

With the current state of the art of integer factorisation, one cannot expect
that, for any value of u, a relation can be found faster than L[n,1.923...]/u
on average, asymptotically for n — oo. For wu-values much smaller than the
optimum, the actual time to find a relation will be considerably larger (cf. remark
below and [14]). For u ~ (logn)®, it is conservatively estimated that finding a
relation requires runtime at least

L[n,1.923..]
(logn)®
asymptotically for n — oo, because the denominator gets absorbed in the numer-
ator’s o(1). This observation that finding relations for very small u (i.e., u’s that
are bounded by a polynomial function of logn) can be expected to be asymp-
totically as hard as factoring n, is the basis for our new hardness assumption.

Before formulating it, we present two ways to use the hardness estimate
L[n,1.923...]/u for small u in practice. One way is to use the asymptotics and
assume that finding a relation is as hard as factoring n. A more conservative
approach incorporates the division by v in the estimate. In theory this is a futile
exercise because, as argued, a polynomially bounded u disappears in the o(1) for
n — oo. In practice, however, n does not go to infinity but actual values have
to be dealt with. If n’ is a hard to factor integer for which logn and logn’ are
relatively close, then it is widely accepted that the ratio of the NFS-factoring
runtimes for n and n’ approximates L[n,1.923...]/L[n’,1.923...] where the o(1)’s

= L[n,1.923..],

VSH, an Efficient and Provable Collision-Resistant Hash Function 169

are dropped. To assess the hardness estimate L[n,1.923...]/u for very small u,
one therefore finds the least integer S’ for which, after dropping the o(1)’s,

L% 1923.] > H 1&923“']7 (1)
and assumes that finding a relation for this n and u may be expected to be (at
least) as hard as NFS-factoring a hard to factor S’-bit integer. Note that S” will
be less than S, the length of n. Examples of matching S, S’, u values are given
in Section 5.

This factoring background provides the proper context for our new problem
and its hardness assumption.

Definition 3. (VSSR: Very Smooth number nontrivial modular Square Root)
Let n be the product of two unknown primes of approximately the same size and
let k < (logn)¢. VSSR is the following problem: Given n, find x € Z} such that

k ; .
z? = [[i o py" mod n and at least one of e, ..., e is odd.

VSSR Assumption. The VSSR assumption is that there is no probabilistic
polynomial (in logn) time algorithm which solves VSSR with non-negligible
probability (the probability is taken over the random choice of the factors of n
and the random coins of the algorithm).

One can contrive moduli where VSSR is not difficult, such as if n is very
close to a perfect square. However, such examples occur with exponentially small
probability assuming the factors of n are chosen randomly, as required. According
to proper security definitions [18], these examples do not even qualify as weak
keys since the time-to-first-solution is slower than factoring, and therefore are
not worthy of further consideration.

The VSSR Assumption is rather weak and useless in practice since it does
not tell us for what size moduli VSSR would be sufficiently hard. This is similar
to the situation in integer factorisation where the hardness assumption does not
suffice to select secure modulus sizes. We therefore make an additional, stronger
assumption that links the hardness of VSSR to the current state of the art in
factoring. It is based on the conservative estimate for the difficulty of finding a
relation for very small u given above.

Computational VSSR Assumption. The computational VSSR assumption
is that solving VSSR is as hard as factoring a hard to factor S’-bit modulus,
where S’ is the least positive integer for which equation (1) holds (where, as
in (1), the o(1)’s in the LJ...]’s are dropped).

Remark. For existing factoring algorithms, the relation collection runtime in-
creases sharply for smoothness bounds that are too low, almost disastrously so if
the bound is taken as absurdly low as in VSSR (cf. [14]). Therefore, the Compu-
tational VSSR Assumption is certainly overly conservative. Just assuming—as
suggested above—that solving VSSR is as hard as factoring n may be more ac-
curate. Nevertheless, the runtime estimates for our new hash function will be
based on the overly conservative Computational VSSR, Assumption.

170 S. Contini, A.K. Lenstra, and R. Steinfeld

Although our analysis is based on the average runtime to find a relation using
the NFS, it is very conservative (i.e., leads to a large n) compared to a more
direct analysis involving the relevant smoothness probability of squares mod-
ulo n. The latter would lead to a hardness estimate for finding even a single
very smooth relation that is more similar to the runtime of the Quadratic Sieve
integer factorisation algorithm, and thereby to much smaller ‘secure’ modulus
sizes (obviously, unless n’s factorisation is known or n has a special form which
it will not have when properly chosen). Thus, we feel more comfortable using
our NFS-based approach.

3 Very Smooth Hash Algorithm

The basic version of VSH follows below. More efficient variants of VSH are
discussed later in this section.

VSH Algorithm. Let k, the block length, be the largest integer such that
Hle pi < n. Let m be an ¢-bit message to be hashed, consisting of bits my, ...,
my, and assume ¢ < 2¥. To compute the hash of m perform steps 1 through 5:

1. Let zg = 1.

2. Let £ = [£] (the number of blocks). Let m; = 0 for £ < i < Lk (padding).

3. Let ¢ = Zleﬁﬂi*l with ¢; € {0,1} be the binary representation of the
message length ¢ and define mgpy; = ¢; for 1 <i < k.

4. For j =0,1,...,L in succession compute

k
—
Tjt1 = a7 X Hpi I+ mod n.
i=1

5. Return zz41.

Message Length. The message length does not need to be known in advance,
which is useful for applications involving streaming data. In an earlier version
which appeared on eprint [4], the message length was prepended, which may
prove inconvenient and also required usage of pii1. If one uses the common
method of appending a single 1 bit prior to zero-padding the final block, collisions
can easily be created for the above version of VSH.

Compression Function H. VSH applies the compression function H(x,m) :
Z: x {0,1}% — Z7 with H(z,m) = z2[[_, p mod n, and applies a variant
of the Merkle-Damgard transformation [15,8] to extend H to arbitrarily long
inputs. We comment on why this works in Section 3.1.

1024-Bit n. For 1024-bit n, the value for £ would be 131. The requirement
¢ < 2F is therefore not a problem in any real application, and most of the
bits ¢; will be zero. The Computational VSSR Assumption with S = 1024 and
k = u = 131 leads to S’ = 840. The security level obtained by VSH using

VSH, an Efficient and Provable Collision-Resistant Hash Function 171

1024-bit n is therefore at least the security level obtained by 840-bit RSA and,
given recent hash developments, by SHA-1.

Efficiency. Because ngigK pi is asymptotically proportional to e(!+o(1)Klog K

for K — oo, the k used in the basic version of VSH is proportional to log’ﬁ) gn. It

follows that the product Hi;l p;7* " can be computed in time O((log n)?) using
straightforward multiplication without modular reduction. Therefore the cost of
each iteration is less than the cost of 3 modular multiplications. Since k bits
are processed per iteration, the basic version of VSH requires a single modular

multiplication per Q(log’i gn) message-bits, with a small constant in the 2.

Creating Collisions. With e; = Zf:o mj.kHQL—j for 1 < ¢ < k, the value

calculated by the VSH algorithm equals the multi-exponentiation Hi;l Pt mod
n. Given ¢(n) and assuming large enough L, collisions can be generated by
replacing e; by e; +t;¢(n) for any set of i’s with 1 < ¢ < k and positive integers ¢;
(see also VSH-DL below). Thus, parties that know n’s factorisation can create
collisions at will. But collisions of this sort immediately reveal ¢(n) and thereby
n’s factorisation. Creating collisions that cannot immediately be used to factor n
is a harder problem, involving discrete logarithms of very smooth numbers.

To avoid repudiation concerns if VSH would be used ‘globally’ with the same
modulus it would be advisable to generate n using the method from [2]. On the
other hand, it is conceivable—and may be desirable—to expand PKIs to allow
one to choose one’s own hash function, rather than using a ‘fixed target’ for all.
In this setting, one cannot allow the owner of a VSH-modulus to claim he did
not sign something by displaying a collision. Especially taking into considera-
tion that the only easy way the user can create a collision would also reveal the
factorisation of n, this would be analogous to somebody using RSA who anony-
mously posts the factorisation of their modulus in order to fraudulently claim
that he did not sign something. Thus, in such a situation the VSH-modulus
should be considered compromised and the user’s certificate should be revoked.

Short Message Inversion. The VSH algorithm described above allows easy
inversion of short and some sparse messages since there may be no wrap-around
modulo n. The attacker first guesses the length, divides the hash modulo n by
the corresponding Hle p; “* " and checks if the resulting value is very smooth.
This type of invertibility may be undesirable for some applications, but others
require just collision resistance (cf. below). See [16] for a related application.

