

Lecture Notes in Computer Science 4004
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Serge Vaudenay (Ed.)

Advances in Cryptology –
EUROCRYPT 2006

24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques
St. Petersburg, Russia, May 28 – June 1, 2006
Proceedings

13

Volume Editor

Serge Vaudenay
EPFL, I&C, LASEC, Station 14
INF Building, 1015 Lausanne, Switzerland
E-mail: serge.vaudenay@epfl.ch

Library of Congress Control Number: 2006925895

CR Subject Classification (1998): E.3, F.2.1-2, G.2.1, D.4.6, K.6.5, C.2, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-34546-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-34546-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© International Association for Cryptologic Research 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11761679 06/3142 5 4 3 2 1 0

Preface

The 2006 edition of the Eurocrypt conference was held in St. Petersburg, Russia
from May 28 to June 1, 2006. It was the 25th Eurocrypt conference. Eurocrypt
is sponsored by the International Association for Cryptologic Research (IACR).
Eurocrypt 2006 was chaired by Anatoly Lebedev, and I had the privilege to chair
the Program Committee.

Eurocrypt collected 198 submissions on November 21, 2005. The Program
Committee carried out a thorough review process. In total, 863 review reports
were written by renowned experts, Program Committee members as well as
external referees. Online discussions led to 1,114 additional discussion messages
and about 1,000 emails. The review process was run using e-mail and the iChair
software by Thomas Baignères and Matthieu Finiasz. Every submitted paper
received at least three review reports. The Program Committee had a meeting
in Lausanne on February 4, 2006. We selected 33 papers, notified acceptance or
rejection to the authors, and had a cheese fondue. Authors were then invited to
revise their submission. The present proceedings include all the revised papers.
Due to time constraints the revised versions could not be reviewed again.

We delivered a “Eurocrypt Best Paper Award.” The purpose of the award
is to formally acknowledge authors of outstanding papers and to recognize ex-
cellence in the cryptographic research fields. Committee members were invited
to nominate papers for this award. A poll then yielded a clear majority. This
year, we were pleased to deliver the Eurocrypt Best Paper Award to Phong Q.
Nguyen and Oded Regev for their brilliant paper “Learning a Parallelepiped:
Cryptanalysis of GGH and NTRU Signatures.”

The Program Committee invited two speakers: David Naccache and Kevin
McCurley. The current proceedings include papers about their presentation.

I would like to thank Anatoly Lebedev for organizing the conference. I would
like to thank the IACR Board for honoring me by asking me to chair the Program
Committee. The Program Committee and external reviewers worked extremely
hard. I deeply thank them for this volunteer work. Acknowledgments also go to
the authors of submitted papers, the speakers, and the invited speakers. I am
grateful to Thomas Baignères and Matthieu Finiasz for their hard work developing
the iChair software and constantly adding features. I also thank Shai Halevi and
Amr Youssef, who participated in the software testing. Finally, I heartily thank
Christine and Emilien, my family, for letting me spend some time on Eurocrypt.

This year, we celebrated the 30th anniversary of the publication of the Diffie-
Hellman seminal paper “New Directions in Cryptography.” As cryptography was
becoming a new academic research area, this pioneer paper invented public-key
cryptography. My wish is that research in cryptography will lead us to 30 more
years of fun.

March 2006 Serge Vaudenay
Lausanne

Eurocrypt 06
May 28–June 1, 2006, Saint Petersburg, Russia

General Chair
Anatoly Lebedev, LAN Crypto

Moscow, Russia

Program Chair
Serge Vaudenay, EPFL
Lausanne, Switzerland

Program Committee

Feng Bao . Institute for Infocomm Research
Eli Biham . Technion
Alex Biryukov .Katholieke Universiteit Leuven
Alexandra Boldyreva . Georgia Institute of Technology
Colin Boyd . Queensland University of Technology
Jean-Sébastien Coron . University of Luxembourg
Yevgeniy Dodis . New York University
Matt Franklin . University of California Davis
Eiichiro Fujisaki . NTT Laboratories
Juan Garay .Bell Labs — Lucent Technologies
Martin Hirt . ETH Zurich
Tetsu Iwata . Ibaraki University
Pil Joong LeePohang University of Science and Technology
Antoine Joux . DGA and University of Versailles
Jonathan Katz .University of Maryland
Arjen Lenstra .Bell Labs – Lucent Technologies

and Technische Universiteit Eindhoven
Helger Lipmaa . Cybernetica AS and University of Tartu
Javier Lopez . University of Malaga
Stefan Lucks .University of Mannheim
Philip MacKenzie . DoCoMo USA Labs
Mitsuru Matsui . Mitsubishi Electric
Alexander May . University of Paderborn
Willi Meier . FH Aargau
Atsuko Miyaji . JAIST
Kaisa Nyberg .Helsinki University of Technology and Nokia
Kenny Paterson .Royal Holloway University of London
Greg Rose .Qualcomm
Berry Schoenmakers . Technische Universiteit Eindhoven
Serge Vaudenay (Chair) . EPFL
Michael Wiener . Cryptographic Clarity
Robert Zuccherato . Entrust, Inc.

VIII Organization

External Reviewers

Michel Abdalla Nelly Fazio Caroline Kudla
Masayuki Abe Serge Fehr Ulrich Kühn
Carlisle Adams Matthieu Finiasz Simon Künzli
Luis von Ahn Marc Fischlin Kaoru Kurosawa
Koichiro Akiyama Matthias Fitzi Tanja Lange
Elena Andreeva Pierre-Alain Fouque Joseph Lano
Kazumaro Aoki Felix Freiling Peeter Laud
Seigo Arita Jun Furukawa Sven Laur
Frederik Armknecht Soichi Furuya Jung Wook Lee
Tomoyuki Asano Martin Gagne Reynald Lercier
Gildas Avoine Steven Galbraith Christina Lindenberg
Thomas Baignères David Galindo Moses Liskov
Elad Barkan Ran Gelles Yi Lu
Don Beaver Mark Gondree Christoph Ludwig
Zuzana Beerliová Daniel Gottesman Anna Lysyanskaya
Mihir Bellare Louis Goubin Greg Maitland
Vicente Benjumea Ignacio Gracia John Malone-Lee
Dan Bernstein Safuat Hamdy Keith Martin
John Black Goichiro Hanaoka Sebastiá Mart́ın
Daniel Bleichenbacher Phil Hawkes Natsume Matsuzaki
Johannes Blömer Ryotaro Hayashi Lorenz Minder
Jean Christian Boileau Javier Herranz Serge Mister
Xavier Boyen Florian Hess Payman Mohassel
Harry Buhrman Shoichi Hirose Jean Monnerat
Jan Camenisch Dennis Hofheinz Paz Morillo
Ran Canetti Thomas Holenstein Tim Moses
Juyoung Cha Nick Howgrave-Graham Siguna Mueller
Liqun Chen Yong Ho Hwang Frederic Muller
Rafi Chen Yuval Ishai Sean Murphy
Kookrae Cho Stanislaw Jarecki Toru Nakanishi
Sherman Chow Jorge Jiménez Deholo Nali
Carlos Cid Ellen Jochemsz Anderson Nascimento
Scott Contini Pascal Junod Gregory Neven
Yang Cui Senny Kamara Phong Nguyen
Reza Curtmola Akinori Kawachi Antonio Nicolosi
Ivan Damg̊ard John Kelsey Jesper Nielsen
Vanesa Daza Aggelos Kiayias Wakaha Ogata
Alex Dent Joe Killian Kazuo Ohta
Claus Diem Mehmet Kiraz Koji Okada
Yan Zong Ding Kazukuni Kobara Takeshi Okamoto
Martin Döring Vladimir Kolesnikov Tatsuaki Okamoto
Orr Dunkelman Chiu-Yuen Koo Rafail Ostrovsky
Stefan Dziembowski Matthias Krause Raphael Overbeck
Daniela Engelbert Volker Krummel Michael Paddon

Organization IX

Carles Padro Jong Hoon Shin Frederik Vercauteren
Adriana Palacio Tom Shrimpton Jorge L. Villar
Saurabh Panjwani Andrey Sidorenko Ulrich Vollmer
Jung Hyung Park Johan Sjödin Martin Vuagnoux
Sylvain Pasini Nigel Smart Shabsi Walfish
Kun Peng Adam Smith Johan Wallén
Rene Peralta Clayton Smith Guilin Wang
Adrian Perrig Miguel Soriano Yongge Wang
Giuseppe Persiano Masakazu Soshi Bogdan Warinschi
Krzysztof Pietrzak Martijn Stam Benne de Weger
Benny Pinkas Heiko Stamer Ralf-Philipp Weinmann
Bart Preneel Dirk Stegemann William Whyte
Bartosz Przydatek Ron Steinfeld Christopher Wolf
Prashant Puniya Daisuke Suzuki Stefan Wolf
Carla Rafols Koutarou Suzuki Yongdong Wu
Dominik Raub Mitsuru Tada Jürg Wullschleger
Omer Reingold Katsuyuki Takashima Alex Yampolskiy
German Saez Keisuke Tanaka Ke Yang
Yasuyuki Sakai Lauri Tarkkala Yeon Hyeong Yang
Bagus Santoso Tamir Tassa Yiqun Lisa Yin
Hovav Schaham Isamu Teranishi Shoko Yonezawa
Daniel Schepers Stefano Tessaro Dae Hyun Yum
Katja Schmidt-Samoa Toyohiro Tsurumaru Yunlei Zhao
Jasper Scholten Pim Tuyls Huafei Zhu
Jae Woo Seo Shigenori Uchiyama
Ji Sun Shin Maribel Vasco

Table of Contents

Cryptanalysis

Security Analysis of the Strong Diffie-Hellman Problem
Jung Hee Cheon . 1

Cryptography in Theory and Practice: The Case of Encryption
in IPsec

Kenneth G. Paterson, Arnold K.L. Yau . 12

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects
Jean-Charles Faugère, Ludovic Perret . 30

Invited Talk I

Alien vs. Quine, the Vanishing Circuit and Other Tales from the
Industry’s Crypt

Vanessa Gratzer, David Naccache . 48

Cryptography Meets Humans

Hiding Secret Points Amidst Chaff
Ee-Chien Chang, Qiming Li . 59

Parallel and Concurrent Security of the HB and HB+ Protocols
Jonathan Katz, Ji Sun Shin . 73

Polling with Physical Envelopes: A Rigorous Analysis of a
Human-Centric Protocol

Tal Moran, Moni Naor . 88

Stream Ciphers

QUAD: A Practical Stream Cipher with Provable Security
Côme Berbain, Henri Gilbert, Jacques Patarin . 109

How to Strengthen Pseudo-random Generators by Using Compression
Aline Gouget, Hervé Sibert . 129

XII Table of Contents

Efficient Computation of Algebraic Immunity for Algebraic and Fast
Algebraic Attacks

Frederik Armknecht, Claude Carlet, Philippe Gaborit, Simon Künzli,
Willi Meier, Olivier Ruatta . 147

Hash Functions

VSH, an Efficient and Provable Collision-Resistant Hash Function
Scott Contini, Arjen K. Lenstra, Ron Steinfeld . 165

Herding Hash Functions and the Nostradamus Attack
John Kelsey, Tadayoshi Kohno . 183

Oblivious Transfer

Optimal Reductions Between Oblivious Transfers Using Interactive
Hashing

Claude Crépeau, George Savvides . 201

Oblivious Transfer Is Symmetric
Stefan Wolf, Jürg Wullschleger . 222

Numbers and Lattices

Symplectic Lattice Reduction and NTRU
Nicolas Gama, Nick Howgrave-Graham, Phong Q. Nguyen 233

The Function Field Sieve in the Medium Prime Case
Antoine Joux, Reynald Lercier . 254

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures
Phong Q. Nguyen, Oded Regev . 271

Foundations

The Cramer-Shoup Encryption Scheme Is Plaintext Aware in the
Standard Model

Alexander W. Dent . 289

Private Circuits II: Keeping Secrets in Tamperable Circuits
Yuval Ishai, Manoj Prabhakaran, Amit Sahai,
David Wagner . 308

Table of Contents XIII

Composition Implies Adaptive Security in Minicrypt
Krzysztof Pietrzak . 328

Perfect Non-interactive Zero Knowledge for NP
Jens Groth, Rafail Ostrovsky, Amit Sahai . 339

Invited Talk II

Language Modeling and Encryption on Packet Switched Networks
Kevin S. McCurley . 359

Block Ciphers

A Provable-Security Treatment of the Key-Wrap Problem
Phillip Rogaway, Thomas Shrimpton . 373

Luby-Rackoff Ciphers from Weak Round Functions?
Ueli Maurer, Yvonne Anne Oswald, Krzysztof Pietrzak,
Johan Sjödin . 391

The Security of Triple Encryption and a Framework for
Code-Based Game-Playing Proofs

Mihir Bellare, Phillip Rogaway . 409

Cryptography Without Random Oracles

Compact Group Signatures Without Random Oracles
Xavier Boyen, Brent Waters . 427

Practical Identity-Based Encryption Without Random Oracles
Craig Gentry . 445

Sequential Aggregate Signatures and Multisignatures Without Random
Oracles

Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham,
Brent Waters . 465

Multiparty Computation

Our Data, Ourselves: Privacy Via Distributed Noise Generation
Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry,
Ilya Mironov, Moni Naor . 486

XIV Table of Contents

On the (Im-)Possibility of Extending Coin Toss
Dennis Hofheinz, Jörn Müller-Quade, Dominique Unruh 504

Efficient Binary Conversion for Paillier Encrypted Values
Berry Schoenmakers, Pim Tuyls . 522

Information-Theoretic Conditions for Two-Party Secure Function
Evaluation

Claude Crépeau, George Savvides, Christian Schaffner,
Jürg Wullschleger . 538

Cryptography for Groups

Unclonable Group Identification
Ivan Damg̊ard, Kasper Dupont, Michael Østergaard Pedersen 555

Fully Collusion Resistant Traitor Tracing with Short Ciphertexts and
Private Keys

Dan Boneh, Amit Sahai, Brent Waters . 573

Simplified Threshold RSA with Adaptive and Proactive Security
Jesús F. Almansa, Ivan Damg̊ard, Jesper Buus Nielsen 593

Author Index . 613

Security Analysis of the Strong Diffie-Hellman
Problem

Jung Hee Cheon

ISaC and Dept. of Mathematics, Seoul National University, Republic of Korea
jhcheon@snu.ac.kr

http://www.math.snu.ac.kr/~jhcheon

Abstract. Let g be an element of prime order p in an abelian group and
α ∈ Zp. We show that if g, gα, and gαd

are given for a positive divisor d
of p − 1, we can compute the secret α in O(log p · (p/d +

√
d)) group

operations using O(max{ p/d,
√

d}) memory. If gαi

(i = 0, 1, 2, . . . , d)
are provided for a positive divisor d of p + 1, α can be computed in
O(log p · (p/d + d)) group operations using O(max{ p/d,

√
d}) mem-

ory. This implies that the strong Diffie-Hellman problem and its related
problems have computational complexity reduced by O(

√
d) from that

of the discrete logarithm problem for such primes.
Further we apply this algorithm to the schemes based on the Diffie-

Hellman problem on an abelian group of prime order p. As a result, we re-
duce the complexity of recovering the secret key from O(

√
p) to O(p/d)

for Boldyreva’s blind signature and the original ElGamal scheme when
p − 1 (resp. p + 1) has a divisor d ≤ p1/2 (resp. d ≤ p1/3) and d signature
or decryption queries are allowed.