A solution to this invertibility problem that does not affect our proof of secu-
rity (cf. below) is to square the final output enough times to ensure wrap-around
(no more than log, log, n times). Other, more efficient solutions may be possible.
Note that for all hash functions, the hash of extremely sparse or short messages
can always be ‘inverted’ by trial and error.

Undesirable Properties. It is easy to find messages for which the hashes £ and
k' satisfy A = 2#’. Our solution to the invertibility problem addresses this issue as
well. Other similar possibly undesirable properties can be constructed. We again

172 S. Contini, A.K. Lenstra, and R. Steinfeld

emphasize that VSH is not intended to model a random oracle, and therefore
cannot be blindly substituted as is into constructions that depend upon them
(such as RSA signatures and some MAC constructions). We remind the reader
that random oracles do not exist in the real world, and therefore relying on them
too much is not recommended. On the other hand, entirely provable solutions
do exist which require only collision resistance: for example, see Section 4.
Having stressed upfront in the last three remarks the disadvantages of VSH,
we turn to its most attractive property, namely its provable collision resistance.

3.1 Security Proof for VSH

We prove that VSH is (strongly) collision-resistant. Using proper security notions
[19], (strong) collision resistance also implies second preimage resistance.

Theorem 1. Finding a collision in VSH is as hard as solving VSSR (i.e., VSH
is collision-resistant under the assumptions from Section 2).

Proof. We show that different colliding messages m and m’ lead to a solution of
VSSR. Let 2/ denote the x_ values in the VSH algorithm applied to m’ and let
¢,L and ¢, L be the bitlengths and number of blocks of m and m/, respectively.
Since m and m’ collide, m # m' and xgq1 = 2/ ;.

First consider the case of £ = ¢'. Let m[j] denote m’s jth k-bit block, m[j] =
(mj.k4:)F 1, and let t < £ be the largest index such that (x;, m[t]) # (z}, m/[t])
but (z;, m[j]) = (2, m'[j]) for t < j < L+ 1. Then,

k

k

(oo x T o0+ = @) x [T+ mod n . 2)
i=1 i=1

Let A= {i:mpppi # My py 1 <i<k}and Ayg={i € {1,...,k}:mppp; =

1 and mj,,_; = 0}. Because all factors in Equation (2) are invertible modulo n,

it is equivalent to

H p;imodn . (3)

€A

[(l“t/l‘i) X H pi}

i€Aq0

If A # 0, Equation (3) solves VSSR. If A = {), then (z;)? = (x})? mod n and
t > 1 (since m # m’ and using the definition of ¢). With x; # £z, mod n VSSR
can be solved by factoring n. If z; = £z} mod n then x; = —a} mod n, since
A = () implies (by definition of ¢) that z; # z}. But z; = —z} mod n leads to
(w4—1/x}_1)? being congruent to —1 times a very smooth number and thus solves
VSSR.

Now consider the case ¢ # ('. Since x4y = x4, we have (zg/a),)? =
Hi;l pf;%i mod n. Since |, — ¢;| =1 for at least one i, VSSR is solved using a
transformation as in Equation (3). O

Why Merkle-Damgard Works. VSH applies a variant of the Merkle-Damgard
transformation [15, 8] to hash arbitrary length messages using the compression

VSH, an Efficient and Provable Collision-Resistant Hash Function 173

function H : Z x {0,1}¥ — Z*. The proof in [8] shows that a sufficient condition
for a hash function to be collision-resistant is that its compression function H
is collision-resistant, i.e. it is hard to find any (z,m) # («',m’) with H(x,m) =
H(2',m'). However, our compression function H(x,m) = z? Hle p;" mod n is
not strictly collision-resistant (H (—z mod n,m) = H(z,m)), and yet we proved
that H is still sufficiently strong to make VSH collision-resistant. Therefore, one
may ask whether we can strengthen the result in [8] to state explicitly the se-
curity properties of a compression function (which are weaker than full collision
resistance) that our compression function satisfies and that are still sufficient
in general to make the resulting hash function collision-resistant. Indeed, these
conditions can be readily generalised from our proof of Theorem 1, so we only
state them here:

(1) Collision Resistance in Second input: It is hard to find (z,m),(z',m’) €
Z¥ x {0,1}* with m # m/ such that H(z,m) = H(2',m').

(2) Preimage Resistance for a collision in first input: It is hard to find (z,m) #
(z',m') € Z¥ x {0,1}¥ and m* € {0,1}* such that H(y,m*) = H(y',m"),
where y = H(z,m), vy’ = H(z',m') and y # y'.

The VSH compression function H satisfies these properties, under the VSSR
Assumption.

3.2 Example: A Related Algorithm That Can Be Broken

To emphasize the importance of the nontrivialness, consider a hash function
that works similarly to VSH, except breaks the message into blocks 71, 7o, ...
of K > 1 bits and uses the compression function z;11 = 7 x 273+ mod n.
Because K > 1 collisions can simply be created. For example, for any e with
0 < e < 2K~ the message blocks r; = e and 7y = 2e collide with r] = 2e and
rh = 0. The colliding values are (2¢)222¢ and (22¢)?2°, but this does not lead
to a solution of VSSR or a chance to factor n. Such trivial relations are useless,
and the security of this hash algorithm is not based on a hard problem. The fix
is to use the costlier compression function =41 = ax?K x 27+ but that results
in the same function ™ mod n from [17, 20].

3.3 Combining VSH and RSA

Since the output length of VSH is the length of a secure RSA modulus (thus
1024-2048 bits), VSH seems quite suitable in practice for constructing ‘hash-
then-sign” RSA signatures for arbitrarily long messages. However, such a sig-
nature scheme must be designed carefully to ensure its security. To illustrate a
naive insecure scheme, let (n, €) be the signer’s public RSA key, where the modu-
lus n is used for both signing and hashing. The signing function o : {0,1}* — Z,
is o(m) = VSH,(m)"¢ mod n, where VSH, : {0,1}* — Z, is VSH with mod-
ulus n. For a k-bit message m = (mq,...,my) € {0,1}*, the signature is thus

o(m) = (k Hle p2™)1¢ mod n, for a & that is the same for all k-bit messages.

174 S. Contini, A.K. Lenstra, and R. Steinfeld

This scheme is insecure under the following chosen message attack. After ob-
taining signatures on three k-bit messages: so = ¢((0,0,0,...,0)) = /¢ mod
n, s1 = o((1,0,0,...,0)) = (kp?)Y/¢modn, and sy = o((0,1,0,...,0)) =
(Kp%)l/e mod n, the attacker easily computes the signature 5222 mod n on the
new k-bit forgery message (1,1,0,...,0). It is easy to see that k + 1 signatures
on k + 1 properly chosen messages suffice to sign any k-bit message.

To avoid such attacks, we suggest a more theoretically sound design approach
for using VSH with ‘hash-then-sign’ RSA signatures that does not rely on any
property of VSH beyond the collision resistance which it was designed to achieve:

Step 1. Let 72 be an (S + 1)-bit RSA modulus, with # and the S-bit VSH
modulus n chosen independently at random. So, 7 > 2. Specify a one-to-one
one-way encoding function f : {0,1}° — {0,1}°, and define the short-message
(S-bit) RSA signature scheme with signing function oz (m) = (f(m))/¢ mod
fi. The function f is chosen such that the short-message scheme with signing
function oy is existentially unforgeable under chosen message attack. In the
standard model no provable techniques are known to find f, but since f is one-
to-one, there are no collision resistance issues to consider when designing f.
Step 2. With (7, n, e) as the signer’s public key, the signature scheme for signing
arbitrary length messages is now constructed with signing function oy n(m) =
on(VSH,(m)). It is easy to prove that the scheme with signing function oy, is
existentially unforgeable under chosen message attack, assuming that the scheme
with signing function oy is and that V.SH,, is collision-resistant. We emphasize
that the proof no longer holds if 7 = n: in order to make the proof work in
that case, one needs the stronger assumption that V.SH,, is collision-resistant
even given access to a signing oracle o,,. However, it is worth remarking that if
the function f is modeled as a random oracle, then the proof of security works
(under the RSA and VSSR assumptions) even with a shared modulus (7 = n).

3.4 Variants of VSH

Cubing Instead of Squaring. Let H' : Z* x {0,1}* — Z* with H'(z,m) =
x> Hle p;"* mod n be a compression function that replaces the squaring in H
by a cubing. If ged(3, ¢(n)) = 1 then thanks to the injectivity of the RSA cubing
map modulo n, the function H' is collision-resistant, assuming the difficulty of
computing a modular cube root of a very smooth cube-free integer of the form
Hlepfi # 1, where e; € {0,1,2} for all i. This problem is related to RSA
inversion, and is also conjectured to be hard. Although H’ requires about 4
modular multiplications per k message-bits (compared to 3 for H), it has the
interesting property that H' itself is collision-resistant, while this is not quite
the case for H (because 22 [[; pi™ = (—2)? [[, pI"* mod n).

7

Increasing the Number of Small Primes. A speed-up is obtained by al-
lowing the use of larger k£ than the largest one for which Hle pi < n. This
does not affect the proof of security and reduction to VSSR, as long as k is still
polynomially bounded in logn. The Computational VSSR Assumption implies
that a larger modulus n has to be used to maintain the same level of security.

VSH, an Efficient and Provable Collision-Resistant Hash Function 175

Furthermore, the intermediate products in Step 4 of the VSH algorithm may
get larger than n and may thus have to be reduced modulo n every so often.
Nevertheless, the resulting smaller £ may outweigh these disadvantages.

Precomputing Products of Primes. An implementation speed-up may be
obtained by precomputing products of primes. Let b > 1 be a small integer,
and assume that k = kb for some integer k. For i = 1,2,...,k compute the
20 products over all subsets of the set of b primes {p(i_l)b+17p(i_1)b+27 N
resulting per i in 2° moderately sized values v; ; for 0 < ¢ < 2°. The k message-
bits per iteration of VSH are now split into k chunks m[0], m[1], ..., m[k — 1] of
b bits each, interpreted as non-negative integers < 2. The usual product is then
calculated as Hle Vimli—1]- Lhis has no effect on the number of iterations or
the modulus size to be used to achieve a certain level of security.

Fast VSH. Redefining the above v;; as p;_1)ov4441 and using i = 1,2,...,k
instead of i = 1,2,..., k, the block length increases from k to bk, the number of
iterations is reduced from [;] to [}], and the calculation in Step 4 of the VSH
algorithm becomes

k

2
Tjt1 = T5 X Hp(i—1)2b+m[jbk+ifl]+1 mod 7,
i=1

where m|r] is the rth b-bit chunk of the message, with 0 < m[r] < 2°. Because
the number of small primes increases from k to k2%, a larger modulus would,
conservatively, have to be used to maintain the same level of security. But this
change does not affect the proof of security and, as shown in the analysis below
and the runtime examples in the final section, it is clearly advantageous.

Analysis of Fast VSH. Since pg_1)ob fm[jpk+i—1]4+1 < Piov, each intermedi-
ate product in the compression function for Fast VSH will be less than n if

HZ 1 Diov < m. If k is maximal such that H(k+1 pi < (211)2b7 then

(k+1)2°

2"k
H Pi = HHpinth < (2n)%,

t=14=0

so that Hf:opi2b+1 S 2n. With Diob < Pigb 1 it follows that Hle Diob < n.

Thus, for (k + 1)2° proportional to 2182 and kto 198G 1 the
) prop log(2P log(2n)) log (2P log(2n)))
cost of Fast VSH is one modular multiplication per {2(bk) message-bits, with
blog(2n)
log (2% log(2n))
log(2n), it follows that bk is proportional to log n and thus that Fast VSH requires
a single modular multiplication per {2(log n) message-bits. It also follows that the
number of small primes k2 is polynomially bounded in logn so that, with S’ the

overly conservative RSA security level obtained according to the Computational

bk proportional to — b. Selecting 2° as any fixed positive power of

176 S. Contini, A.K. Lenstra, and R. Steinfeld

VSSR Assumption, Fast VSH requires a single modular multiplication per £2(S")
message-bits.

Zero Chunks in Fast VSH. A negligible speed-up and tiny saving in the
number of primes can be obtained in Fast VSH if for a particular b-bit pattern
(such as all zeros) no prime is multiplied in (as was the case in basic VSH).

Fast VSH with Increased Block Length. Fast VSH can be used in a straight-
forward fashion with a larger block length than suggested by the above analysis.
If, for instance, the number of small primes is taken almost w times larger, for
some integer w > 1, the small prime product can be split into w factors each less
than n. Per iteration this results in a single modular squaring, w — 1 modular
multiplications plus the time to build the w products. The best value for w is best
determined experimentally, and will depend on various processor characteristics
(such as cache size to hold a potentially rather large table of primes).

Generating Collisions. For all variants given above knowledge of ¢(n) can be
used to generate collisions, though displaying such a collision is not in the user’s
interest since it would give out a break to the user’s hash function (i.e. it would
be similar to someone giving out the factorisation of their RSA modulus).

VSH-DL, a Discrete Logarithm Variant. We present a discrete logarithm
(DL) variant of VSH that has no trapdoor. Its security depends on the following
problem and its hardness assumption.

Definition 4. (VSDL: Very Smooth number Discrete Log) Let p,q be primes
with p = 2g+ 1 and let k < (logp)¢. VSDL is the following problem: given p,
find integers ey, ea,...,ex such that 2¢* = Hf:pri mod p with |e;| < q for
1=1,2,...,k, and at least one of ey, ea, ..., e is non-zero.

VSDL Assumption. The VSDL assumption is that there is no probabilistic
polynomial (in logp) time algorithm which solves VSDL with non-negligible
probability (the probability is taken over the random choice of the prime p and
the random coins of the algorithm).

A solution to a VSDL instance produces the base 2 DL modulo p of a very
smooth number (the requirements on the exponents e; avoids trivial solutions
in which all exponents are zero modulo ¢). Given k random VSDL solutions,
the base 2 DL of nearly all primes p1,...,pr can be solved with high probabil-
ity by linear algebra modulo ¢. Although computing the DLs of a polynomial
number of small primes is an impressive feat, it does not help to solve arbitrary
DL problems. To solve the DL of an arbitrary group element with respect to
some generator one could include both generator and element among the p;, but
there is no guarantee that solutions to VSDL contain the appropriate elements.
Nevertheless, there is a strong connection between the hardness of VSDL and
the hardness of computing DLs modulo p, which is reminiscent of, but seems to
be somewhat weaker than, the connection between VSSR and factorisation. See
also [3]. As was the case for VSSR, moduli for which VSDL is not difficult are
easily constructed and not worthy of further consideration.

VSH, an Efficient and Provable Collision-Resistant Hash Function 177

Let p be an S-bit prime of the form 2¢+ 1 for prime g, let k be a fixed integer
length (number of small primes, typically k = S/log S), and let £ < S — 2. We
define a VSH-DL compression function Hpy, : {0,1}*¥ — {0,1}°, where m is
an Lk-bit message consisting of bits mi, ms..., mek:

k M.kt

— Setzp=1.Forj=0,1,...,L—1, compute zj41 = :r? x [y p; mod p.
— Return Hpr(m) = x interpreted as a value in {0,1}°.

If e; = Zf:_ol mj.;c+i2£’j*1 for 1 <4 <k, then Hpr(m) = Hlepfi mod p.

A collision m,m’ € {0,1}** with m # m’ therefore implies that Hle pst =

K3
k ; L£—1 —j— . .
[1;_, p;* mod p, where ¢, = > i—0 m;,k+i2£ 3= and m/’ consists of the bits

e;

m,...,m,. Rearranging this congruence, a solution 261 €1 = Hf:z p?;, mod
p to VSDL follows, because |e} — ;| < 25 <2972 < g for all i and e} —¢; # 0 for
some i since m # m'. Hence the compression function Hpy, is collision-resistant
under the VSDL assumption. We remark that VSH-DL can be viewed as a (more
efficient) special case of the collision-resistant function in [3], which uses random
group elements in place of the small primes p;.

The compression function Hpj uses the same iteration as the basic VSH
algorithm. Hence, for the same modulus length S and number of primes k it has
the same throughput efficiency of a single modular multiplication per about ’;
message-bits. By applying the Merkle-Damgard transformation [15, 8], Hpy, can
be used to hash messages of arbitrary length in blocks of Lk — .S message-bits per
evaluation of Hpy. This leads to a reduction in throughput by a factor of UZ;S
(since only Lk — S of the Lk bits processed in each Hpj evaluation are new
message-bits) relative to factoring based VSH. However, for long messages, this
throughput reduction factor can be made close to 1 by choosing a sufficiently
large block length Lk; indeed, the construction allows block lengths up to Lk =
k(S — 2), and for this choice the throughput reduction factor is 1 — K 5572) ~

1~
1-1~1.