Keywords: Discrete logarithm, Diffie-Hellman, strong Diffie-Hellman,
ElGamal encryption, blind signature.

1 Introduction

Let g be an element of prime order p in an abelian group and α ∈ Zp. The
�-Strong Diffie-Hellman (�-SDH) problem asks to find gα�+1

given g, gα, . . . , gα�

.
Recently, many cryptographic schemes including encryption, signature, and key
management schemes are proposed on the basis of the Strong Diffie-Hellman
(SDH) problem [MSK02, BB04e, BB04s], or its variants such as the Bilinear
Diffie-Hellman problem [BBS04, DY05] and the Bilinear Diffie-Hellman Expo-
nent (BDHE) problem [BBG05, BGW05]. A lower bound on the computational
complexity of the SDH problem or its variants for generic groups are known in
the sense of Shoup [Sho97], but it does not guarantee the security for specific
parameters.

In this paper, we analyze the security of the SDH problem. More precisely,
we show that if g, gα and gαd

are given for a positive divisor d of p − 1, the
secret α ∈ Zp can be computed in O(log p · (√p/d+

√
d)) group operations using

O(max{√p/d,
√

d}) memory. If gαi

(i = 0, 1, 2, . . . , d) are provided for a positive

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 1–11, 2006.
c© International Association for Cryptologic Research 2006

2 J.H. Cheon

divisor d of p + 1, it can be computed in O(log p · (√p/d + d)) group operations
using the same size of memory. This implies that the strong Diffie-Hellman prob-
lem and its related problems have computational complexity reduced by O(

√
d)

from that of the discrete logarithm problem for such primes. Hence it is neces-
sary to increase by the size of d the key size of the cryptographic schemes based
on the �-SDH problem or its variants if the base group has such a prime as its
order.

We investigate some known elliptic curve parameters and find that either p−1
or p + 1 has many small divisors for the largest prime divisor p of its order for
each elliptic curve in [NIST, BLS01, KM05, MIRACL]. For example, if we use
the curve E+ over GF (3155) [BLS01] for the broadcast encryption [BGW05], the
secret key can be computed in O(259) exponentiations (resp. O(242) exponenti-
ations) when the number of users is 232 (resp. 264), rather than O(276) group
operations.

Moreover, we apply this algorithm to the schemes based on the Diffie-Hellman
problem on an abelian group of prime order p. As a result, we show the com-
plexity of recovering the secret key is reduced from O(

√
p) to O(

√
p/d) for

Boldyreva’s blind signatures [Bol03] when d signature or decryption queries are
allowed and p − 1 has a divisor d ≤ p1/2 or p + 1 has a divisor d ≤ p1/3. Similar
results hold for the original ElGamal scheme [ElG85] with decryption oracles and
the conference keying protocol by Burmester-Desmedt [BD94] with key issuing
oracles.

The rest of the paper is organized as follows: In Section 2, we introduce the
SDH related problems and some schemes based on them. In Section 3, we present
our algorithms. In Section 4, we exploit our algorithms to attack several protocols
based on the Diffie-Hellman problem. In Section 5, we investigate some known
elliptic curve parameters in order to check if our algorithms are applicable for
these parameters. We conclude in Section 6.

2 Strong Diffie-Hellman Problems and Their Variants

Let G be an abelian group of prime order p and g a generator of G. The Discrete
Logarithm (DL) Problem in G asks to find a ∈ Zp given g and ga in G. Many
cryptosystems are designed on the basis of the DL problem, but most of them
have the security equivalent to a weaker variant of the DL problem rather than
the DL problem itself. Two most important weaker variants are as follows:

The Computation Diffie-Hellman (CDH) Problem. Given (g, ga, gb),
compute gab.
The Decisional Diffie-Hellman (DDH) Problem. Given (g, ga, gb, gc),
decide whether c = ab in Zp.

Recently, some weakened variants of the CDH problem are introduced and
being used to construct cryptosystems for various functionalities or security
without random oracles. One characteristic of these problems is to disclose
g, gα, . . . , gα�

for the secret α and some integer �.

Security Analysis of the Strong Diffie-Hellman Problem 3

The �-weak Diffie-Hellman (�-wDH) Problem. Given g and gαi

in G
for i = 1, 2, . . . , �, compute g1/α. This problem was introduced by Mitsunari,
Sakai, and Kasahara for a traitor tracing scheme [MSK02].
The �-Strong Diffie-Hellman (�-SDH) Problem. Given g and gαi

in
G for i = 1, 2, . . . , �, compute gα�+1

. This problem is considered as a weaker
version of �-wDH problem. It was first introduced by Boneh and Boyen to
construct a short signature scheme, that is provably secure in the standard
model (without random oracles) [BB04s], and later a short group signature
scheme [BBS04].

The SDH problem is generalized into a group with bilinear maps. We further
assume that e : G × G → G′ is an admissible bilinear map between two abelian
groups G and G′ with prime order p.

The �-Bilinear Diffie-Hellman Inversion (�-BDHI) Problem. Given
g and gαi

in G for i = 1, 2, . . . , �, compute e(g, g)1/α ∈ G′. This problem was
introduced by Boneh and Boyen to construct an identity-based encryption
that is secure in the standard model [BB04e]. It is also used to construct
verifiable random functions [DY05].
The �-Bilinear Diffie-Hellman Exponent (�-BDHE) Problem. Given
g, h, and gαi

(i = 1, 2, . . . , � − 1, � + 1, . . . , 2�) in G, compute e(g, h)α� ∈
G′. This problem was introduced by Boneh, Boyen, and Goh [BBG05] to
construct a hierarchical identity-based encryption scheme with constant size
ciphertext, and later used for a public key broadcast encryption scheme with
constant size transmission overhead [BGW05].

Given two problem instances A and B, we denote by A ≥ B if the problem B
can be solved in polynomial time with polynomially many queries to the oracle
to solve the problem A. Then we can easily deduce the following relations among
the DL related problems [BBG05]:

DL ≥ CDH ≥ DDH ≥ �-wDH ≥ �-SDH ≥ �-BDHI, (� + 1)-BDHE.

3 Main Results

Theorem 1. Let g be an element of prime order p in an abelian group. Sup-
pose that d is a positive divisor of p − 1. If g, g1 := gα and gd := gαd

are
given, α can be computed in O(log p · (

√
(p − 1)/d +

√
d)) group operations

using O(max{√(p − 1)/d,
√

d}) memory.

Proof. Note that Z∗
p is a cyclic group with φ(p − 1) generators, where φ(·) is

the Euler totient function. Since a random element in Z∗
p is a generator with

probability
φ(p − 1)
(p − 1)

>
1

6 log log(p − 1)
,

4 J.H. Cheon

which is large enough [MOV, p.162], we can easily take a generator of Z∗
p. Let

ζ0 be a generator of Z∗
p. Then we compute ζ = ζd

0 that is an element of order
(p − 1)/d in Z∗

p.
Since (αd)(p−1)/d = 1 and ζ generates all (p − 1)/d-th roots of unity in Z∗

p,
there exists a non-negative integer i less than (p − 1)/d such that αd = ζi. If we
take d1 = �√(p − 1)/d�, we must have

(αd)ζ−u = ζd1v

for some 0 ≤ u, v < d1. It is equivalent to

gζ−u

d = gζd1v

. (1)

We compute and store the left-hand side terms and compare them with each of
right-hand side terms in Baby-Step Giant-Step style. Note that each of terms in
both sides can be computed by repeated exponentiations by either ζ−1 or ζd1 .
Thus we can find all non-negative integers u and v less than d1 satisfying (1) in
O(d1 · log p) group operations using O(d1) memory. For u and v which satisfies
(1) and u + d1v is smallest, we put k0 = u + d1v. Then k0 is a non-negative
integer less than (p − 1)/d.

Let α = ζk
0 for 0 ≤ k < p − 1. Then we have dk ≡ dk0 mod (p − 1) and so

k ≡ k0 mod (p − 1)/d. There exists a non-negative integer j less than d such
that k = k0 + j(p − 1)/d. If we take d2 = �√d�, we must have

αζ
−u′(p−1)/d
0 = ζ

k0+d2v′(p−1)/d
0

for some 0 ≤ u′, v′ < d2. It is equivalent to

g
ζ

−u′(p−1)/d
0

1 = gζ
k0+d2v′(p−1)/d
0 . (2)

By the same method as above, we can find non-negative integers u′ and v′ less
than d2 satisfying (2) in O(d2 · log p) group operations and O(d2) memory. This
completes the proof.
�
We remark that the memory requirement of the above algorithm can be reduced
by using Pollard’s lambda techniques [Pol78]. We use the notation of Theorem 1
to sketch the idea: First we consider a function F : Zp → Zp with F (x) = xζf(gx)

for a pseudo-random function f : 〈g〉 → Z(p−1)/d. For β ∈ Zp and t ≥ 1, gF t(β)

can be computed from g and gβ in O(t log p) group operations by using

gF (β) =
(
gβ

)ζf(gβ)

and gF i(β) =
(
gF i−1(β)

)ζf(gF i−1(β))

if i ≥ 2.

If we find u, v such that gF u(αd) = gF v(1), we have Fu(αd) = F v(1) in Zp and so

αdζ
u
i=1 f(gF i−1(β)) = ζ

v
j=1 f(gF i−1(1)).

Security Analysis of the Strong Diffie-Hellman Problem 5

Hence if we store only distinguished points [Tes98], αd can be computed in
O(

√
(p − 1)/d) exponentiations using small memory with some probability. The

second part to compute α from gα and αd can be done using similar technique.

If we know gα(p−1)/d

for many small d, we can do even better:

Corollary 1. Let g be an element of prime order p in an abelian group. Suppose
that p−1 = d1d2 · · ·dt for pairwise prime di’s. If g and g(p−1)/di

:= gα(p−1)/di for
1 ≤ i ≤ t are given, α can be computed in O(log p · ∑t

i=1

√
di) group operations

using O(max1≤i≤t

√
di) memory.

Proof. Let ζ be a generator of Z∗
p and α = ζk. Since (α(p−1)/di)di = 1, there

must be a non-negative integer ki less than di satisfying α(p−1)/di = (ζ(p−1)/di)ki .
Hence by checking

g(p−1)/di
= g(ζ(p−1)/di)ki for 0 ≤ ki < di

or (
g(p−1)/di

)(ζ(p−1)/di)−ui

= g(ζ(p−1)/di)�√di�vi for 0 ≤ ui, vi < �
√

di�.
we can compute ki in O(log p · √

di) group operations using O(
√

di) memory.
Since k satisfies k ≡ ki mod di, we can compute k by performing the above
step for 1 ≤ i ≤ t and using Chinese Remainder Theorem. The total complexity
is O(log p · ∑t

i=1

√
di) using O(max1≤i≤t

√
di) memory.
�

Next, we use an imbedding of Zp into Fp2 to generalize Theorem 1.

Theorem 2. Let g be an element of prime order p in an abelian group. Suppose
that d is a positive divisor of p + 1 and gi := gαi

for i = 1, 2, . . . , 2d are given.
Then α can be computed in O(log p · (

√
(p + 1)/d + d)) group operations using

O(max{√(p + 1)/d,
√

d}) memory.

Proof. Let a be a quadratic non-residue in Zp and θ be a root of x2 = a in an
algebraically closed field of Zp. Then Zp[θ] ∼= Fp2 . Let H be a subgroup of order
p + 1 of Fp2 . Since β ∈ H is equivalent to βp+1 = 1, we see that β0 + β1θ is an
element of H for β0 = (1+ aα2)/(1− aα2) and β1 = 2α/(1− aα2) from θp = −θ
and

βp+1 = (β0 + β1θ)(β0 + β1θ
p) = β2

0 − aβ2
1 . (3)

Let ζ0 be a generator of H (for example, the (p + 1)-th power of a generator
of F∗

p2). Then ζ := ζd
0 generates all the (p + 1)/d-th roots of unity and so there

must be some k ∈ Z such that βd = ζk and 0 ≤ k < (p + 1)/d. For convenience,
we denote ζi = si + tiθ for some si, ti ∈ Zp where the index i is defined modulo
(p + 1)/d. Also we denote

βd = (β0 + β1θ)d =
1

(1 − aα2)d
(f0(α) + f1(α)θ),

6 J.H. Cheon

where fi’s are polynomials of degree 2d. Then we must have

βdζ−u = ζd1v (4)

for some 0 ≤ u, v < d1 := �√(p + 1)/d�. It is equivalent to

(f0(α)s−u+af1(α)t−u)+(f0(α)t−u+f1(α)s−u)θ = (1−aα2)d(sd1v+td1vθ). (5)

Hence we compute (gf0(α)s−u+af1(α)t−u), gf0(α)t−u+f1(α)s−u) for all 0 ≤ u < d1

and store them. By comparing them with (g(1−aα2)dsd1v , g(1−aα2)dtd1v) for each
0 ≤ v < d1, we can find the (unique) non-negative integers u and v less than
d1 satisfying (4) and u + d1v < (p + 1)/d. We put k0 = u + d1v. Note that
gf0(α), gf1(α) and g(1−aα2)d

can be computed from g, g1, . . . , g2d in 6d exponenti-
ations. Hence k0 can be found in O(log p · (6d +

√
(p + 1)/d)) group operations

with O(
√

(p + 1)/d) memory.
Let β = ζk

0 for 0 ≤ k < p + 1. Then we have k ≡ k0 mod (p + 1)/d. There
exists a non-negative integer j less than d such that k = k0+j(p+1)/d. If we take
d2 = �√d�, there must exist non-negative integers u′, v′ less than d2 such that

βζ
−u′(p+1)/d
0 = ζ

k0+d2v′(p+1)/d
0 . (6)

We denote ζ
−i(p+1)/d
0 = s′i + t′iθ and ζ

k0+d2i(p+1)/d
0 = s′′i + t′′i for some s′i, t

′
i, s

′′
i , t′′i

∈ Zp where the index i is defined modulo (p + 1). Then (6) is equivalent to

((1 + aα2)su′ + 2aαtu′) + ((1 + aα2)tu′ + 2αsu′)θ = (1 − aα2)(sv′ + tv′θ). (7)

Hence we compute (g(1+aα2)su′+2aαtu′ , g(1+aα2)tu′+2αsu′) for all 0 ≤ u′ < d2

and store them. By comparing them with (g(1−aα2)sv′ , g(1−aα2)tv′) for each 0 ≤
v′ < d2, we can find non-negative integers u′ and v′ satisfying (6). That is,
β = ζ

k0+(u′+d2v′)(p+1)/d
0 can be found in O(log p · √

d) group operations and
O(

√
d) memory. This completes the proof.
�

We remark that if d ≤ p1/3, then Theorem 2 says that the secret can be computed
in O(log p · √p/d)) group operations using O(

√
p/d) memory.