Reducing the Length. A possible drawback of VSH is its relatively large
output length. We are investigating length-reduction possibilities by combining
VSH-DL with elliptic curve, trace, or torus-based methods [10, 12, 22].

4 VSH Randomised Trapdoor Hash and Applications

Let M, R, H be a message, randomiser, and hash space, respectively. A ran-
domised trapdoor hash function [20] Fp, : M x R — H is a collision-resistant
function that can be efficiently evaluated using a public key pk, but for which
certain randomly behaving collisions can be found given a secret trapdoor key sk:

Collision Resistance in Message Input. Given pk, it is hard to find m,m’ €
M and r,r" € R for which m # m’ and Fyi(m,r) = Fpe(m/,r').

Random Trapdoor Collisions. There exists an efficient algorithm that given
trapdoor (sk,pk), m,m’ € M with m # m/, and r € R, finds a randomiser

178 S. Contini, A.K. Lenstra, and R. Steinfeld

r’ € R such that F,p(m,r) = Fpi(m/,7"). Furthermore, if r is chosen uniformly
from R then r’ is uniformly distributed in R.

Randomised trapdoor hash functions have applications in provably strengthen-
ing the security of signature schemes [20], and constructing designated-verifier
proofs/signature schemes [11,21]. The factorisation trapdoor of VSH suggests
that it can be used to build such a function. Here we describe a provably secure
randomised trapdoor hash family which preserves the efficiency of VSH.

Key Generation: Choose two S/2-bit random primes p, g with p = ¢ = 3 mod 4
and S-bit product n. The public key is n with trapdoor key sk = (p,q). Let k

be as in the basic VSH algorithm, M = U?igl{(), 1}, and R = Z*.

Hash Function: Let m € M of length £ < 2% and » € R. Calculate the basic VSH
of m with z¢ replaced by r to compute .41 and output F,(m,r) = 1‘%+1 mod n.

Theorem 2. The above construction satisfies the security requirements for ran-
domised trapdoor hash functions, under the VSSR assumption.

Proof. Collision Resistance in Message Input: The proof follows the same lines
as the proof of Theorem 1 since the value of g and the squaring at the end do
not affect the security reduction.

Random Trapdoor Collisions: Let m,m’ € M with m # m’ and r € R.
Because F,(m,r) = (r2 [[_, p¢)2 mod n, where mpy; = £; and e; =
Zf:o mjpi2577 for 1 < i < k, finding ' € R with F,(m,r) = E,(m/,7')
amounts to finding 7’ such that

k
’
(T,)Qa +2 7“2L+2 ' (Hp?—e;)z mod n
=1

(where mf,, . ; = £; and €] = Zf:o m;,k+i2£l*j for 1 <1i < k), i.e., finding an

(L' 4 2)nd square root modulo n of the right hand side g of the equation for
(r')QL,H. Given the trapdoor key (p, ¢) this is achieved as follows.

Let QR, = {y € Z;, : (}) = () = 1} denote the subgroup of quadratic
residues of Z7 . The choice p = ¢ = 3 mod 4 implies that —1 is a quadratic non-
residue in Z; and Z7, so for each element of R, exactly one of its 4 square
roots in Z? belongs to QR,,. Hence the squaring map on @ R,, permutes QR,, and
given (p, q) it can be efficiently inverted by computing the proper square roots
modulo p and ¢ and combining them by Chinese remaindering. Since g € QR,,,
its (L' + 1)st square root d € QR,, can thus be computed, and ' is then chosen
uniformly at random among the 4 square roots in Z} of d.

If v is uniformly distributed in Z?, then (since each element of QR,, has 4
square roots in Z?) the value 72 mod n is uniformly distributed in QR,,. The
squaring map on @R, permutes QR,, so that g and d are also uniformly dis-
tributed in QR,,. It follows that r’ is uniformly distributed in ZZ. O

Efficiency. For short fixed-length messages with ¢ < k (i.e., 1 block), the mes-
sage length can be omitted, so that F,(m,r) = (r2 Hle p"*)? mod n. Eval-

VSH, an Efficient and Provable Collision-Resistant Hash Function 179

uation requires only about 4 compared to at least &k modular multiplications
required by the trapdoor functions in [20]. On the other hand, the trapdoor
collision-finding algorithm for Fj, is not very fast, requiring a square root mod-
ulo n per message block. This is not a major issue because in many applications
of randomised hash functions, the collision-finding algorithm is only used in the
security proof of a signature scheme rather than in the scheme itself. However,
it reduces the efficiency of the reduction and thus requires slightly increased
security parameters.

‘Inversion’ Trapdoor Property. It follows from the proof of Theorem 2 that
F,, also satisfies the ‘inversion’ trapdoor property [20]. This is stronger than the
trapdoor collision property, and can be used to upgrade a signature scheme’s
resistance against random message attacks to chosen message attacks: Given the
trapdoor key, a random element d € QR,, in the range of F,, and an m € M, it
is easy to find a randomiser r € Z7 such that F,,(m,r) = d and r is uniformly
distributed in Z} when d is uniformly distributed in QR,,.

Application. As an example application, we mention the Cramer-Shoup (CS)
signature scheme [6], which to our knowledge is the most efficient factoring-based
signature scheme provably secure in the standard model (under the strong-RSA
assumption). The CS scheme makes use of an RSA-based randomised trapdoor
hash function to achieve security against adaptive message attacks. Using Fi,
instead cuts the signing and verification costs by about a double exponentiation
each, while preserving the proven security. The modified CS scheme is as follows:
Key Generation: Choose two safe random = S/2-bit primes p, § and two random
/2 S/2 bit primes p, ¢ with p = ¢ = 3 mod 4 that result in S-bit moduli 7 = pg
and n = pq, and choose r,z € QR; at random. Let h : {0,1}% — {0,1}¢ be
a collision-resistant hash function for a security parameter ¢ for which an ¢-bit
(traditional) hash and S-bit RSA offer comparable security (typically £ = 160
when S = 1024). The public key is (z, z,n, i, h) and the secret key is (P, q).
Signing: To sign m € {0, 1}*, choose a random (¢4 1)-bit prime e and a random
r € Z¥ and compute y = (x - 2"In(mr))1/e mod f. The signature is (e, y, 7).
Verifying: To verify message/signature pair (m, (e, y,r)), check that e is an odd
(€ 4 1)-bit integer and that ¢z~ "(Fn(m7) = 2 mod 7.

The cost of verification in the original CS scheme is about two double expo-
nentiations with ¢-bit exponents. The modified scheme requires approximately
one such double exponentiation, so a saving in verification time of about 50%
can be expected. The relative saving in signing time is smaller. However, the
length of the public key is larger than in the original scheme by typically 25%.

Because VSH’s output length S is typically much larger than ¢, VSH cannot
be used for the ¢-bit collision-resistant hash function h above. To avoid the need
for an ad-hoc ¢-bit hash function, h may be dropped and e chosen as an (S + 1)-
bit prime, making the scheme much less efficient. The variant below eliminates
the need for A and maintains almost the computational efficiency of the scheme
above, but has a larger public key and requires some precomputation.

180 S. Contini, A.K. Lenstra, and R. Steinfeld

Key Generation: Let p, @, p, q,n,n be as above, let s = [fl and randomly choose
x,21,.-.,2s € QRy. The public key is (z, 21, ..., zs,n, 1) with secret key (p, 7).

Signing: To sign m € {0,1}*, choose a random (£ + 1)-bit prime e and a random
r € Z, and compute F,(m,r). Interpret F},(m,r) as a value in {0, 1}*¢ (possibly

after padding) consisting of s consecutive ¢-bit blocks F, 1(m,7),. .., Fy s(m,7)
and compute y = (z - [];_; an’ql(m’r))l/e mod 7. The signature is (e, y,).

Verifying: To verify message/signature pair (m, (e,y,r)), check that e is an odd
(¢ + 1)-bit integer and that y°] _, 2o Fre (™) = 4 mod A

For typical parameter values such as S = 1024, £ = 171, s = 6, the 2° =
64 subset products modulo 72 of the z,’s may be precomputed. Using multi-
exponentiation, that would make the above scheme about as efficient as the
previous variant. It can be proved (cf. [4]) that the above CS signature variant
is secure assuming the strong-RSA and VSSR assumptions. Thus we have ob-
tained an efficient signature scheme proven secure without ad-hoc assumptions.
This is unlike the original CS scheme, which relied on a collision resistance or
universal one-wayness assumption regarding a 160-bit hash function—as far as
we are aware, the only practical provably secure design for such a function is an
inefficient discrete log based construction using an elliptic curve defined over a
160-bit order finite field. A disadvantage of our variant is that its public key is
typically 9 kbits, which is about 3 times more than in the original CS scheme.

5 Efficiency of VSH in Practice

Let the cost of a multiplication modulo n be O((logn)!*¢) operations, where
€ = 1 if ordinary multiplication is used, and where € > 0 can be made arbitrarily
small if fast multiplication methods are used. Asymptotically the cost of the basic
VSH algorithm is O((log Z)HE) = O((log n)¢loglog n) operations per message-bit.
Given n’s factorisation one can do better for long messages by reducing the k
exponents of the p;’s modulo ¢(n). Asymptotically, Fast VSH costs O((logn))
operations per message-bit. It is faster in practice too, cf. below.

The table below lists VSH runtimes obtained using a gmp-based implementa-
tion on a 1GHz Pentium III. The two security levels conservatively correspond
to 1024-bit and 2048-bit RSA (based on the Computational VSSR Assumption,
where an S-bit VSH-modulus leads to a lower RSA security level S’ depending
on the number of small primes). In the 2nd and 6th rows basic VSH is used
with more small primes, in the 3rd and 7th rows extended with precomputed
prime products and message processing b = 8 bits at a time. Fast VSH also
processed b = 8 message-bits at a time. With S/ = 1024 and S = 1516 (i.e., at
least 1024-bit RSA security, at the cost of a 1516-bit VSH-modulus) Fast VSH is
about 25 times slower than Wei Dai’s SHA-1 benchmark [23]. Better throughput
will be obtained under the more aggressive assumption that VSH with an S-bit
modulus achieves S-bit RSA security. A similarly more favorable comparison
will be obtained when using VSH with parameters matching the actual SHA-1
security level; at the time of writing that is 63 bits, but as it is a moving target

VSH, an Efficient and Provable Collision-Resistant Hash Function 181

S’ Method # small primes S b # products Megabyte/second
1024 Basic VSH 152 1234 1 n/a 0.355
1024 1318 1 n/a 0.419
8 128 %256 0.486
Fast VSH 216 = 65536 1516 8 n/a 1.135
2048 Basic VSH 272 2398 1 n/a 0.216
1024 2486 1 n/a 0.270
8 128 %256 0.303
Fast VSH 218 = 262144 2874 8 n/a 0.705

we prefer not to specify matching VSH parameters. In any case, the slowdown
is a small price for avoiding heuristically collision-resistant hashes. Nevertheless,
except for its lack of other nice properties, VSH has been criticised for being
too slow. We consider the prospects of faster VSH software more realistic than
a proof that SHA-2 offers any security at all.

Acknowledgements. We gratefully acknowledge inspiring discussions with Igor
Shparlinski and Eran Tromer, and we thank Yvo Desmedt, Josef Pieprzyk, Benne
de Weger, and the anonymous Eurocrypt’06 reviewers for their insightful com-
ments. This article was written while the second author was employed by Lucent
Technologies’ Bell Laboratories and was affiliated to the Technische Universiteit
Eindhoven.

References

1. M. Bellare and D. Micciancio. A new paradigm for collision-free hashing: incremen-
tality at reduced cost. In EUROCRYPT 97, volume 1233 of LNCS, page 163-192,
Berlin, 1997, Springer-Verlag.

2. D. Boneh and M. Franklin. Efficient generation of shared RSA keys. In CRYPTO
97, volume 1294 of LNCS, page 425-439, Berlin, 1997, Springer-Verlag.

3. D. Chaum, E. van Heijst, and B. Pfitzmann. Cryptographically strong undeniable
signatures, unconditionally secure for the signer. In CRYPTO 91, volume 576 of
LNCS, page 470484, Berlin, 1991, Springer-Verlag.

4. S. Contini, A.K. Lenstra, and R. Steinfeld. VSH, an efficient and provable colli-
sion resistant hash function. Report 2005/193, Cryptology ePrint Archive, 2005.
eprint.iacr.org/2005/193/.

5. R. Crandall and C. Pomerance. Prime Numbers: a Computational Perspective,
New York, 2001, Springer-Verlag.

6. R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption.
In volume 3 of ACM Transactions on Information and System Security (ACM
TISSEC), page 161-185, 2000.

7. I. Damgard. Collision-free hash functions and public key signature schemes. In
EUROCRYPT 87, volume 304 of LNCS, page 203216, Berlin, 1987, Springer-
Verlag.

8. I. Damgard. A design principle for hash functions. In CRYPTO 89, volume 435 of
LNCS, page 416-427, Berlin, 1989, Springer-Verlag.

9. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptively chosen message attacks. SIAM J. on Comp., 17(2):281-308, 1988.

10. S. Hankerson, A. Menezes, S. Vanstone. Guide to Elliptic Curve Cryptography,
New York, 2004, Springer-Verlag.

182

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

S. Contini, A.K. Lenstra, and R. Steinfeld

M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their
applications. In EUROCRYPT 96, volume 1070 of LNCS, page 143-154, Berlin,
1996, Springer-Verlag.

A K. Lenstra and E.R. Verheul. The XTR public key system. In CRYPTO 2000,
volume 1880 of LNCS, page 1-19, Berlin, 2000, Springer-Verlag.

A K. Lenstra and H-W. Lenstra Jr. The Development of the Number Field Sieve,
Berlin, 1993, Springer-Verlag.

A K. Lenstra, E. Tromer, A. Shamir, W. Kortsmit, B. Dodson, J. Hughes, and P.
Leyland, Factoring estimates for a 1024-bit RSA modulus. In Chi Sung Laih, editor,
ASTACRYPT 2003, volume 2894 of LNCS, page 55-74, Berlin, 2003, Springer-
Verlag.

R. Merkle. One way hash functions and DES. In CRYPTO 89, volume 435 of
LNCS, page 428-446, Berlin, 1989, Springer-Verlag.

D. Naccache and J. Stern A new public-key cryptosystem. In Walter Fumy,
editor, EUROCRYPT 97, volume 1233 of LNCS, page 27-36, Berlin, 1997,
Springer-Verlag.

D. Pointcheval. The composite discrete logarithm and secure authentication. In
PKC 2000, volume 1751 of LNCS, page 113-128, Berlin, 2000, Springer-Verlag.
R.L. Rivest and R.D. Silverman. Are ‘strong’ primes needed for RSA. Report
2001/007, Cryptology ePrint Archive, 2001. eprint.iacr.org/2001/007/.

P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: definitions,
implications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. In B. Roy and W. Meier, editors, FSE 2004, volume 3017
of LNCS, page 371-388, Berlin, 2004, Springer-Verlag.

A. Shamir and Y. Tauman. Improved online/offline signature schemes. In
CRYPTO 2001, volume 2139 of LNCS, page 355-367, Berlin, 2001, Springer-Verlag.
R. Steinfeld, H. Wang, and J. Pieprzyk. Efficient extension of standard
Schnorr/RSA signatures into universal designated-verifier signatures. In PKC 2004,
volume 2947 of LNCS, page 86-100, Berlin, 2004, Springer-Verlag.

K. Rubin and A. Silverberg. Torus-based cryptography. In CRYPTO 2003, volume
2729 of LNCS, page 349-365, Berlin, 2003, Springer-Verlag.

Wei Dai. Crypto++ 5.2.1 Benchmarks. www.eskimo.com/ weidai/
benchmarks.html.

Herding Hash Functions and the Nostradamus
Attack

John Kelsey! and Tadayoshi Kohno?

! National Institute of Standards and Technology
john.kelsey@nist.gov
2 CSE Department, UC San Diego

tkohno@cs.ucsd.edu

Abstract. In this paper, we develop a new attack on Damgard-Merkle
hash functions, called the herding attack, in which an attacker who can
find many collisions on the hash function by brute force can first pro-
vide the hash of a message, and later “herd” any given starting part
of a message to that hash value by the choice of an appropriate suffix.
We focus on a property which hash functions should have-Chosen Tar-
get Forced Prefix (CTFP) preimage resistance—and show the distinction
between Damgard-Merkle construction hashes and random oracles with
respect to this property. We describe a number of ways that violation
of this property can be used in arguably practical attacks on real-world
applications of hash functions. An important lesson from these results
is that hash functions susceptible to collision-finding attacks, especially
brute-force collision-finding attacks, cannot in general be used to prove
knowledge of a secret value.