Remark 1. We may consider that our proof utilizes Diffie-Hellman oracles in a
very restricted way [Boe88, MW99]. That is, in our situations we can use the Diffie-
Hellman oracle DH(gx, gy) = gxy only when x is fixed and y = x� for some small
�. This restriction is an obstacle when we try to generalize the proposed algorithm
into other extension fields of Fp or elliptic or hyperelliptic curves over Fp.

4 Analysis of Cryptographic Schemes Based on the
Diffie-Hellman Problem

4.1 Blind Signature Based on the GDH Assumption

The Gap-Diffie-Hellman (GDH) group is an abelian group on which there is an
polynomial time algorithm to solve the decisional Diffie-Hellman problem and
there is no polynomial time algorithm to solve the computation Diffie-Hellman
problem.

Security Analysis of the Strong Diffie-Hellman Problem 7

Boldyreva proposed a blind signature scheme on a Gap-Diffie-Hellman group
[Bol03]. The scheme is as follows: Let G be a GDH group of prime order p and g
a generator of G. Let H : {0, 1}∗ → G be a full domain hash function [BLS01]. A
signer has a private key x ∈ Zp and the corresponding public key y = gx. In order
to blindly sign a message m ∈ {0, 1}∗, a user picks a random k ∈ Z∗

p, computes
M ′ = H(m)gk, and sends it to the signer. The signer computes σ′ = (M ′)x and
sends it back to the user. Then the user computes the signature σ = σ′/yk(=
H(m)x) of the message m.

This scheme is shown to be secure against one-more forgery under chosen
message attacks in the random oracle model [Bol03], that is the standard security
notion for blind signature schemes. However, since the signer does not have any
information on the message to be signed, we may use this blind signing phase as
a Diffie-Hellman oracle and so reduce the security of this scheme under chosen
message attacks: A chosen-message attacker A takes a random γ1 ∈ Zp and
requests a signature on the message y · gγ1 . From the signature σ1 = (y · gγ1)x,
A obtains g2 := gx2

= σ1/yγ1. Second, A takes another random γ2 ∈ Zp and
requests a signature on the message g2 · gγ1 . From the signature σ2 = (g2 · gγ2)x,
A obtains g3 := gx3

= σ2/yγ2. If � signature queries are allowed, A repeats
this procedure � times to obtain g1, g2, . . . , g�+1 (gi := gxi

). By Theorem 1
and 2, if p − 1 has a divisor d ≤ min{� + 1, p1/2} or p + 1 has a divisor d ≤
min{(�+1)/2, p1/3}, the secret key x can be computed in O(

√
p/d). That is, the

security of the scheme is reduced by O(
√

d) from that of the GDH assumption.
We note that the attack does not imply that the security proof of the scheme

is wrong, but that more quantitative analysis on security reduction is required.
In fact, the security proof of BLS signatures on which the Boldyreva’s blind
signature scheme is based shows that the advantage of an adversary can be
increased by qS when qS signature queries are allowed [BLS01].

This method can be applied similarly to schemes which respond by its secret
key power for an unknown message. For example, the conference keying protocol
by Burmester-Desmedt has this property [BD94]. Thus, in this case, we need to
take the order carefully or raise the security parameter.

4.2 Original ElGamal Encryption Scheme

We briefly introduce the original ElGamal encryption scheme in a generalized
form: Let G be an abelian group of prime order p and g a generator of G.
Suppose the secret key and the public key of the recipient is x ∈ Zp and gx,
respectively. To encrypt a message m ∈ G, a sender takes a random k ∈ Zp and
sends a ciphertext (c1, c2) := (gk, mgx) to the recipient. The recipient recovers
the message m by computing c2/cx

1 .
The ElGamal encryption is known not to satisfy non-malleability under cho-

sen ciphertext attacks (Refer to the appendix in [ABR98]). That is, given a
decryption oracle any target ciphertext can be decrypted without feeding itself
to the decryption oracle. Here we show that the decryption oracle enables not
only a decryption of any target ciphertext without the secret key, but also a
reduction of the complexity to compute the secret key in some cases.

8 J.H. Cheon

As in the previous subsection, first a chosen ciphertext attacker A takes ran-
dom numbers k1, k2 ∈ Zp, requests a decryption of the ciphertext (c1, c2) :=
(yk, yk′

) to the decryption oracle, and obtains c2/cx
1 = gxk′ · gx2k. Since he

knows k, k′ and gx, A can compute g2 := gx2
. By taking different random pairs

(k, k′) and replacing y by g2, A can obtain g3 := gx3
similarly. By repeating

this procedure � times, A can obtain g1, g2, . . . , g� (gi := gxi

) when � decryption
queries are allowed. By Theorem 1 and 2, if p − 1 has a divisor d ≤ min{�, p1/2}
or p + 1 has a divisor d ≤ min{�/2, p1/3}, the secret key x can be computed in
O(

√
p/d).

We might imagine a situation that this attack is harmful: One uses the original
ElGamal encryption scheme, to encrypt not so important messages, with another
cryptosystem having the same secret key. Then the secret key may be revealed
from the original ElGamal encryption scheme and so the other system can be
insecure. This shows that the original ElGamal scheme must not share the same
secret key with another system.

5 Practicality of the Proposed Algorithm

In this section, we discuss the potential of the proposed algorithms. The algo-
rithm in Theorem 1 has complexity O(log p · (√(p − 1)/d +

√
d)) for a divisor d

of p − 1. The complexity achieves the minimum value O(log p · p1/4) when d =
O(p1/2). The algorithm in Theorem 2 has complexity O(log p · (√(p − 1)/d+d))
for a divisor d of p+1. The complexity achieves the minimum value O(log p·p1/3)
when d = O(p1/3). Hence the security of the �-SDH problem on an abelian group
of order p can be reduced up to O(log p · p1/4) (resp. O(log p · p1/3)) for large �
if p − 1 (resp. p + 1) has a divisor d = O(p1/2) (resp. d = O(p1/3)).

Now we give an example in which security reduction due to our algorithm
yields a serious security problem.

Example 1. We consider the situation that E+(F397) [BLS01] is used for the
broadcast encryption scheme [BGW05]. E+(F397) has a subgroup G of 151 bit
prime order p. Let g be a generator of G and α ∈ Zp be the system secret. The
scheme assuming n users publishes g and gi := gαi

for 0 ≤ i ≤ 2n, i �= n. Using
a non-degenerate bilinear map e on G, we can compute e(g, g)αi

for all non-
negative integers i ≤ 4n. Using Pollard ρ method [Pol78], the secret key can be
found in O(276) group operations. But if we apply the proposed algorithm, it is
reduced to about O(259) exponentiations or O(267) group operations for n = 232.
Furthermore, if we use n = 264 as in the file sharing application [BGW05], the
complexity is reduced to O(242) exponentiations or O(250) group operations.

We remark that in order to give 280 security for the system with 264 users, it
is recommended to take the group of about 220 bit prime order unless p is of a
special form.

Most cryptosystems based on SDH-related problems make use of bilinear maps.
For practice, we investigate some known elliptic curve parameters and show that

Security Analysis of the Strong Diffie-Hellman Problem 9

either p − 1 or p + 1 has many small divisors for the largest prime divisor p of
the order for each elliptic curve in [NIST, BLS01, KM05, MIRACL].

NIST curves. NIST suggested several elliptic curves for federal government
use [NIST]. They consist of three categories: Pseudo-random curves over a prime
field, a pseudo-random curve over a binary field, and a Koblitz curve over a
binary field. For most of them, the largest prime divisor p has the property that
either p − 1 or p + 1 has enough small divisors. We present some of them:

– B-163: p−1 = 2 ·53 ·383 ·21179· (a 132 bit prime), which is a 163 bit integer.
– K-163: p − 1 = 24 · 43 · 73· (a 16 bit prime) · (an 18 bit prime) · (a 112 bit

prime), which is a 163 bit integer.
– P -192: p − 1 = 24 · 5 · 2389· (an 83 bit prime) · (a 92 bit prime), which is a

192 bit integer.

We note that P -192 gives the smallest security loss, that is 8 bits, if the
parameter � in the SDH problem is less than 83 bits. Otherwise, however, the
security loss for P -192 can be more than 40 bits.

Elliptic curves with embedding degree 6. Boneh, Lynn and Shacham sug-
gested two families of elliptic curves with embedding degree 6 for short signa-
tures [BLS01]: E+ : y2 = x3 + 2x + 1 and E− : y2 = x3 + 2x − 1 over F3.
We consider E+ or E− over F3λ . We denote by p the largest prime factor of
E±(F3λ).

– E+(F397): p − 1 = 2 · 349 · 24127552321 · 21523361 · 76801, which is a 151 bit
integer.

– E+(F3121): p − 1 = 2 · 3 · 112 · 683 · 6029· (a 123 bit prime), which is a 155
bit integer.

Koblitz-Menezes curves. Koblitz and Menezes [KM05] suggested seven su-
persingular elliptic curve parameters for pairing based cryptography. If we de-
note by p the order of the group to be used in cryptosystems, either p + 1 or
p − 1 has divisor 2i for i ≥ 60 in all cases except one. The exceptional case is
p = 2160 + 23 − 1. In this case, however, p − 1 = 2 · 29 · 227 · 27059· (a 37 bit
prime) · (a 94 bit prime).

Elliptic curves in MIRACL library. MIRACL library [MIRACL] provides
a sample parameter for pairing-friendly elliptic curves. The order of the group
is p = 2159 + 217 + 1. Then p − 1 has the following prime factorization: p − 1 =
217 · 5 · 569· (a 27 bit prime) · (a 32 bit prime) · (a 32 bit prime) · (a 39 bit
prime).

We can see that our algorithm can be applied for all the examples above.
We note that our algorithm is more plausible for pairing-friendly curves in-
cluding Koblitz-Menezes curves and MIRACL library curves because a curve
with an order of small Hamming weights in signed binary form admits efficient

10 J.H. Cheon

implementation of Weil or Tate pairing. In most cases, however, it is neces-
sary and seems hard to find a prime p such that both of p − 1 and p + 1
have no small divisor greater than (log p)2. We may consider Gordon’s algo-
rithm [Gor84] to generate strong primes which resist against the proposed al-
gorithms. Basically, the algorithm is to find a prime of the form p = 2(pp2−2

1
mod p2)p1−1+p1p2k where p1 and p2 are primes of equal size and k is an integer.
Then we have p1|p+1 and p2|p−1. But this algorithm usually yields a prime much
larger than p1 and p2. It would be an interesting problem to find elliptic curve
parameters for which the security loss of the SDH is minimized.

6 Conclusion and Further Studies

In this paper, we proposed a novel algorithm to solve the SDH-related problems.
More precisely, given an element g of prime order p in an abelian group and a
secret α ∈ Zp, if gαi

(0 ≤ i ≤ �) are published for the secret α, the complexity
to recover α can be reduced by a factor of

√
d from that of the DLP, where d

is the maximum of the largest divisor of p − 1 not exceeding min{�, p1/2} and
the largest divisor of p + 1 not exceeding min{�/2, p1/3}. This algorithm can be
used to attack cryptographic schemes that admit an oracle to return its secret
key power upon an arbitrary input.

Hence, if a cryptographic scheme or protocol is based on a variant of �-SDH
problems or allows such an oracle by � times, it is recommended to increase the
key size or use a prime p such that both of p+ 1 and p − 1 have no small divisor
greater than (log p)2. However, we have no idea about the distribution of such
primes.

We may try to generalize the proposed algorithms as in [MW99]. One problem
is to find an embedding of Fp to some other groups including extension fields of
Fp and elliptic or hyperelliptic curves over Fp.

Acknowledgement. I am grateful to Dong Hoon Lee and Taekyoung Kwon
for helpful discussions and JaeHong Seo for his implementation. I would also like
to thank the anonymous reviewers for their valuable suggestions.

References

[ABR98] M. Abdalla, M. Bellare, and P. Rogaway, “DHAES: An encryption scheme
based on Diffie-Hellman problem,” IEEE P1363a Submission, 1998, Avail-
able at http://grouper.ieee.org/groups/1363/addendum.html.

[BB04e] D. Boneh and X. Boyen,“Efficient Selective-ID Secure Identity-Based
Encryption Without Random Oracles,” Eurocrypt 2004, LNCS 3027,
Springer-Verlag, pp. 223-238, 2004.

[BB04s] D. Boneh and X. Boyen, “Short Signatures Without Random Oracles,”
Eurocrypt 2004, LNCS 3027, Springer-Verlag, pp. 56-73, 2004.

[BBG05] D. Boneh, X. Boyen, and E. Goh, “Hierarchical Identity Based Encryption
with Constant Size Ciphertext,” Eurocrypt 2005, LNCS 3494, Springer-
Verlag, pp. 440-456, 2005.

Security Analysis of the Strong Diffie-Hellman Problem 11

[BBS04] D. Boneh, X. Boyen, and H. Shacham, “Short Group Signatures,” Crypto
2004, LNCS 3152, Springer-Verlag, pp. 41-55, 2004.

[BD94] M. Burmester and Y. Desmedt, “A Secure and Efficient Conference Key
Distribution System (Extended Abstract),” Eurocrypt 1994, LNCS 950,
Springer-Verlag, pp. 275-286, 1994.

[BGW05] D. Boneh, C. Gentry, and B. Waters. “Collution Resistant Broadcast En-
cryption with Short Ciphertexts and Private Keys,” Crypto 2005, LNCS
3621, Springer-Verlag, pp. 258-275, 2005.

[BLS01] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the Weil
Pairing,” J. of Cryptology, Vol. 17, No. 4, pp. 297-319, 2004. Extended
abstract in proceedings of Asiacrypt ’01, LNCS 2248, Springer-Verlag, pp.
514-532, 2001.