1 Introduction

Cryptographic hash functions are usually assumed to have three properties: Col-
lision resistance, preimage resistance, and second preimage resistance. And yet
many additional properties, related to the above in unclear ways, are also re-
quired of hash function in practical applications. For example, hash functions
are sometimes used in “commitment” schemes, to prove prior knowledge of some
information, priority on an invention, etc. When the information takes on more
than a small number of possible values, there does not appear to be an obvious
way to extend a collision finding attack to break the commitment scheme; there-
fore, collision resistance does not seem to be necessary to use the hash function in
this way. This appears fortunate in light of the many recent attacks on collision
resistance of existing hash functions|2, 3, 13,19, 21, 22, 23, 24] and the widespread
use of hash functions short enough to fall to brute-force collision attacks[20].

We show that the natural intuition above is incorrect. Namely, we uncover
(what we believe to be) subtle ways of exploiting the iterative property of
Damgard-Merkle[6, 16] hash functions to extend certain classes of collision-finding
attacks against the compression function to attack commitment schemes and
other uses of hash function that do not initially appear to be related to collision
resistance.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 183-200, 2006.
© International Association for Cryptologic Research 2006

184 J. Kelsey and T. Kohno

1.1 Example: Proving Prior Knowledge with a Hash Function

Consider the following example. One day in early 2006, the following ad appears
in the New York Times:

I, Nostradamus, hereby provide the MD5 hash H of many important
predictions about the future, including most importantly, the closing
prices of all stocks in the S&P500 as of the last business day of 2006.

A few weeks after the close of business in 2006, Nostradamus publishes a message.
Its first few blocks contain the precise closing prices of the S&P500 stocks. It
then continues with many rambling and vague pronouncements and prophecies
which haven’t come true yet. The whole message hashes to H.

The main question we address in this paper is whether this should be taken as
evidence that Nostradamus really knew the closing prices of the S&P500 many
months in advance. MD5 has been the subject of collision attacks, and indeed
is susceptible to brute force collision attacks, but there are no known preimage
attacks. And yet, it seems that a preimage attack on MD5 would be necessary
to allow Nostradamus to first commit to a hash, and then produce a message
which so precisely describes the future after the fact.

1.2 Chosen Target Forced Prefix (CTFP) Preimage Resistance

The first question to address when considering the situation outlined above is
to ask exactly what property of a hash function would have to be violated by
Nostradamus in order to falsely “prove” prior knowledge of these closing prices.
The property is not directly one of the commonly discussed properties of hash
functions (collision resistance!, preimage resistance, and second preimage resis-
tance). Instead, we need an atypical property, which we will call “chosen target
forced prefix” (CTFP) preimage resistance?.

In order to falsely prove his knowledge of the closing prices of the S&P500,
Nostradamus would first have to choose a target hash value, H. He then would
have to wait until the closing values of the S&P500 stocks for 2006 were avail-
able. Finally, he would have to find some way to form a message that started
with a description of those closing values, P, and ended up with the originally
committed-to hash H.

Following this example, we can define CTFP preimage resistance as follows:
In the first phase of his attack Nostradamus performs some precomputation and
then outputs an n-bit hash value H; H is his “chosen target”. The challenger
then selects some prefix P and supplies it to Nostradamus; P is the “forced

1 Collision resistance would preclude the attack, but does not appear to be necessary
for the attack to fail.

2 We are indebted to Dan Brown for pointing out a previous use of the same idea: In
one of three independent proofs of the security of Pinstov-Vanstone signatures, the
same property with a different name, “target value resistance,” was used. See [4], in
which it was conjectured that SHA1 had this property; our result shows that it does
not if one can find collisions starting from two arbitrary IVs.

Herding Hash Functions and the Nostradamus Attack 185

prefix.” In our informal security definition we place no restriction on how the
challenger picks P, but for simplicity we may assume that the challenger picks
P uniformly at random from some large but finite set of strings. In the second
phase of his attack, Nostradamus computes and outputs some string S. Nos-
tradamus compromises the CTFP preimage resistance of the hash function if
hash(P]|S) = H. If we model the hash function as a random oracle [1], then un-
less Nostradamus is lucky and guesses P in the first phase of his attack, we would
expect him to have to try O(2") values for S in the second phase before finding
one such that hash(P||S) = H. Consequently, it might seem reasonable to expect
that Nostradamus would have to perform O(2") hash function computations to
compromise the CTFP preimage resistance of a real hash function. (While one
could consider a more formal definition of CTFP for hash function families, and
consider the relationship between CTFP-resistance and other security goals, we
do not do so here but instead focus on our attacks.)

As described in detail below, the ability to violate the CTFP preimage resis-
tance property allows an attacker to carry out a number of surprising attacks
on applications of a hash function. Almost any use of a hash function to prove
knowledge of some information can be attacked by someone who can violate
this property. Many applications of hashing for signatures or for fingerprinting
some information which are not vulnerable to attack by straightforward collision-
finding techniques are broken by an attacker who can violate CTFP preimage
resistance.

Further, when the CTFP definition is relaxed somewhat (for example, by
allowing Nostradamus some prior limited knowledge or control over the format
of P, giving him prior knowledge of the full (large) set of possible P strings that
might be presented, or allowing him to use any of a large number of encodings of
P with the same meaning), the attacks become still cheaper and more practical.

1.3 Herding Attacks

The major result of this paper is as follows: For Damgard-Merkle[6, 16] con-
struction hash functions, CTFP preimage resistance can always be violated
by repeated application of brute-force collision-finding attacks. More efficient
collision-finding algorithms for the hash function being attacked may be used to
make the attack more efficient, if the details of the collision-finding algorithms
support this. An attack that violates this property effectively “herds” a given
prefix to the desired hash value; we thus call any such attack violating the CTFP
preimage resistance property a “herding attack.”

The herding attack shows that the CTFP preimage resistance of a hash func-
tion like MD5 or SHAT1 is ultimately limited by the collision resistance of the
hash function. At a high level, and in its basic variant, the attack is parameter-
ized by some positive integer k, e.g., k = 50, and by the output size n of the
hash function. In the first phase of a herding attack, the attacker, Alice, repeat-
edly applies a collision-finding attack against a hash function to build a diamond
structure, which is a data structure reminiscent of a binary tree. With high prob-
ability it takes at most 25/2+7/2+2 applications of the hash compression function

186 J. Kelsey and T. Kohno

Table 1. Herding with Short Suffixes

output example diamond suffix length work

size width(k) (blocks)

128 MD5 41 48 287
160 SHA1 52 59 o108
192 Tiger 63 70 2129
256 SHA256 84 92 2172
512 Whirlpool 169 178 2343
n (n—5)/3k+1g(k)+12"F

(and possibly fewer, depending on details of more efficient collision-finding at-
tacks®) to create a diamond structure with 2+ — 2 intermediate hash states,
of which 2* are used in the basic form of the attack. In the second phase of
the attack, Alice exhaustively searches for a string S’ such that P|S’ collides
with one of the diamond structure’s intermediate states; this step requires trying
O(2"~*) possibilities for S’. Having found such a string S’, Alice can construct
a sequence of message blocks @ from the diamond structure, and thus build a
suffix S = 5’||@Q such that hash(P]|S) = H; this step requires a negligible amount
of work, and the resulting suffix S will be &+ 1-blocks long. We stress that Alice
can have significant control over the contents of S, which means that S may not
be “random looking” but may instead contain structured data suitable for the
application that Alice is trying to attack. Table 1 present some parameters for
a version of our attack.

1.4 Practical Impact

Our techniques for carrying out herding attacks have much in common with the
long message second preimage attacks of [12]. However, those attacks required
implausibly long messages, and so probably could never be applied in practice.
By contrast, our herding attacks require quite short suffixes, and appear to be
practical in many situations. Similarly, many recent cryptanalytic results on
hash functions, such as [22, 23], require very careful control over the format of
the messages to be attacked. This is not generally true of our herding attacks,
though more efficient variants that make use of cryptanalytic results on the
underlying hash functions will naturally have to follow the same restrictions as
those attacks.

Near the end of this paper, we describe a number of ways in which our herding
attacks and variations on them can be exploited. In developing the herding

3 The collision finding attacks needed for constructing the diamond structure are some-
what different than those in recent results on MD5, SHAOQ, and SHA1[22, 23]. We are
uncertain whether these attacks can be adapted to the requirements of construct-
ing the diamond structure, though it seems plausible that it might work. For the
diamond structure we need collisions between two messages starting with different
IVs.

Herding Hash Functions and the Nostradamus Attack 187

attack, we also describe a new method of building multicollisions for Damgard-
Merkle hash functions which we believe to be of independent interest, and which
may be useful in many other hash function attacks.

1.5 Related Work

The herding attack is closely related to the long message second preimage attacks
in [8] and [12], and is ultimately built upon the multicollision-finding technique
of [10]. Our technique for herding is related to the result of Lai and Massey [14]
showing a meet-in-the-middle second preimage attack when pseudopreimages
can be found cheaper than exhaustive search; in our attack, instead of finding
pseudopreimages, we construct a message by repeated collision searches, and
then do a meet-in-the-middle type attack to find a large set of possible second
preimages on our own chosen message. Our results complement Coron, Dodis,
Malinaud, and Puniya’s work[5], which does not present attacks like the ones
we present, but which shows that iterative hash functions like MD5 and SHA1
are not random oracles, even when their compression functions are. Variants of
our attacks works against Coron, et al’s fixes but do not violate their provable
security bounds.

More broadly, our result re-enforces the lessons that might sensibly be taken
from [7,10, 11,12, 15] on the many ways in which seemingly impractical hash func-
tion collisions may be applied in practice. The security properties of Damgard-
Merkle hash functions against attackers who can find collisions are currently not
well understood.

2 The Diamond Structure: A Building Block for Herding

In this section we introduce the diamond structure. This is a structure of mes-
sages constructed to produce a large multicollision of a quite different format
than that of Joux[10]. Our multicollision is more expensive, and the same length.
For example, a 2F diamond-structure multicollision costs about 27/2T%/2+2 work,
relative to Joux’ k x 2/2 work. There are two reasons why the diamond structure
lets an attacker do things which are not possible with only a Joux multicollision:

1. The diamond structure allows 2* choices for the first block of a 2* multicol-
lision, whereas Joux multicollisions involve a sequence of pairs of choices for
each part of the message.

2. The diamond structure contains 2! — 2 intermediate hash values, making
the herding attack possible with short suffixes.

A diamond structure is essentially a Merkle tree built by brute force.

Figure 1 describes the basic idea, where edges represent messages and values
like h[i, j] represent intermediate hash states. In the diagram, the attacker starts
with eight different first message blocks, each leading to a different hash value;
he then searches for collisions between pairs of these hash values, yielding four
resulting intermediate hash values (at the cost of about 8 x 2"/2 work using a

188 J. Kelsey and T. Kohno

h[0,0

h[0,1]1>‘ h[1,0]

h[0,2 i
-1/ h[o,3}>‘ h[1,1] h[2,0]

" h[0,4
. (h[0,5 h[1,2]

h[0.6 i
h[0,7]]>‘ h[1,3] h[2,1] h(3,0]

Fig. 1. The Basic Diamond Structure

naive algorithm). He repeats the process with the four remaining values, then
the two remaining ones. The result is a diamond structure which is 2% states
wide, and contains 25t1 — 1 states total.

Producing a Suffix from an Intermediate Hash Value. Consider any of
the starting hash values. A suffix which maps that hash value to the final hash H
is constructed by walking down the tree from the leaves to the root, appending
the message blocks from each edge in the tree to produce a suffix.

Consider any intermediate hash value. Similarly, walking from that node down
to the root of the tree yields a suffix which maps the intermediate hash value to
the final hash H. Subsequently we discuss how to augment the suffix if the hash
function includes the length of the message in its last block.

Building the Structure. Building the structure is more efficient than a naive
approach suggests. Instead of fixing the position of each node within the tree and
then searching for collisions, the attacker dynamically builds the tree structure
during the collision search. To map 2* hash values down to 2¥~!, she generates
about 27/2+1/2-k/2 candidate message blocks from each starting hash value in
a single level of the structure, and then finds collisions between the different
starting values dynamically. The total work done to reduce 2* hash values to
2k=1 ig about 27/2+k/2+1/2 " and thus the work done to construct a full diamond
structure with 2% hash values at its widest point is about 27/2+k/2+2,

The work done to build the diamond structure is based on how many messages
must be tried from each of 2¥ starting values, before each has collided with at
least one other value. Intuitively, we can make the following argument, which
matches experimental data for small parameters: When we try 27/2+k/2+1/2
messages spread out from 2¥ starting hash values (lines), we get 27/2+k/2+1/2=k
messages per line, and thus between any pair of these starting hash values, we
expect about (27/2+k/2H1/2=k)2 s 9=n — gntktl=2k=n _ 9—k+1 collisions. We
thus expect about 27 F+k+1 = 21 = 2 other hash values to collide with any given
starting hash value.

If this search is done on a single processor, then each time a pair of lines
collide, no further searching is done from those lines. There may be cases where
two pairs of lines collide on the same hash value. This very slightly decreases the
number of reachable hash values, but the expected number of these is extremely

Herding Hash Functions and the Nostradamus Attack 189

small. For example, in a 2°° diamond structure, there are about 2°¢ intermediate
hashes which are the results of these collision searches. For a 160-bit hash, we
thus expect roughly 2749 such collisions, so we can ignore the effect of them on
our result.

Parallelizeability. It is easy to adapt the parallel collision search algorithm of
[20] to the construction of a diamond structure. The result of each iteration of
the search algorithm yields both a seed for the next message block to try, and
also a choice of which of the 2% starting chaining values will be used.

Employing Cryptanalytic Attacks. The above discussion has focused on
brute-force search as a way to build the diamond structure. An alternative is
to use some cryptanalytic results on the hash function. Whether this will work
depends on details of the cryptanalysis:

1. A collision-finding algorithm which produces a pair of messages from the
same initial value is not useful in constructing the diamond structure. Simi-
larly, an algorithm that can find collisions only from initial chaining values
with a single difference is not useful.

2. An algorithm which works for any known IV difference can be directly ap-
plied to build the diamond structure, though one must fix the positions of
the nodes within the diamond structure in advance. If the work to find a
collision pair is 2%, then this algorithm should be used to reduce 2* lines of
hash values to 28! lines so long as w +k — 1 <n/2+ k/2+1/2.

3. An algorithm which works for a subset 277 of all pairs of IVs can be used
to construct the diamond structure if the pairs can be recognized efficiently.
This is done by inserting one extra message block at each layer of the dia-
mond structure, and using this to force selected pairs of lines to initial values
from which the collision-search algorithm will work. The work necessary to
find one collision between lines is now 2P/2t1 4 2% This algorithm should
be used to reduce 2" lines to 25! so long as 1g(2P/?t1 +2¥) + k — 1 <
n/2+k/2+1/2.

Expandable Messages. Using the notation from [12], an (a,b)-expandable
message is a set of messages of varying lengths, between a and b inclusive, all
of which yield the same intermediate hash. Expandable messages may be found
from any initial hash value using the techniques found in [12], and more efficiently
found for some hash functions, including MD5 an SHA1, using techniques from
[8]; in the latter case, the cost is around twice that of a brute-force collision
finding attack.

If all 2°*! —2 intermediate hash values from the diamond structure are used in
the later steps of herding, then a (1, k4 1)-expandable message must be produced
at the end of the diamond structure, to ensure that the final herded message is
always a fixed length. This is necessary since we assume that the length of the
message will be included in the last block. If only the widest layer of 2¥ hash
values is used, no expandable message is required.

Precomputation of the Prefix. If the full set of prefixes are known and small
enough, the diamond structure can be computed from their resulting intermediate

190 J. Kelsey and T. Kohno

hashes. This follows from the fact that the starting hash values are arbitrary.
This is discussed at more depth in Sections 3.1 and 4.

Variant: The Elongated Diamond Structure. Using ideas from [12], long
messages offer a naive way to mount the attack; the diamond structure offers
much shorter suffixes. However, the attacker can build a diamond structure with
many intermediate hashes more cheaply than above, if she is willing to tolerate
unreasonably long messages.

The widest layer of the diamond structure is chosen, with 2¥ hash values.
Then, the attacker computes 2" message blocks for each of the 2¥ hash values,
thus producing a total of 2¥*" reachable intermediate states. He then constructs
the collision tree as described above.

The total work done to build a 27-long elongated diamond structure with 2%
values at its widest point is about 27 % 42k/2+7/2+2. thig structure contains 25"
intermediate hash values, and yields suffixes of about 2"~! message blocks on
average. In general, for reasonable suffix lengths, the elongated diamond struc-
ture has only a small advantage over regular diamond structures. An elongated
diamond structure must have an (r, 2" + r)-expandable message appended to its
end, to ensure that the final herded messages are always the same length, and
so always have the same final hash value.