[Boe88] B. den Boer, “Diffie-Hellman is as Strong as Discrete Log for Certain
Primes,” Crypto ’88, LNCS 403, Springer-Verlag, pp. 530-539, 1989.

[Bol03] A. Boldyreva, “Threshold Signatures, Multisignatures and Blind Signatures
Based on the Gap-Diffie-Hellman-Group Signature Scheme,” Public Key
Cryptography 2003, LNCS 2567, pp. 31-46, 2003.

[DY05] Y. Dodis and A. Yampolskiy, “A Verifiable Random Function with Short
Proofs and Keys,” Public Key Cryptography 2005, LNCS 3386, pp.
416-431, 2005.

[ElG85] T. Elgamal, “A Public Key Cryptosystem and a Signature Scheme based
on Discrete Logarithms,” IEEE Transactions on Information Theory, Vol.
31, no 4, pp. 469-472, 1985.

[Gor84] J. Gordon, “Strong Primes are Easy to Find,” Eurocrypt ’84, LNCS 209,
Springer-Verlag, pp. 216-223, 1984.

[KM05] N. Koblitz and A. Menezes, “Pairing-based Cryptography at High Security
Levels,” IMA Conference of Cryptography and Coding 2005, pp. 13-36,
2005.

[MIRACL] M. Scott, Multiprecision Integer and Rational Arithmetic C/C++ Library,
Available at http://indigo.ie/~mscott/.

[MOV] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, 1996.

[MSK02] S. Mitsunari, R. Sakai, and M. Kasahara, “A New Traitor Tracing,” IEICE
Trans. Fundamentals, Vol. E85-A, no. 2, pp. 481-484, 2002.

[MW99] U. Maurer and S. Wolf, “The Relationship Between Breaking the Diffie-
Hellman Protocol and Computing Discrete Logarithms,” SIAM J. Comput.,
Vol. 28, no. 5, pp. 1689-1721, 1999.

[NIST] Recommended Elliptic Curves for Federal Government Use, Available at
http://csrc.nist.gov/CryptoToolkit/dss/ecdsa/NISTReCur.pdf, 1999.

[Pol78] J. Pollard, “Monte Carlo Methods for Index Computation (mod p),” Math-
ematics of Computation, Vol. 32, pp. 918-924, 1978.

[Sho97] V. Shoup, “Lower bounds for Discrete Logarithms and Related Problems,”
Eurocrypt ’97, LNCS 1233, Springer-Verlag, pp. 256-66, 1997.

[Tes98] E. Teske, “Speeding up Pollard’s Rho Method for Computing Discrete Log-
arithms,” Algorithmic Number Theory Symposium III, LNCS 1423, pp.541-
554, 1998.

Cryptography in Theory and Practice: The Case
of Encryption in IPsec�

Kenneth G. Paterson and Arnold K.L. Yau��

Information Security Group, Royal Holloway, University of London,
Egham, Surrey, TW20 0EX, United Kingdom

{kenny.paterson, a.yau}@rhul.ac.uk

Abstract. Despite well-known results in theoretical cryptography high-
lighting the vulnerabilities of unauthenticated encryption, the IPsec
standards mandate its support. We present evidence that such “encry-
ption-only” configurations are in fact still often selected by users of
IPsec in practice, even with strong warnings advising against this in
the IPsec standards. We then describe a variety of attacks against such
configurations and report on their successful implementation in the case
of the Linux kernel implementation of IPsec. Our attacks are realistic in
their requirements, highly efficient, and recover the complete contents of
IPsec-protected datagrams. Our attacks still apply when integrity pro-
tection is provided by a higher layer protocol, and in some cases even
when it is supplied by IPsec itself.

Keywords: IPsec, integrity, encryption, ESP.

1 Introduction

The need for authenticated encryption is well understood in the cryptographic
research community – see for example [4, 5, 14]. High-profile examples where the
lack of strong integrity checks is known to lead to attacks or where inappro-
priate use of integrity mechanisms still leaves systems vulnerable are plentiful
[3, 6, 7, 8, 28, 30]. However the process of adopting authenticated encryption in
fielded systems is slower. Naturally, it takes time to translate theory into stan-
dards, standards into products and finally, for users to take up the latest versions
of products. There is also resistance to change without clear and easily-absorbed
evidence that such change is imperative. Attacks in the cryptographic litera-
ture can be rather technical and difficult for non-experts to understand. In some
cases, it may also be that the attacks are not perceived by users as having a high
impact. Theoreticians are rightly concerned about attacks on indistinguishability
of ciphertexts, but users are perhaps less so. Attacks requiring huge numbers of

� The work described in this paper was partly supported by the European Commission
under contract IST-2002-507932 (ECRYPT). An extended version is available [25].

�� This author supported by EPSRC and Hewlett-Packard Laboratories Bristol through
CASE award 01301027.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 12–29, 2006.
c© International Association for Cryptologic Research 2006

Cryptography in Theory and Practice: The Case of Encryption in IPsec 13

chosen plaintexts are interesting to theoreticians, but may not unduly concern
practitioners. Attacks on paper are easier to dismiss than fully demonstrated
attacks that work in practice against deployed systems.

In this paper, our focus is on the use of integrity protection and encryption
in IPsec, a widely-used suite of protocols providing security for IP. We provide
a short introduction to IPsec in Section 2. Bellovin [6] was the first to point
out that the lack of integrity protection in the first version of IPsec’s encryption
protocol ESP (Encapsulating Security Payload) [1] leads to security weaknesses.
However, the attacks in [6] are actually quite limited in their practical impact. A
close examination of [6] shows that the attacks presented in [6, Sections 3.1 and
3.2] only work in the rather unrealistic scenario where the attacker has access to
accounts on the two network hosts performing the IPsec processing. The other
concrete attack in [6] is contained in Section 3.8 and is attributed to Wagner. It
recovers just a single byte of plaintext, from datagrams having special formats,
and then only if 224 ciphertexts matching chosen plaintexts are available to the
attacker. Moreover, the attacks in [6] (and the related paper [22]) are really only
sketches of what might be possible rather than fully implemented, working at-
tacks: they are examples of “attacks in theory”. Nevertheless, Bellovin’s attacks
are well-known in the cryptographic and IPsec standards communities, and are
cited in subsequent versions of the ESP standards [16, 18]. The version in current
use, [16], refers to [6] when warning of the dangers of using encryption without
additional integrity protection, and requires support for integrity protection.
However it also mandates that any implementation of ESP must include sup-
port for encryption-only processing. This surely illustrates the chasm that exists
between the theory and practice of cryptography. Note that the developers of
[16] did have good practical reasons (backward compatibility and performance)
for mandating support for an encryption-only mode.

It is our belief that the availability of the encryption-only option in IPsec
has led users into actually using it, in spite of Bellovin’s work. After all, users
do not typically read RFCs or research papers, and an inexperienced network
administrator might reasonably believe that it is sufficient to use an encryption
algorithm on its own to provide confidentiality for data, especially when selecting
from amongst the myriad of IPsec options. (This point is also made in [10].)
We have found several on-line tutorials showing how to configure IPsec VPNs
using ESP for encryption with no additional integrity protection.1 After the
release of the vulnerability announcement [24] describing our attacks, we became
aware that some vendors were aware of Bellovin’s work and had taken steps to
prevent the selection of encryption-only configurations, but others were much less
well-informed, or less concerned.

1.1 Our Contribution

We present new attacks against the encryption-only configuration of IPsec that
are as realistic and devastating as possible, with the aim of finally convincing
1 See for example: http://www.netbsd.org/Documentation/network/ipsec and
http://lartc.org/howto/lartc.ipsec.tunnel.html

14 K.G. Paterson and A.K.L. Yau

users not to select it. In this respect, our attacks have several attractive fea-
tures. Firstly, they are ciphertext-only attacks. Thus they do not require any
special operating conditions under which, for example, the ciphertexts matching
chosen plaintexts are generated. Nor do they require large amounts of cipher-
text to be successful: the attacks can be mounted given only a single encrypted
datagram. Secondly, the attacks merely require the attacker to be able to inject
IP datagrams into the network and intercept certain responses. Some variants
of our attacks even enable these responses to be sent directly to the attacker’s
machine. Thirdly, the attacks are very efficient. For example, one variant that
we have implemented requires the injection of only a handful of datagrams to
recover the complete contents of a datagram encrypted using AES. Fourthly,
the attacks are flexible, with a range of variants being applicable in different
circumstances. And finally, we have written an attack client which shows that
the attacks work in practice against the native implementation of IPsec in Linux.
For example, our client effectively allows a real-time cryptanalysis of encryption-
only IPsec when AES is used as the encryption algorithm. In all these senses,
our attacks improve on the pioneering work of Bellovin [6].

Our work also has consequences for the newly published version of ESP [18].
This RFC no longer requires mandatory support for encryption-only, and re-
peats the advice of [16] concerning the need for integrity protection, but then
goes on to say: “ESP allows encryption-only [...] because this may offer consid-
erably better performance and still provide adequate security, e.g., when higher
layer authentication/integrity protection is offered independently.” It is already
known in theory that applying authentication followed by encryption to build
an authenticated encryption scheme does not result in a generically secure con-
struction [19]. We demonstrate that relying on higher layers for the provision
of integrity in IPsec is inherently insecure in practice as well. Some of our at-
tacks even apply to configurations using the IPsec protocol AH (Authentication
Header) for integrity protection.

More generally, our attacks provide a stark illustration, should one still be re-
quired, of the general need to make appropriate use of authenticated encryption
in fielded systems. We hope that this paper will also be of use to theoreticians
in the field of authenticated encryption searching for convincing real-world ex-
amples to motivate their work.

A further theme of this paper is to illustrate the gaps that exist between
cryptography as studied in theory, as defined in standards, as implemented by
software engineers, and as actually consumed by users. For example, we have
already commented on the differences in viewpoints of theoreticians and users,
and how this can lead to the use of encryption-only ESP in practice. As another
example, our attacks should in fact be prevented by any RFC-compliant imple-
mentation of IPsec, because of some seemingly innocuous post-processing checks
specified in the architectural standard for IPsec [15]. Yet the native Linux ver-
sion of IPsec fails to implement these checks. Drawing on our experiences with
IPsec, we make some recommendations which we hope will help to bridge these
gaps.

Cryptography in Theory and Practice: The Case of Encryption in IPsec 15

2 Background

2.1 IPsec

IPsec, as defined in RFCs 2401–2412, provides security at the IP layer. The in-
terested reader is invited to consult [9, 12] for accessible introductions to IPsec.
Implementations of IPsec exist in Microsoft Windows XP, in the Linux kernel
from release 2.6 onwards.2 Various other open source projects are also developing
IPsec implementations and IPsec is widely supported in commercial network-
ing hardware. The IPsec protocols provide data confidentiality, integrity protec-
tion, data origin authentication and anti-replay services as well as supporting
automated key management.

The IPsec protocols can be deployed in two basic modes: transport and tunnel.
In tunnel mode, on which we focus here, cryptographic protection is provided for
entire IP datagrams. In essence, a whole datagram plus security fields is treated
as the new payload of an outer IP datagram, with its own header, called the outer
header. The original, or inner, IP datagram is said to be encapsulated within the
outer IP datagram. In tunnel mode, IPsec processing is typically performed at
security gateways on behalf of endpoint hosts. The gateways could be perimeter
firewalls or routers.

IPsec provides authentication and integrity protection and/or confidential-
ity services through the AH and ESP protocols. Our focus here is on the ESP
protocol, as defined in [16, 18]. ESP is normally invoked to provide confiden-
tiality, and usually makes use of a block cipher algorithm operating in CBC
mode. In tunnel mode, the entire inner IP datagram is encrypted and forms
part of the payload of the outer IP datagram. The use in ESP of a variety
of block ciphers has been specified, including DES [21], triple-DES [26] and
AES [11]. ESP in tunnel mode inserts security information in the form of a
header between the outer IP header and the encrypted version of the inner
datagram. This ESP header indicates which algorithms and keys were used to
protect the payload in a 32-bit field called the Security Parameters Index (SPI).
The ESP header also contains a 32-bit sequence number to prevent packet re-
plays; when ESP is used with encryption-only, this sequence number is simply
ignored by IPsec implementations (as it is not protected in any way). ESP in
tunnel mode may also append an authentication field after the encrypted por-
tion. This contains a MAC value if ESP’s optional integrity protection features
are in use.

Further discussion of IPsec configuration and the combined usage of AH and
ESP in tunnel and transport modes is beyond the scope of this paper. IPsec
provides an automated key management service through the Internet Key Ex-
change (IKE) [13]. We will simply assume that key establishment for ESP has
taken place, either manually or using IKE.

2 All further references to Linux in this paper refer to official release 2.6.8.1 of the
Linux kernel from http://kernel.org.

16 K.G. Paterson and A.K.L. Yau

2.2 CBC Mode Encryption in ESP

We outline how CBC mode is used by ESP in tunnel mode. For more details, see
[16, 21, 11, 26]. First of all, the original (inner) datagram that is to be protected
is treated as a sequence of bytes. This sequence is padded and then a single Next
Header byte is appended. It is permissible for the padding to be of variable length
and to extend over multiple blocks. We assume throughout that the minimum
amount of padding is used, though our attacks are easily modified to handle
variable length padding. Let us assume that the byte sequence after padding
consists of q blocks, each of n bits. We denote these blocks by P1, P2, . . . , Pq. We
use K to denote the key used for the block cipher algorithm and eK(·) (dK(·))
to denote encryption (decryption) of blocks using key K. An n-bit initialization
vector, denoted IV , is selected at random. Then ciphertext blocks are generated
according to the equations:

C0 = IV, Ci = eK(Ci−1 ⊕ Pi), (1 ≤ i ≤ q).

The encrypted portion of the outer datagram is then defined to be the sequence
of q + 1 blocks C0, C1, . . . , Cq.

At the receiving security gateway, the payload of the outer datagram can be
recovered using the equations: Pi = Ci−1 ⊕ dK(Ci), 1 ≤ i ≤ q. Any padding and
the Next Header byte can then be stripped off. At this point, Section 5.2 of the
IPsec architectural RFC [15] mandates that implementations should check that
the cryptographic processing performed to recover the inner datagram does in
fact match that specified in local IPsec policies. Presumably, if the check fails,
the datagram should be dropped, though this is not made explicit in [15].3 In the
Linux kernel implementation of IPsec, the inner datagram is passed directly to
the IP software on the receiving gateway, without any policy checks being per-
formed. This IP software usually just routes the inner datagram to the intended
destination specified in the destination address of the inner datagram.