It is possible to parallelize much of the production of an elongated diamond
structure. If the width is 2* hash values at the beginning, then the construction
of the structure can be parallelized up to 2% ways.

3 How to Herd a Hash Function

The herding attack allows an attacker to commit to the hash of a message
she doesn’t yet fully know, at the cost of a large computation. This attack is
closely related to the long message second-preimage attacks of [8,12] and the
multicollision-finding techniques of [10].

At a high level, the attack works as follows:

1. Build the Diamond Structure: Alice produces a search structure which con-
tains many intermediate hash values. From any of these intermediate hash
values, a message can be produced which will lead to the same final hash H.
Alice may commit to H at this point.

2. Determine the Prefiz: Later, Alice gains knowledge of P.

3. Find a Linking Message: Alice now searches for a single-block which, if ap-
pended to P, would yield an intermediate hash value which appears in her
search structure.

4. Producing the Message: Finally, Alice produces a sequence of message blocks
from her structure to link this intermediate hash value back to the previously
sent H.

At the end of this process, Alice has first committed to a hash H, then decided
what message she will provide which hashes to H and which begins with the
prefix P.

Herding Hash Functions and the Nostradamus Attack 191

Building the Diamond Structure. This step is described in Section 2.

Finding a Linking Message. Once a diamond structure is constructed and
its hash H is committed to, the attacker learns the prefix P. She must then
find a linking message—a message which allows her to link the prefix P into the
diamond structure. See Figure 2. When there are 2* intermediate hash values in
the diamond structure, the attacker expects to try about 2" % trial messages in
order to find a linking message.

HO
n*

oy H2 g SN\
ym/

H
Prefix— H4 —
H5 —
H6
H7 e

Fig. 2. Finding a Linking Message and Producing the Suffix

The starting chaining values for the diamond structure can be chosen arbi-
trarily. This makes it easy to parallelize the search for linking messages when
herding a prefix into the first (widest) layer of the diamond structure. For ex-
ample, the starting chaining values may be chosen to have their low 64 bits all
zeros[18]; then each processor searching for a linking message need only check
the list of starting hash values about once per 264 trials.

Producing the Message. Once a linking message from P, Mk, is found,
the suffix is produced as described above—basically, the attacker walks up the
tree from the linked-to hash value to the root, producing another message block
on each step. See Figure 2. If all 2¥*1 — 2 intermediate hash values from the
diamond structure are used when finding Mj;,, then the pre-determined ex-
pandable message must be appended to the end of the suffix.

3.1 Work Done for Herding Attacks

A maximally short suffix for the herding attack is found by producing a 2¥ hash
value wide diamond structure, and only searching for linking messages to the
outermost (widest) level of hash values in the diamond structure, so that no
expandable message is needed. In this case, the length of the suffix is &k + 1
message blocks, and the work done for the herding attack is approximately

2n—k +2n/2+k/2+2) (1)
Searching for linking messages to all 2#*1 —2 intermediate hashes in the structure

requires adding an additional 1g(k) + 1 message blocks for a (lg(k), k + lg(k))-
expandable message, and decreases the work required to

2n—k—1 + 2n/2+k/2+2 +kx 2n/2+1 ’ (2)

192 J. Kelsey and T. Kohno

the k x 2"/ term arising from the search for an expandable message[12].

The cheapest herding attack with a reasonably short suffixes can be deter-
mined by setting the work done for constructing the diamond structure and
finding the linking message equal. We thus get a diamond structure of width 2%,
suffix length L, and total work W, where:

n—>5
k= 3
5 3)
L=lgk)+k—+1 (4)
W — 21’171{)71 + 2n/2+k/2+2 + k X 2n/2+1 ~ 2n7k . (5)

Thus, using a 160-bit hash function, the cheapest attack with a reasonably short
suffix involves a diamond structure with about 252 messages at its widest point,
producing a 59-block suffix, and with a total work for the attack of about 2'0%
compression function calls. See Table 1 for additional examples.

Work for Herding Attacks with the Elongated Diamond Structure.
The cheapest herding attack with a suffix of slightly more than 2" blocks can be
determined by once again setting the work done for constructing the diamond
structure and finding the linking message equal, so long as k +r < k/2 + n/2.
We thus get an elongated diamond structure of width 2%, suffix length L, and
total work W, where:

n—2r—3

k= 6
’ ©)
L=lgk+2")+k+1+2" (7)
W —_ 2n—k—r 4 2n/2+k/2+2 4 k x 2n/2+1 + 2k+7‘ ~ 2n—k—r+1 . (8)

Thus, with a 160-bit hash function and a 2°° block suffix (about as long as is
allowed for SHA1 or RIPEMD-160), an attacker would end up doing about 2%
work total to herd any prefix into the previously published hash value.

Work for Herding from Precomputed Prefixes. If the set of possible pre-
fixes contains 2F possible messages, the diamond structure can be built from
the resulting 2* intermediate hashes. In this case, there is no search for a link-
ing message, and the total work for the attack is done in building the diamond
structure.

3.2 Making Messages Meaningful

These attacks all involve producing a suffix to some forced prefix, which forces
the complete message to have a specific hash value H. In order to use herding
in a real deception, however, the attacker probably cannot just append a bunch
of random blocks to the end of her predictions or other messages. Instead, she
needs to produce a suffix which is at least somewhat meaningful or plausible.
There are a number of tricks for doing this.

Herding Hash Functions and the Nostradamus Attack 193

Using Yuval’s Trick. Using Yuval’s clever trick[25], the attacker can prepare a
basic long document appropriate to her intended deception, and produce many
independent variation points in the document. This allows the use of meaningful-
looking messages for most contexts. For example, each message block in layer ¢
of the diamond structure could be a variation on the same theme, using about
n/2 possible variation points. In practice, this likely will make the suffix longer,
since it is hard to put 80 variation points in a 64-character message. However,
this has almost no effect on the herding attack. If the attacker needs ten message
blocks (640 characters) for each collision, her suffixes will be ten times longer,
but no harder to find. The algorithm for finding them works the same way.

The contents of these suffixes must be pretty general. The natural way to
handle this in most applications of herding is to write some common text dis-
cussing how the results are supposed to have been obtained (“I consulted my
crystal ball, and spent many hours poring over the manuscripts of the ancient
prophets....”). These can then be varied at many different points, independently,
to yield many possible bitstrings all having the same meaning.

Committing to Meaning, Not Bits. For many of the attacks for which
herding is useful, the goal is to falsely commit to some actual meaning, not
necessarily some specific message string. For example, an attacker trying to prove
her ability to predict the stock market is not really forced to use any fixed format
for the contents of her stock market predictions, so long as anyone reading them
will unambiguously be able to tell whether she got her predictions right.

This provides a great deal of extra flexibility for the attacker in using Yuval’s
trick, and also in arranging the different parts of the message to be committed
to, in order to maximize her convenience.

4 Exploiting Prior Knowledge of the Prefix Space

As suggested in Sections 2 and 3.1, the attack becomes much more efficient
if the prefix can be precomputed. In fact, it is often possible to precompute
the message piecemeal in ways that leave a huge number of possible prefixes
available, without requiring a huge amount of work.

Just as with the full herding attack, the precomputed version would not be
useful against a random oracle—we make use of the iterative structure of existing
hash functions to make the attack work.

Precomputing All Possible Prefixes. In the herding attack, the attacker may
reasonably expect to produce a diamond structure with 2°° or more possible hash
values. For a great many possible applications of the herding attack, this may
be more than the possible number of prefix messages. The attacker may now
take advantage of an interesting feature of the diamond structure: There is no
restriction on the choice of starting hash values for the structure.

Let 2%, the width of the diamond structure, be the number of possible prefix
messages that the attacker may need to herd to her fixed hash value. (If there
are fewer prefix messages, the attacker appends one block to all the possible

194 J. Kelsey and T. Kohno

prefix messages, and varies that block to produce a set of prefix messages that is
exactly the right size.) She computes the intermediate hash after processing each
prefix message, and uses these intermediate hashes as the starting hash values
for the diamond structure.

The initial work to construct the diamond structure in this way is the same as
for the more general herding attack. However, the attacker now has the ability
to immediately produce a message which starts with any possible prefix with the
desired hash value. That is, she need not do a second expensive computation to
herd the prefix she is given.

The attacker who has a larger set of possible prefixes than this is not lost; she
may precompute the hashes of the most likely 2% prefixes. Then, if any of those
prefixes is presented to her, she can herd it immediately; otherwise, she must do
the large computation, or simply allow her prediction or other deception to fail
with some probability.

Using Joux Multicollisions. Joux multicollis