2.3 Bit Flipping Attacks

CBC mode has a well-known weakness, commonly known as the bit flipping vul-
nerability. Suppose an attacker captures a CBC mode ciphertext C0, C1, . . . , Cq,
then flips (inverts) a specific bit j in Ci−1 and injects the modified ciphertext
into the network. Upon receipt and decryption, this bit flip is transformed into
a bit flip in position j in the plaintext block Pi. This can be seen by examining
the decryption equation Pi = Ci−1 ⊕ dK(Ci). Thus an attacker can introduce
controlled changes into the value of block Pi seen by the decrypting party, simply
by flipping bits in Ci−1 and injecting modified ciphertexts.

Of course, a problem for the attacker is that any modification to Ci−1 typically
results in a value of Pi−1 that is effectively randomized. On the other hand, if the
modification is made in C0 (equal to IV), then no damage to plaintext blocks
will result.
3 Note that these checks are not specified in the ESP RFCs [16, 18]. The requirement

to drop datagrams has now been made explicit in [17].

Cryptography in Theory and Practice: The Case of Encryption in IPsec 17

2.4 IP Datagram Headers

The execution of our attacks on ESP in tunnel mode depends in a detailed way
on the structure of the headers of IP datagrams and on the order in which the
fields of these headers are processed. We focus here only on IPv4 headers, as
specified in detail in [20], and on describing those fields that are key to our
attacks. The lay-out of the IP header is shown schematically in Figure 1.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|Version| IHL |Type of Service| Total Length |
+-+
| Identification |Flags| Fragment Offset |
+-+
| Time to Live | Protocol | Header Checksum |
+-+
| Source Address |
+-+
| Destination Address |
+-+
| Options | Padding |
+-+

Fig. 1. Structure of IP header according to RFC 791, [20]

The IHL (Internet Header Length) field is 4 bits long and has a value be-
tween 5 and 15. This field indicates the length of the header in 32-bit words.
The typical value is 5; larger values indicate that options bytes are present after
the main header, in the Options field. This field can be up to ten 32-bit words
(40 bytes) in length. It has a strict format; if the format is not followed, then IP
implementations typically generate an ICMP (Internet Control Message Proto-
col) “parameter problem” message which is routed to the host indicated in the
Source Address field. Experiments confirm that, upon receipt of a datagram with
random bytes in the Options field, the implementation of IP in Linux generates
an ICMP message with probability roughly 98.5%. We discuss ICMP in more
detail below.

The Protocol field is 8 bits (1 byte) long and indicates which upper layer
protocol is carried in the IP datagram payload. A minimal set of supported pro-
tocols include ICMP, TCP and UDP. When an IP datagram reaches its intended
destination (as specified in the 32-bit Destination Address field), the protocol
field is inspected. This value determines to which upper layer protocol the pay-
load is passed. If the field contains a value corresponding to a protocol that is
not supported at that host, then the local IP implementation should generate
an ICMP “protocol unreachable” message.

The Header Checksum field is a 16-bit (2-byte) value that is formed by in-
terpreting the header (including the Options field if present) as a sequence of

18 K.G. Paterson and A.K.L. Yau

16-bit words, summing them using 1’s complement arithmetic, and then taking
the 1’s complement of the result. If the Header Checksum fails, the datagram is
discarded silently.

In Linux, the sequence of steps taken by IP when processing a datagram
is as follows. First of all, basic checks are performed on the Version field and
IHL field. The next action is to check the Header Checksum field. After this, a
datagram length check is carried out using the Total Length field. The datagram
is dropped if any of these checks fails. Next, options processing is carried out
if the IHL field indicates that options are present. Assuming this is completed
successfully, a routing decision is made: either the datagram is delivered locally
or is forwarded to another host. In the former case the Protocol field is used to
determine the upper layer protocol to which the datagram payload should be
passed. In the latter case, the TTL field is checked and the datagram dropped
if the TTL has reached zero.

2.5 ICMP

ICMP is a vital part of IP implementations, allowing network problems to be
reported to Internet hosts, routes to be tested, and diagnostics to be gathered.
ICMP was originally specified in [27], and revised for IPv4 routers in [2]. In the
event of a “problem datagram” being received by a host, that host generates
an ICMP message. This message includes the entire IP header of the offending
datagram (including any options), together with a variable number of bytes of
the datagram’s payload. According to [27], 8 bytes of payload should be included.
On the other hand, according to [2], the ICMP datagram should contain as much
of the original datagram as possible without the length of the ICMP datagram
exceeding 576 bytes. This is intended to aid fault diagnosis, and is how ICMP is
implemented in the Linux kernel.

3 Attacks Based on Destination Address Rewriting

We are now ready to discuss our first group of attacks on encryption-only ESP
in tunnel mode. We focus on the case where the block cipher used by ESP has
64-bit blocks. The two-phase attack we describe here serves as an introduction to
the more sophisticated attacks to follow. We describe the attack in the context of
a pair of security gateways communicating using encryption-only ESP in tunnel
mode to protect the traffic between them. The attack also works in more general
applications of this configuration of ESP.

We need to make one major assumption for the attack to work: that the
attacker, controlling the host located at IP address AttAddr, knows the destina-
tion IP address DestAddr of the target inner datagrams. This assumption will
be relaxed shortly.

3.1 The First Phase

Recall that the Destination Address field lies in the fifth 32-bit word of the IP
header, and therefore forms the first 32 bits of plaintext block P3 in the sequence

Cryptography in Theory and Practice: The Case of Encryption in IPsec 19

Fig. 2. Modifications to inner header fields in destination address rewriting attack,
64-bit case

of blocks to be encrypted in CBC mode by ESP. The second 32 bits of this block
is the first 32 bits of the payload of the inner datagram. This phase proceeds
as follows, with the attacker at AttAddr listening for IP datagrams during the
attack (see also Figure 2):

1. Capture a target ESP-protected outer datagram from the network. Let
C0, C1, . . . , Cq denote the encrypted portion of this datagram’s payload.

2. Modify block C2 in the first 32 bits by XORing it with the 32-bit mask
M = DestAddr⊕ AttAddr to obtain a block C′

2.
3. Repeat:

– a. Modify block C′
2, now in the last 32 bits, by setting these bits to a

random 32-bit value R. Let C′′
2 denote the modified block.

– b. Prepare a modified datagram that is identical to the one captured in
step 1, except that block C2 of the encrypted portion is replaced with C′′

2 .
Inject this modified datagram into the network.
Until a datagram is received by the attacker at AttAddr.

To see why this phase might work, notice that each injected datagram now
has AttAddr as the destination address of the inner datagram. So when the se-
curity gateway receives the modified outer datagram and decrypts the encrypted
portion, it recovers an inner datagram that will then be routed directly to the
attacker’s machine (we are assuming here that datagrams are not checked after
IPsec processing to see if the correct IPsec policies were applied; this is the case
in the Linux kernel implementation, in contradiction to [15]). The inner data-
gram is in unencrypted form, and its payload will be identical to that of the
original inner datagram except possibly in the first 32 bits (corresponding to the
randomization of the second half of C2). These payload bits can be recovered
easily using the relation P3 = P ′

3 ⊕ (M ||R) where P ′
3 is the third block in the

received datagram, M is the address mask used in step 2 and R the random bits
introduced in step 3.

20 K.G. Paterson and A.K.L. Yau

Of course, because of the modifications made to block C2 during the attack,
block P2 of the inner datagram is essentially randomized, so the header of the
modified inner datagram is likely to be invalid. Block P2 contains the time to live
(TTL), protocol, header checksum and source address fields. Thus the success
rate of each iteration of the attack depends on the combined probability that
the TTL is sufficiently large so that the inner datagram reaches the attacker’s
machine, that the checksum is valid for the new header, and that the new inner
source address is routable. All other fields in the header will be correct, since
they lie in plaintext block P1 which is not modified in the attack.

Based on our experience in implementing our other attacks, we estimate that
this success probability should be roughly 2−17 per iteration, with the largest
factor of 2−16 coming from the requirement for the random checksum to be a
valid one. From this, it can be calculated that 217 iterations of steps 3a and 3b
of the attack will give a success probability of about 60%.

3.2 The Second Phase – Recovering Further Plaintext

An attacker who has conducted the first phase against an encrypted inner data-
gram of the form C0, C1, . . . , Cq does not need to repeat it in order to obtain
decrypted versions of further inner datagrams. Instead, the contents of new data-
grams can be recovered much more efficiently, as follows.

The attacker reuses the payload portion C0, C1, C
′′
2 , C3 of the outer datagram

that was successful in the first phase, splicing onto it any q − 6 consecutive
ciphertext blocks from the encrypted payload of the new target datagram, and
finishing with the last three blocks Cq−2, Cq−1, Cq of the original target.4 Dummy
blocks can be used if necessary to ensure that a total of q blocks are present.

The attacker then uses this modified byte sequence as the encrypted payload
of an outer datagram. This construction ensures that, upon decryption by the
security gateway, the payload is correctly padded and is interpreted as an inner
datagram with a valid header and a destination address equal to AttAddr. This
datagram will be routed to the attacker’s machine (for the same reasons that
the successful datagram from the main attack was). From this datagram, a total
of 64(q − 6) bits of plaintext from the new target datagram can be recovered
(the first 64 bits are obtained using a similar to trick to that used to recover P3
in the main attack; the remaining bits appear in clear in blocks 5 up to q − 3 of
the datagram payload).

3.3 Relaxing the Address Assumption

Our main assumption that the attacker know the complete destination IP ad-
dress of the inner datagram can be relaxed. It is enough that the attacker knows
a significant portion of this IP address. The main idea is as follows. Instead of
using a mask equal to DestAddr⊕ AttAddr in step 2 of the attack, the attacker
4 In fact, often only the last two blocks need to be preserved because the padding

rarely extends over more than one block. Variable length padding of up to 255 bytes
is allowed in [16]; our attacks are easily modified to handle this.

Cryptography in Theory and Practice: The Case of Encryption in IPsec 21

instead uses a mask which modifies that portion of the destination address known
to the attacker so that it equals the corresponding portion of the address of his
target machine. He then modifies the remaining bits of the destination address
using a counter, and repeats the main attack for each counter value. One counter
value will produce a destination address exactly matching that of the attacker;
for this counter value, the attacker has the same probability as before (roughly
2−17) of receiving a datagram from the gateway. After this effort, a more efficient
second phase can again be used. Other variants are also possible [25].

3.4 Attack Implementation

As a proof of concept and as a precursor to our main attacks, we implemented
a 128-bit version of the first phase of this attack against IP and IPsec as imple-
mented in the Linux kernel. We found that roughly 215 iterations were sufficient
to produce the desired plaintext-bearing datagram, in line with a theoretical
analysis of our 128-bit attack than can be found in [25]. This experiment con-
firmed the fact that the Linux implementation of IPsec does not carry out the
policy checks described in Section 2.2 (otherwise the modified inner datagrams
would be dropped because they would fail to match the IPsec policies used in
their recovery).

4 Attacks Based on IP Options Processing

Our next set of attacks exploits the way in which IP implementations gener-
ate ICMP messages when processing incorrectly formatted options fields in IP
headers. We focus on the case where the block cipher used by ESP has 64-bit
blocks. We again describe the attack in the context of a pair of security gateways
communicating using encryption-only ESP in tunnel mode.

We need to make some assumptions for the attack to work. As usual, we
assume that the attacker is able to intercept ESP-protected datagrams and to
inject modified datagrams into the network. We additionally assume that the
attacker is able to monitor one of the gateways for ICMP messages not sent
through the IPsec tunnel. A third-party network service provider is in a perfect
position to mount this attack, for example. This would also be easily achievable
if the IPsec traffic was being broadcast on a wireless network in which WEP
(or an equivalent) was not in use. We will see later how this requirement can
be relaxed in the 128-bit case, provided the attacker has (partial) information
about inner source addresses.

4.1 The First Phase

As before, the attacker has captured an outer datagram and wishes to recover
the plaintext version of the encrypted portion of its payload. Recall that the
IHL field is located in the first byte of the IP header, and therefore lies in
plaintext block P1 in the sequence of blocks to be encrypted in CBC mode by
ESP. The attacker modifies the contents of the IHL field of the inner datagram

22 K.G. Paterson and A.K.L. Yau

by flipping appropriate bits in IV , making the IHL equal a value greater than 5.
When the inner datagram is subsequently processed by the IP software on the
security gateway, the first word(s) of the payload (forming the contents of the
second half of P3 onwards) will be interpreted as options bytes. We randomize
the values of these bytes (as seen by the security gateway) by placing a random
value in the last 32 bits of C2. Then with high probability, these bytes will
be incorrectly formatted, resulting in the generation of an ICMP “parameter
problem” message. The payload of this ICMP message will contain the header
and a segment of the payload of the inner datagram. Thus, if it can be captured
by the attacker, he can learn plaintext information from the inner datagram.
However, randomizing bytes in C2 has the additional effect of randomizing the
contents of P2 after decryption by the security gateway. So the inner datagram
is likely to be dropped silently by the security gateway before any IP options
processing takes place, because of an incorrect checksum value. Thus, in fact,
the ICMP message will not often be generated. Moreover, the ICMP message, if
generated, will be sent to the random source address now specified in P2. This
helps to ensure that the ICMP message is not sent through the IPsec tunnel
between the security gateways, thus making it visible to the attacker, but also
means that this address may not be routable. These problems can be overcome
by iterating the attack sufficiently often and using new random bytes on each
iteration. We will quantify the success rate for the Linux implementation of IP
in Section 4.4 below.

This attack is illustrated in Figure 3 and formalized below.

1. Capture a target ESP-protected outer datagram from the network. Let
C0, C1, . . . , Cq denote the encrypted portion of this datagram’s payload.

2. Modify block C0 = IV in the first byte, XORing it with a mask which
increases the IHL to a value greater than 5, obtaining a block C′

0.
3. Repeat:

– a. Modify block C2 in the last 32 bits, by setting these bits to a random
32-bit value R. Let C′

2 denote the modified block.
– b. Prepare a modified datagram that is identical to the one captured in
step 1, except that blocks C0 and C2 of the encrypted portion are replaced
with C′

0 and C′
2. Inject this modified datagram into the network.

Until an ICMP message is intercepted.

4.2 The Second Phase

Tricks similar to those introduced in Section 3.2 can be used in a second phase
to speed up the recovery of all payload bytes from the remainder of the initial
target datagram and further target datagrams. Once again, a successful header
can be re-used and is guaranteed to always generate an ICMP message. The
speed of recovery of plaintext in this second phase is limited only by the rate at
which the security gateway is permitted to generate ICMP messages and by the
number of payload bytes returned by ICMP.

Cryptography in Theory and Practice: The Case of Encryption in IPsec 23

Fig. 3. Modifications to inner header fields in options processing attack, 64-bit case

4.3 The 128-Bit Case

A similar attack is possible when the block cipher used by ESP has 128-bit
blocks. Now, however, the IHL field, Header Checksum field and Source Address
field can all be manipulated by bit flipping in C0 = IV . This allows the possible
checksums to be tested systematically, which improves the success probability.
The payload bytes which get interpreted as options bytes by the security gateway
can be randomized by selecting a random value for C2. Again, further plaintext
can be recovered faster in a second phase which re-uses the successful header
from the first phase. Moreover, if the attacker has some (or full) knowledge of
the source address of the inner datagrams, then he can use similar ideas to those
explored in Section 3.3 to direct the ICMP response to his own machine, this
time by changing the source address in the inner header by manipulating the IV.
This is an important variant, since it removes the most stringent requirement
for our attack, namely that the attacker be able to monitor the security gateway
for ICMP messages.

4.4 Attack Implementation

We have successfully carried out the two phases of our attack against IP and
IPsec as implemented in the Linux kernel. We describe the main features and
results of this implementation here.

Figure 4 shows the experimental set-up, with two Linux machines acting as
security gateways for an ESP tunnel using either DES or AES as the encryption
algorithm (the end host shown in this figure is not active during this attack).
These machines are connected to a hub, as is the attack platform – this is simply
to ease packet sniffing in the network. Also connected to this hub is a router,
configured to act as the default router for the security gateways, thus ensuring
that any ICMP messages can take at least a first hop towards their destinations.

24 K.G. Paterson and A.K.L. Yau

Fig. 4. Experimental set-up for attacks based on options processing and protocol field
manipulation

We used a value of 6 for the modified IHL field, so as to maximise the num-
ber of plaintext bytes returned for each injected datagram in the second phase.
We observed experimentally that presenting a datagram with a random source
address and random options bytes to the IP implementation in Linux results
in an ICMP “parameter problem” message with probability about 0.85. More-
over, the probability that a random 16-bit value represents the correct header
checksum for the modified inner datagram is roughly 2−16. Thus the expected
success probability of the first phase of the attack in the 64-bit case is roughly
0.85× 2−16 per iteration. For example, then, 216 iterations should give a success
rate of 57%.

We performed 100 runs of the first phase of the attack. An average of 77600
iterations (taking on average 2.64 minutes with our attack client) were needed to
successfully generate an ICMP message. Linux is generous in providing 524 bytes
of inner datagram payload in ICMP messages. As a consequence, the first phase
and each injected datagram in the second phase yields 512 bytes of plaintext
data (provided the encrypted payload in the target selected for the first phase is
longer than 568 bytes, including the IV and encrypted inner header). Thus the
second phase can rapidly recover the complete contents of inner datagrams. Our
attack client, written in C, captures multiple ESP-protected datagrams, selects
the one of optimum length for the first phase, conducts the first phase, and then
runs the second, faster phase on remaining datagrams. Our attack client is also
written to carry out the 128-bit variant of this attack.

5 Attacks Based on Protocol Field Manipulation

Our third class of attacks exploits the way in which IP implementations generate
ICMP messages when faced with unsupported upper layer protocols. We focus

Cryptography in Theory and Practice: The Case of Encryption in IPsec 25

on the case where the block cipher used by ESP has 128-bit blocks, as this is
the more efficient case. We need to make the same assumptions as in Section 4
for the attack to work.

5.1 The First Phase

Recall that the protocol field is located in the second byte of the third 32-bit
word of the IP header, and therefore lies in plaintext block P1 in the sequence of
blocks to be encrypted in CBC mode by ESP. The attacker modifies the contents
of the protocol field of the inner datagram by flipping appropriate bits in IV ,
making the field equal a value corresponding to an upper layer protocol that is
not supported by the end host receiving the inner datagram. Now, when the inner
datagram arrives at the end host that is its final destination, an ICMP “proto-
col unreachable” message will be generated. The payload of this ICMP message
will contain the header and a segment of the payload of the inner datagram.
Thus, if it can be captured by the attacker, then he can learn plaintext infor-
mation from the inner datagram. Note that, in contrast to the attack based on
options processing, the end host, not the security gateway, generates the ICMP
message.

An attacker must solve two problems here. Firstly, the attacker must alter
the source address of the inner datagram, so that the ICMP response will not
be routed through the IPsec tunnel and so that the attacker can intercept it.
Secondly, the attacker must fix the header checksum so that it contains the
correct value for the modified inner header. Fortunately, in the 128-bit case,
both of these requirements can be met by further manipulating only IV , and in
a systematic way that leads to a very efficient attack.

Consider an attacker who modifies the protocol field by forcing a flip in bit i of
the field (where 0 ≤ i < 8) and who alters the inner source address by forcing a
flip in bit j of the address (where 0 ≤ j < 32). These bit flips can both be induced
by manipulating IV . To correct the inner header checksum, the attacker XORs
it with two masks in sequence (one mask for each bit flip), again by flipping bits
in IV . A detailed analysis of the checksum algorithm (see [25]) shows that one
of only 17 possible masks will correct each bit flip. The attacker tries these pairs
of masks in decreasing order of probability. A maximum of 172 = 289 iterations
will be needed, with an expected number much smaller than this because of
the way mask probabilities are distributed. In fact, a simple analysis shows that
when i + 8 �= j mod 16, the expected number of iterations is slightly less than 7,
and smaller still when i + 8 = j mod 16. This attack can be formalized just as
with the earlier attacks.

In an important variant of this attack, now requiring on average 215 iterations,
the attacker can additionally exploit knowledge of the inner source address to
rewrite this address, thus ensuring that any ICMP response is directed to a host
he controls. This removes the requirement that the attacker be able to monitor
the security gateway for ICMP messages.

26 K.G. Paterson and A.K.L. Yau

5.2 The Second Phase

Just as with the attack in Section 4, once the first phase is complete, a second
phase which recovers the complete contents of the remainder of the initial target
datagram and further target datagrams can be invoked.

5.3 The 64-Bit Case

A similar, but less efficient, attack is possible when the block cipher used by ESP
has 64-bit blocks, but now the protocol field is manipulated by randomizing the
last 32 bits of block C2. The success probability is now limited by the need for
a random checksum to have the correct value, and for a random protocol field
to represent an unsupported protocol. In practice, it is close to 2−16, because,
typically, only a handful of protocols are supported. Again, further plaintext can
be recovered faster in a second phase which re-uses the successful header from
the first phase.

5.4 Attack Implementation

We have successfully implemented the two phases of the 128-bit attack against
the Linux kernel implementation of IP and IPsec in our attack client. The ex-
perimental set-up is shown in Figure 4. In our attack, we used values i = 0 and
j = 6 (many other pairs worked equally well).

According to the probability analysis sketched in Section 5.1, the expected
number of iterations of the first phase with these parameters is slightly less than
7. We performed 1000 runs of the first phase of the attack. An average of 6.53
iterations (taking 1.34 seconds with our attack client) was needed to successfully
generate an ICMP “protocol unreachable” message containing plaintext infor-
mation. Because of the way in which Linux implements ICMP, the first phase
and each injected datagram in the second phase yields about 500 bytes of plain-
text data. This means that our attack client is able to recover large amounts of
plaintext easily in the second phase of the attack. Overall, because of the small
number of trials needed, the attack effectively takes place in real time.

6 Impact

We have presented a number of attacks and variants on encryption-only ESP
in tunnel mode, as implemented in the Linux kernel. The attacks are efficient
and have been demonstrated to work under realistic network conditions. Per-
haps surprisingly, ESP using a 128-bit block cipher such as AES may be more
vulnerable to our attacks than one using a 64-bit block cipher. The underly-
ing reason for this is that in the 128-bit case, more fields of the inner header
can be manipulated by modifying IV , without any impact on the contents of
plaintext blocks. A related point is that the complexity of the attacks does not
depend on the key size of the block cipher employed by ESP: triple-DES is just
as vulnerable as DES.

Cryptography in Theory and Practice: The Case of Encryption in IPsec 27

We note that, as with [23], our work demonstrates that the open source ap-
proach does not necessarily result in secure software: an encryption-only config-
uration was all too easy to select, the IPsec implementation did not carry out
the post-processing checks mandated in the RFCs, and we found other flaws in
the implementation, particularly in the handling of padding (c.f. [29]).

Concerning the real-world impact of our attacks, we have presented evidence
in the introduction that encryption-only IPsec may still be in common use. But
we have performed only limited experiments against other IP/IPsec implemen-
tations. We do know that several vendors attempt to disable encryption-only.
However, disabling encryption-only configurations is not enough to prevent our
attacks, as they still apply to some configurations where integrity-protection is
supplied by IPsec itself. As just one instance, the attacks in Sections 3 and 4 still
work if AH is applied in transport mode end-to-end and is tunnelled inside ESP
from gateway-to-gateway. This is because the redirection or ICMP generation
take place at the gateway, before any integrity checking occurs. We note too that
our attacks are not prevented if integrity protection is offered independently of
IPsec by a higher-layer protocol. This contradicts the statement made in [18]
that we quoted in Section 1.

7 Conclusions

We believe that the dangers of encryption-only ESP that we have highlighted
here, coupled with the difficulty of ensuring that security-unaware users pick
strong configurations from amongst the myriad possibilities, means that a con-
servative approach is called for in the IPsec standards themselves. Unfortunately,
ESPv3 [18] still permits the use of encryption-only ESP, though it is no longer
mandatory to support it.

The complexity of the IPsec standards has been commented on before [10]. It
certainly does not help an implementation team if processing checks important to
the security of one module (ESP) are contained in another document altogether
(RFC 2401, [15]). It is worrying that the security of the encryption-only mode
depends completely on these checks being carried out: the security dangles from
a very thin thread indeed, as our attacks on the native Linux implementation
make clear. It would help, then, if the reasons why those checks need to be
performed were spelled out in the standard: this would give an implementor a
stronger motivation for getting things right.

We hope that this work will help in persuading users to migrate away from
encryption-only IPsec configurations. We also hope that it serves as an instruc-
tive example to the theoretical community of the gaps that exist between theory
and practice in cryptography, and that it helps to bridge these gaps.

Acknowledgements

We would like to thank Steve Kent and David Wagner for providing impor-
tant information and context. We would also like to thank the members of the

28 K.G. Paterson and A.K.L. Yau

NISCC Vulnerability Team for their assistance in evaluating the impact of our
attacks and for helping us in working with the IPsec vendor and user commu-
nities ahead of their vulnerability advisory [24] concerning this work. Nessim
Kisserli’s assistance with lab-space and hardware issues was also invaluable.

References

1. R. Atkinson, “IP Encapsulating Security Payload (ESP)”, RFC 1827, August 1995.
2. F. Baker, “Requirements for IPv4 Routers”, RFC 1812, June 1995.
3. M. Bellare, T. Kohno and C. Namprempre, “Breaking and provably repairing the

SSH authenticated encryption scheme: A case study of the Encode-then-Encrypt-
and-MAC paradigm.” ACM TISSEC, Vol. 7, No. 2, May 2004, pp. 206–241.

4. M. Bellare and C. Namprempre, “Authenticated Encryption: Relations among no-
tions and analysis of the generic composition paradigm.” In T. Okamoto (ed.),
Advances in Cryptology – ASIACRYPT 2000, LNCS Vol. 1976, Springer-Verlag,
2000, pp. 531–545.

5. M. Bellare and P. Rogaway, “Encode-then-encipher encryption: How to exploit
nonces or redundancy in plaintexts for efficient cryptography.” In T. Okamoto (ed.),
Advances in Cryptology – ASIACRYPT 2000, LNCS Vol. 1976, Springer-Verlag,
2000, pp.317–330.

6. S. Bellovin, “Problem Areas for the IP Security Protocols”, in Proceedings of the
Sixth Usenix Unix Security Symposium, pp. 1–16, San Jose, CA, July 1996.

7. N. Borisov, I. Goldberg and D. Wagner, “Intercepting Mobile Communications: The
Insecurity of 802.11”, in Proc. MOBICOM 2001, ACM Press, 2001, pp. 180–189.

8. B.Canvel, A.P. Hiltgen, S. Vaudenay and M. Vuagnoux, “Password Interception
in a SSL/TLS Channel,” in D. Boneh (ed.), Advances in Cryptology – CRYPTO
2003, LNCS Vol. 2729, Springer-Verlag, 2003, pp. 583–599

9. N. Doraswamy and D. Harkins. IPsec: the new security standard for the Internet,
Intranets and Virtual Private Networks (second edition), Prentice Hall PTR, 2003.

10. N. Ferguson and B. Schneier, “A cryptographic evaluation of IPsec.” Unpublished
manuscrip available from http://www.schneier.com/paper-ipsec.html .

11. S. Frankel, R. Glenn and S. Kelly, “The AES-CBC Cipher Algorithm and Its Use
with IPsec”, RFC 3602, Sept. 2003.

12. S. Frankel, K. Kent, R. Lewkowski, A.D. Orebaugh, R.W. Ritchey and S.R. Sharma,
“Guide to IPsec VPNs”, NIST Special Publication 800-77 (Draft), January 2005.

13. D. Harkins and D. Carrel, “The Internet Key Exchange (IKE)”, RFC 2409, Nov.
1998.

14. J. Katz and M. Yung, “Unforgeable encryption and chosen ciphertext secure modes
of operation.” In B. Schneier (ed.), FSE 2000, LNCS Vol. 1978, Springer-Verlag
2001, pp. 284–299.

15. S. Kent and R. Atkinson, “Security Architecture for the Internet Protocol”, RFC
2401, Nov. 1998.

16. S. Kent and R. Atkinson, “IP Encapsulating Security Payload (ESP)”, RFC 2406,
Nov. 1998.

17. S. Kent and K. Seo, “Security Architecture for the Internet Protocol”, RFC 4301
(obsoletes RFC 2401), Dec. 2005.

18. S. Kent, “IP Encapsulating Security Payload (ESP)”, RFC 4303 (obsoletes RFC
2406), Dec. 2005.

Cryptography in Theory and Practice: The Case of Encryption in IPsec 29

19. H. Krawczyk, “The Order of Encryption and Authentication for Protecting Com-
munications (Or: How Secure Is SSL?)”, in J. Kilian (ed.), Advances in Cryptology
– CRYPTO 2001, LNCS Vol. 2139, Springer-Verlag 2001, pp. 310–331.

20. Internet Protocol, RFC 791, Sept. 1981.
21. C. Madson and N. Doraswamy, “The ESP DES-CBC Cipher Algorithm With Ex-

plicit IV”, RFC 2405, Nov. 1998.
22. C.B. McCubbin, A.A. Selcuk and D. Sidhu, “Initialization vector attacks on the

IPsec protocol suite.” In WETICE 2000, IEEE Computer Society, pp. 171–175.
23. P.Q. Nguyen, “Can we trust cryptographic software? Cryptographic flaws in GNU

Privacy Guard v1.2.3”, in C. Cachin (ed.), Advances in Cryptology – EURO-
CRYPT 2004, LNCS Vol. 3027, Springer-Verlag 2004, pp. 555–570.

24. NISCC Vulnerability Advisory IPSEC - 004033, 9th May 2005. Available from
http://www.niscc.gov.uk/niscc/docs/al-20050509-00386.html?lang=en.

25. K.G. Paterson and A.K.L. Yau, “Cryptography in Theory and Practice: The
Case of Encryption in IPsec.” Extended version of this paper available from
http://eprint.iacr.org/2005/416.

26. R. Pereira and R. Adams, “The ESP CBC-Mode Cipher Algorithms”, RFC 2451,
Nov. 1998.

27. J. Postel, “Internet Control Message Protocol”, RFC 792, Sept. 1981.
28. S. Stubblebine and V. Gligor, “On Message Integrity in Cryptographic Protocols”,

in IEEE Security and Privacy, May 1992, pp. 85–104.
29. S. Vaudenay, “Security flaws induced by CBC padding – applications to SSL,

IPSEC, WTLS...”, in L.R. Knudsen (ed.), Advances in Cryptology – EUROCRYPT
2002, LNCS Vol. 2332, Springer-Verlag 2002, pp. 534–545.

30. T. Yu, S. Hartman and K. Raeburn, “The perils of unauthenticated encryption:
Kerberos version 4”, in Proc. NDSS 2004, The Internet Society, 2004.

Polynomial Equivalence Problems: Algorithmic
and Theoretical Aspects

Jean-Charles Faugère1 and Ludovic Perret2

1 LIP6, 8 rue du Capitaine Scott, F-75015, France
Jean-Charles.Faugere@lip6.fr

2 UCL, Crypto Group, Microelectronic Laboratory, Place du Levant,
3 Louvain-la-Neuve, B 1348, Belgium

ludovic.perret@uclouvain.be

Abstract. The Isomorphism of Polynomials (IP) [28], which is the main
concern of this paper, originally corresponds to the problem of recovering
the secret key of a C∗ scheme [26]. Besides, the security of various other
schemes (signature, authentication [28], traitor tracing [5], . . .) also de-
pends on the practical hardness of IP. Due to its numerous applications,
the Isomorphism of Polynomials is thus one of the most fundamental
problems in multivariate cryptography. In this paper, we address two
complementary aspects of IP, namely its theoretical and practical dif-
ficulty. We present an upper bound on the theoretical complexity of
“IP-like” problems, i.e. a problem consisting in recovering a particular
transformation between two sets of multivariate polynomials. We prove
that these problems are not NP-Hard (provided that the polynomial hi-
erarchy does not collapse). Concerning the practical aspect, we present
a new algorithm for solving IP. In a nutshell, the idea is to generate a
suitable algebraic system of equations whose zeroes correspond to a so-
lution of IP. From a practical point of view, we employed a fast Gröbner
basis algorithm, namely F5 [17], for solving this system. This approach
is efficient in practice and obliges to modify the current security criteria
for IP. We have indeed broken several challenges proposed in literature
[28, 29, 5]. For instance, we solved a challenge proposed by O. Billet and
H. Gilbert at Asiacrypt’03 [5] in less than one second.

Keywords: Public-Key Cryptography, Cryptanalysis, Isomorphism of
Polynomials (IP), Gröbner bases, F5 algorithm.

1 Introduction

Multivariate cryptography – which can be roughly defined as the cryptogra-
phy using polynomials in several variables – offers a relatively wide spectrum
of problems that can be used in public-key cryptography. The Isomorphism of
Polynomials (IP) lies in this family [28]. Briefly, this problem consists in recov-
ering a particular transformation between two sets of multivariate polynomials
permitting to obtain one set from the other. It originally corresponds to the
problem of recovering the secret key of a C∗ scheme [26]. Besides, the security of

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 30–47, 2006.
c© International Association for Cryptologic Research 2006

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects 31

several other schemes is directly based on the practical difficulty of IP, namely
the authentication/signature schemes proposed by J. Patarin at Eurocrypt’96
[28], and the traitor tracing scheme described by O. Billet and H. Gilbert at
Asiacrypt’03 [5]. We also mention that IP is in a certain manner related to the
security of Sflash [13] – the signature scheme recommended by the European con-
sortium Nessie for low-cost smart cards [27] – and can be alternatively viewed
as the problem of detecting affine equivalence between S-Boxes [6]. All in all,
one can consider the hardness of IP as one of the major issues in multivariate
cryptography. The goal of this paper is to provide new insights on the theoretical
and practical complexity of IP and some of its relevant variants.

1.1 Previous Work

To the best of our knowledge, the most significant results concerning IP are
presented in [11], where an upper bound on the theoretical complexity of IP is
given. Nevertheless, we point out that the proof provided is actually not com-
plete. Anyway, the upper bound presented in that paper is original and general.
It is indeed based on a group theoretic approach of IP and actually dedicated to
“IP-like” problems. A new algorithm for solving IP, called “To and Fro”, is also
described in [11]. This algorithm is however devoted to special instances of IP,
namely the ones corresponding to a public key of C∗ [26]. Thus, it can not be
used for solving generic instances of IP. This is not the case for the algorithm
presented here. Besides, we present in Section 4 experimental results demon-
strating that our algorithm outperforms the “To and Fro” method. Finally, we
would like to mention a result due to W. Geiselmann, R. Steinwandt, and T.
Beth [23]. In the context of C∗, they showed how to easily recover the affine
parts of a solution of IP. A similar property also holds in the context of HFE
[20]. Such a kind of result does not exist for generic instances of IP. Nevertheless,
it means that in the cryptographic context we can focus our attention on the
linear variant of IP, called 2PLE here.

1.2 Organization of the Paper and Main Results

The paper is organized as follows. We begin in Section 2 by introducing our nota-
tion and defining essential tools of our algorithm, namely varieties and Gröbner
bases. A recent algorithm (i.e. F5 [17]) for computing these bases is also suc-
cinctly described. Finally, we define more formally the Isomorphism of Polyno-
mials (IP) and two of its variants, namely the Isomorphism of Polynomials with
one Secret (IP1S) [28], and the linear variant of IP that we name 2PLE. In Sec-
tion 3, we show that these problems are actually particular instances of a more
general problem that we call Polynomial Equivalence (PE). This problem pro-
vides a formal definition of an “IP-like” problem. Using classical results of group
theory, we conclude this section by providing an upper bound on the theoretical
hardness of PE. A new algorithm for solving 2PLE is presented in Section 4.
The idea is to generate a suitable polynomial system of equations whose zeroes
correspond to a solution of IP. In order to construct this system, we also provide
some specific properties of 2PLE. From a practical point of view, we used the

32 J.-C. Faugère and L. Perret

most recent (and efficient) Gröbner basis algorithm, namely F5 [17], for solv-
ing this system. It is difficult to obtain a complexity bound really reflecting the
practical behavior of the F5 algorithm. We therefore carried out experimental
results illustrating the practical efficiency of our approach. We have indeed bro-
ken several challenges proposed in literature [28, 29, 5]. For instance, we solved
a challenge proposed by O. Billet and H. Gilbert at Asiacrypt’03 [5] in less than
one second.

2 Preliminaries

The notation used throughout this paper is the following. We denote by Fq the
finite field with q = pr elements (p a prime, and r ≥ 1), and by Mn,u(Fq) the
set of n×u matrices whose components are in Fq. As usual, GLn(Fq) represents
the set of invertible matrices of Mn,n(Fq), and AGLn(Fq) denotes the cartesian
product GLn(Fq)× Fn

q . Finally, let x = (x1, . . . , xn), and Fq[x] = Fq[x1, . . . , xn],
be the polynomial ring in the n indeterminates x1, . . . , xn over Fq. By convention,
a boldfaced letter will always refer to a row vector.

2.1 Gröbner Bases

We define now two essential notions of this paper, namely varieties and Gröbner
bases. For a more thorough introduction to these tools, we refer to [1, 15].

Let p = (p1, . . . , ps) be polynomials in Fq[x]. We shall call I = 〈p1, . . . , ps〉 ={∑s
k=1 pkuk, u1, . . . , uk ∈ Fq[x]

} ⊂ Fq[x] the ideal generated by p1, . . . , ps, and
denote by V (I) = {z ∈ Fn

q : pi(z) = 0, ∀i, 1 ≤ i ≤ s} the variety associated
to I. Gröbner bases provide a method for computing this variety. Informally,
a Gröbner basis of an ideal I is a computable generator set of I with “good”
algorithmic properties. These bases are defined with respect to monomial orders.
Here, we will use the lexicographical (LEX) and degree reverse lexicographical
(DRL) orders, which are defined as follows:

Definition 1. Let α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ Nn. Then:
– xα1

1 · · · xαn
n ≺LEX xβ1

1 · · · xβn
n , if the left-most nonzero entry of α−β is positive.

– xα1
1 · · · xαn

n ≺DRL xβ1
1 · · ·xβn

n , if
∑n

i=1 αi >
∑n

i=1 βi, or
∑n

i=1 αi =
∑n

i=1 βi

and the right-most nonzero entry of α − β is negative.

To define Gröbner bases, we need to introduce the following definitions.

Definition 2. For any n-tuple α = (α1, . . . , αn) ∈ Nn, we denote by xα the
monomial xα1

1 · · · xαn
n . We shall define the total degree of this monomial by the

sum
∑n

i=1 αi. The leading monomial of a polynomial p ∈ Fq[x] is the largest
monomial (w.r.t some monomial ordering ≺) among the monomials of p. This
leading monomial will be denoted by LM(p, ≺). The degree of p, denoted deg(p),
is the total degree of LM(p, ≺). Finally, the maximal total degree of p is the
maximal total degree of the monomials occurring in p.

We are now in a position to define one of the main objects of this paper.

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects 33

Definition 3. A set of polynomials G is a Gröbner basis – w.r.t. a monomial
ordering ≺ – of an ideal I in Fq[x] if, for all p ∈ I, there exists g ∈ G such that
LM(g, ≺) divides LM(p, ≺).

Gröbner bases are a fundamental tool to study algebraic systems in theory and
practice. They provide an algorithmic solution to several problems related to
polynomial systems (see [1] for instance). We pay here particular attention to
Gröbner bases computed for a lexicographical ordering. It offers a way of sim-
plifying an algebraic system by giving an equivalent system with a structured
shape. A lexicographical Gröbner basis of a zero-dimensional system (i.e. with
a finite number of zeroes over the algebraic closure) is indeed always as follows:

{f1(x1) = 0, f2(x1, x2) = 0, . . . , fk2(x1, x2) = 0, fk2+1(x1, x2, x3) = 0, . . . , . . . }

To compute the variety, we simply have to successively eliminate variables by
computing zeroes of univariate polynomials and back-substituting results. How-
ever, computing a Gröbner basis w.r.t. a lexicographical order is in practice much
slower than computing a Gröbner basis w.r.t. another monomial ordering. It is
usually for a DRL order that the computation of Gröbner bases is the fastest in
practice. Algorithms changing the monomial ordering of a Gröbner basis permit
to handle efficiently this problem. The FLGM algorithm [19] allows to transform
a Gröbner basis w.r.t. some monomial ordering into a lexicographical Gröbner
basis in the zero-dimensional case and is polynomial-time.

The historical method for computing Gröbner bases is Buchberger’s algorithm
[9, 8]. Recently, more efficient algorithms have been proposed. The F4 algorithm
[16] is based on the intensive use of linear algebra methods. In short, the arbitrary
choices – which limit the practical efficiency of Buchberger’s algorithm – are
replaced by computational strategies related to classical linear algebra problems
(mainly the computation of a row echelon form).

In [17], a new criterion (the F5 criterion) for detecting useless computations
has been proposed. We mention that Buchberger’s algorithm spends 90% of its
time to perform these useless computations. Under some regularity conditions, it
has been proved that all useless computations can be avoided. A new algorithm,
called F5, has then been built using this criterion and linear algebra methods.
Briefly, it constructs incrementally the following matrices in degree d:

Ad =

m1 � m2 � m3 . . .
t1f1
t2f2
t3f3
. . .

⎡⎢⎢⎣
.
.
.
.

⎤⎥⎥⎦
where the indices of the columns are monomials sorted for the admissible order-
ing ≺ and the rows are product of some polynomials fi by some monomials tj
such that deg(tjfi) ≤ d. For a regular system ([17]) the matrices Ad are of full
rank. In a second step, row echelon forms of theses matrices are computed, i.e.

34 J.-C. Faugère and L. Perret

A′
d =

m1 m2 m3 . . .
t1f1
t2f2
t3f3
. . .

⎡⎢⎢⎣
1 0 0 . . .
0 1 0 . . .
0 0 1 . . .
0 0 0 . . .

⎤⎥⎥⎦
For d sufficiently large, A′

d contains a Gröbner basis of the ideal considered.
Important parameters to evaluate the complexity of F5 is the maximal degree
d occurring in the computation and the size of the matrix Ad. The overall cost
is thus dominated by (#Ad)

3. Very roughly, (#Ad) can be approximated by
O(nd). A more precise complexity analysis can be found in [3, 4].

From a practical point of view, the gap with other algorithms computing
Gröbner basis is consequent. To date, F5 is the most efficient method for com-
puting Gröbner bases, and hence zero-dimensional varieties. In particular, it has
been proved [2] – from both a theoretical and practical point of view – that XL
[14] is less efficient than F5. Due to the range of examples that become com-
putable with F5, Gröbner basis can be considered as a reasonable computable
object in real scale applications. For systems arising in cryptography, F5 has for
instance given impressing results on HFE [18].

2.2 Isomorphism of Polynomials and Related Problems

Before defining formally IP, we briefly come back here to the origin of this
problem. To do so, we describe the encryption scheme called C∗ [26]. The
public key of this system is a set of multivariate quadratic polynomials b =(
b1(x), . . . , bn(x)

) ∈ Fq[x]n. These polynomials are obtained by applying two
bijective affine transformations (S,V) and (U,V) of AGLn(Fq) to a particular
set of polynomials a =

(
a1(x), . . . , an(x)

) ∈ Fq[x]n. That is:(
b1(x), . . . , bn(x)

)
=
(
a1(xS + T), . . . , an(xS + T)

)
U + V,

denoted b(x) = a(xS + T)U + V in the sequel.
To encrypt, we simply evaluate a message m ∈ Fn

q on b, i.e.
(
b1(m), . . . , bn(m)

)
.

To recover the correct plaintext, the legitimate recipient uses the bijectivity of the
affine transformations combined with the particular structure of the polynomials
of a. How these polynomials are constructed is not relevant here. But, due to
particular constraints, the polynomials of a are always considered as a public
data. The secret key of C∗ is constituted of (S,T), (U,V) ∈ AGLn(Fq).

The first approach for attacking this scheme consists in trying to retrieve the
message corresponding to a ciphertext c ∈ Fn

q , i.e. finding a zero of b(x) = c.
This corresponds to solving a particular instance of the so-called MQ problem,
which is NP-Hard in general [10, 22]. We emphasize that such a kind of result
uniquely guarantees the worst-case hardness and does not provide any informa-
tion concerning the average-case difficulty. For instance, J.-C. Faugère and A.
Joux proposed a polynomial-time algorithm for solving instances of MQ corre-
sponding to the public key of HFE [18], which is an extension of C∗.

Another approach for breaking C∗ consists in attempting to recover the affine
transformations hiding the structure of a. That is, extracting the secret key from

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects 35

the public key. This problem, introduced by J. Patarin at Eurocrypt’96 [28], is
defined as follows:

Isomorphism of Polynomials (IP)
Input: a = (a1, . . . , au), and b = (b1, . . . , bu

)
in Fq[x]u.

Question: Find – if any – (S,V) ∈ AGLn(Fq) and (U,V) ∈ AGLu(Fq), s. t.:

b(x) = a(xS + V)U + V.

More precisely, it is usually the linear variant of IP which is considered in practice
[28, 5]. That is, when the vectors T and V are both equal to the null vector. This
problem, that we call 2PLE is the following:
Input: a = (a1, . . . , au), and b = (b1, . . . , bu) in Fq[x]u.
Question: Find – if any – (S, U) ∈ GLn(Fq) × GLu(Fq), such that:

b(x) = a(xS)U.

However, it is without solving any of the two problems mentioned above that
J. Patarin proposed a full cryptanalysis of C∗ [30]. This attack uses the very
particular structure of the polynomials of a. This result thus does not then
affect at all the practical hardness of IP. The security estimate provided for this
problem [29] is based on the complexity of the “To and Fro” (TF) algorithm
[11, 12], which is qn/2 for quadratic polynomials, and qn otherwise.

In the rest of this paper,
(
a = (a1, . . . , au),b = (b1, . . . , bu)

)
will always denote

an element of Fq[x]u × Fq[x]u. We will always suppose that all the polynomials
of a have the same maximal total degree noted D (in the practical applications,
we have 2 ≤ D ≤ 4). Note that, if b(x) = a(xS)U , for some (S, U) ∈ GLn(Fq)×
GLu(Fq), then the polynomials of b must have the same maximal total degree
than the ones of a, i.e. D.

3 A Unified Point of View

The Isomorphism of Polynomials and 2PLE problems have actually a very similar
formulation. An input of these problems is formed of two systems of multivariate
polynomials and the question consists in recovering a particular transformation
permitting to express one system in function of the other. All transformations
have the same characteristic: inducing a group action on Fq[x]u. Recall that
a group (G, ·), with identity element e, acts on Fq[x]u if there exists a map
φ : G × Fq[x]u → Fq[x]u such that φ(e,p) = p, for all p ∈ Fq[x]u, and:

φ
(
g, φ(g′,p)

)
= φ(g · g′,p), for all g, g′ ∈ G, and for all p ∈ Fq[x]u.

Remark 1. In order to simplify the notations, we will write G instead of (G, ·).
For 2PLE, one can then easily check that GLn(Fq) × GLu(Fq) acts on Fq[x]u

through:
φ2PLE : GLn(Fq) × GLu(Fq) × Fq[x]u → Fq[x]u(

(S, U),a
) �→ a(xS)U

36 J.-C. Faugère and L. Perret

Similarly for IP, AGLn(Fq) × AGLu(Fq) acts on Fq[x]u through:

φIP : AGLn(Fq) × AGLu(Fq) × Fq[x]u → Fq[x]u(
(S,T), (U,V),a

) �→ a(xS + T)U + V

This observation naturally leads to the introduction of the following problem.
Let (G, ·) be a group, and φ : G × Fq[x]u → Fq[x]u be an action of G on Fq[x]u.
Given (a,b) ∈ Fq[x]u × Fq[x]u, the problem we call Polynomial Equivalence,
with respect to (G, ·) and φ – and denoted by PE

(
G, φ

)
– is the one of finding

(if any) g ∈ G, verifying:
b = φ(g,a),

denoted a ≡(G,φ) b in the sequel. This formulation is very convenient since it
procures a unified description of IP and 2PLE. Indeed, PE

(
GLn(Fq)×GLu(Fq),

φ2PLE
)
=2PLE, and PE

(
AGLn(Fq) × AGLu(Fq), φIP

)
=IP. More generally, PE

provides a unified description of “IP-like” problems. In our mind, such a kind
of problems consists in recovering a particular transformation between two sets
of multivariate polynomials. For instance, the Isomorphism of Polynomials with
one Secret (IP1S) – introduced at Eurocrypt’96 by J. Patarin [28] – falls into
this new formalism. This problem, which can be used to design an authentica-
tion (resp. signature) scheme [28], is as follows. Given (a,b) ∈ Fq[x]u × Fq[x]u,
find – if any – (S,T) ∈ AGLn(Fq), such that b(x) = a(xS + T). Using our
formalism, we immediately obtain that PE

(
AGLn(Fq), φIP1S

)
= IP1S, with

φIP1S : AGLn(Fq) × Fq[x]u → Fq[x]u,
(
(S,T),a(x)

) �→ a(xS + T). Finally, the
following lemma justifies the use of the word equivalence in PE.

Lemma 1. Let (G, ·) be a group, and φ : G × Fq[x]u → Fq[x]u be an action of
G on Fq[x]u. Then, ≡(G,φ) is an equivalence relation on Fq[x]u.

3.1 Polynomial Equivalence Problems and Group theory

In the Graph Isomorphism context, the introduction of group theory concepts
permitted to achieve significant advances from both a theoretical and algorithmic
point of view [24, 21]. The formalism previously given permits to naturally extend
these results to Polynomial Equivalence problems.

Definition 4. Let (G, ·) be a group. We shall call Aut(G,φ)(a) =
{
g ∈ G :

φ(g,a) = a
}
, Aut(G,φ)(b) =

{
g ∈ G : φ(g,b) = b

}
, the automorphism groups

of a and b w.r.t. (G, φ). We shall also set S(G,φ)(a,b) =
{
g ∈ G : b = φ(g,a)

}
.

Aut(G,φ)(a) and .Aut(G,φ)(b) are also known as stabilizer of a (resp. b) w.r.t.
(G, φ). However, we will rather call these sets automorphism groups. This des-
ignation being indeed more usually used in the Graph Isomorphism context
[24]. Anyway, the results that we are going to expose are classical results of
group theory concerning the stabilizers and orbits, and then given without
proofs.

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects 37

Proposition 1. Let (G, ·) be a group, and φ : G×Fq[x]u → Fq[x]u be an action
of G on Fq[x]u. If there exists g ∈ G, such that b = φ(g,a), then S(G,φ)(a,b) is
a left (resp. right) coset – in G – of the automorphism group Aut(G,φ)(a)

(
resp.

Aut(G,φ)(b)
)
. That is:{

S(G,φ)(a,b) =
{
g · h : h ∈ Aut(G,φ)(a)

}
= g · Aut(G,φ)(a),

S(G,φ)(a,b) =
{
h · g : h ∈ Aut(G,φ)(b)

}
= Aut(G,φ)(b) · g.

Moreover, the automorphism groups Aut(G,φ)(a) and Aut(G,φ)(b) are conjugate,
i.e. Aut(G,φ)(b) = g · Aut(G,φ)(a) · g−1, and we have:

|S(G,φ)(a,b)| = |Aut(G,φ)(b)| = |Aut(G,φ)(a)|.

3.2 A Generic Upper Bound on the Complexity of “IP-Like”
Problems

Using the Polynomial Equivalence problem previously defined, we give in this
part a general upper bound on the theoretical complexity of “IP-like” problems.
To do so, Let us fix a group (G, ·) acting on Fq[x]u through a map noted φ.

For simplicity, we suppose here that G is included in a finite set E . We also
suppose that the uniform distribution of the elements of E can be simulated in
polynomial-time. These assumptions allows to facilitate the proofs, and are ad-
ditionally well adapted to “IP-like” problems. Indeed, AGLn(Fq) ⊂ Mn,n(Fq)×
Fn

q , GLn(Fq) × GLu(Fq) ⊂ Mn,n(Fq) × Mu,u(Fq), AGLn(Fq) × AGLu(Fq) ⊂
Mn,n(Fq) × Fn

q × Mu,u(Fq) × Fu
q . To obtain our upper bound, we introduce:

Definition 5. An interactive proof for a language L
(
i.e. a subset of {0, 1}∗)

is a two party protocol between a verifier V and a prover P. At the end of the
protocol, the verifier has to accept or reject a given input such that the following
conditions hold:

Efficiency. The verifier strategy is a probabilistic polynomial time procedure.

Completeness. For all x ∈ L, Pr[(V , P)(x) accepts] = 1.

Soundness. For all x �∈ L, and for any prover P∗, Pr[(V , P∗)(x) accepts] ≤ 1
2 .

The probabilities are taken over the random choices of the verifier.

Let us analyse the following two party protocol:

Input: (a0,a1) ∈ Fq[x]u × Fq[x]u

Protocol: PI(G, φ)
The verifier chooses uniformly at random i ∈ {0, 1}.
He also chooses uniformly at random g ∈ E and checks if g ∈ G. If after C trials
the verifier does not obtain an element g ∈ G, he accepts directly.
Otherwise, he sends a′ = φ(g,ai) to the prover.
The prover replies by sending j ∈ {0, 1} to the verifier.
The verifier accepts if i = j and rejects otherwise.

Efficiency. The efficiency of this protocol depends on the cost of computing
φ(g,ai), for all g ∈ G, and of the number of trials C.

38 J.-C. Faugère and L. Perret

Completeness. If a0 �≡(G,φ) a1, then a prover can always check if a′ ≡(G,φ) a0

or a′ ≡(G,φ) a1. In this situation, the verifier accepts with probability one.

Soundness. If a0 ≡(G,φ) a1, then by transitivity a′ ≡(G,φ) a1 and a′ ≡(G,φ) a0.
In such a case, we will show that a′ = φ(g,ai) yields no information about the bit
i chosen by the prover. Let then ψ be a random variable uniformly distributed
over {0, 1}, and Σ be a random variable uniformly distributed over G.

Lemma 2. Let a0, a1,a′ ∈ Fq[x]u. If a0 ≡(G,φ) a1 and a′ ≡(G,φ) a0, then:

Pr[ψ = 0 |aψ(xΣ) = a′] = Pr[ψ = 1 | aψ(xΣ) = a′] =
1
2
.

Proof. We have Pr[φ(Σ,aψ) = a′ |ψ = 0] = Pr[φ(Σ,a0) = a′] = Pr[Σ ∈
S(G,φ)(a0,a′)]. Moreover, according to Proposition 1:

|S(G,φ)(a0,a′)| = |Aut(G,φ)(a′)| = |S(G,φ)(a1,a′)|.

Therefore, Pr[φ(Σ,a0) = a′] = Pr[a1(xΣ) = a′], and thus:

Pr[φ(Σ,aψ) = a′ |ψ = 0] = Pr[φ(Σ,aψ) = a′ |ψ = 1].

According to the Bayes formula:

Prψ = 0 |φ(Σ,aψ) = a′] = Pr[ψ=0]Pr[φ(Σ,aψ)=a
′ |ψ=0]

Pr[φ(Σ,aψ)=a′]

= Pr[ψ=1] Pr[φ(Σ,aψ)=a
′ |ψ=1]

Pr[φ(Σ,aψ)=a′]
= Pr[ψ = 1 |φ(Σ,aψ) = a′].

Finally:
Pr[ψ = 0 |φ(Σ,aψ) = a′] = Pr[ψ=0]Pr[φ(Σ,aψ)=a

′ |ψ=0]
Pr[φ(Σ,aψ)=a′]

= Pr[ψ=1] Pr[φ(Σ,a0)=a
′]

Pr[φ(Σ,aψ)=a′]

= Pr[ψ=1] Pr[Σ∈S(G,ψ)(a
′,a0)]

Pr[Σ∈S(G,φ)(aψ,a′)]
= 1

2 .

��
It follows that no prover – no matter what its strategy is – can guess i with
probability greater than 1

2 . Finally, using a classical result of R. B. Boppana, J.
Hastad, and S. Zachos [7], we get that:

Corollary 1. If the polynomial hierarchy does not collapse then IP, 2PLE, and
IP1S are not NP-Hard.

Proof. We sketch the proof for IP1S. Note that for all g ∈ AGLn(Fq), one can
compute φIP1S(g,a′) in polynomial-time. Let LIP be the language associated
to IP1S (i.e. the set of instances of IP admitting a solution). We study now
the number of trials in PI

(
AGLn(Fq), φIP1S

)
. Recall that more than 1/4 of the

matrices of Mn,n(Fq) are invertible. Therefore for IP1S, we have G = AGLn(Fq),

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects 39

E = Mn,n(Fq) × Fn
q , and Pr[g ∈ G | g ∈ E] ≥ 1

4 . By setting C = 10, we get that
no prover can guess i with probability greater than

1
2

+
(

3
4

)10

<
1
2

+
1
16

=
9
16

,

where
(3

4

)10
< 1

16 is the probability of not obtaining an element of AGLn(Fq)
after ten trials. By repeating the protocol two times, we obtain that no prover
can fool the verifier into accepting a0 �≡(AGLn(Fq),φIP1S) a1 with a probability

greater than
(9

16

)2
< 1

2 . The protocol PI
(
AGLn(Fq), φIP1S

)
is then an interactive

proof for the complementary language of LIP1S (i.e. {0, 1}∗\LIP1S), where at
most 4 messages are exchanged between the verifier and the prover. We do
not detail the proof, but one can easily check that the same result holds for
PI
(
AGLn(Fq) × AGLu(Fq), φIP

)
and PI

(
GLn(Fq) × GLu(Fq), φ2PLE

)
.

The corollary then follows from a result of [7], stating that if the complemen-
tary of a language admits a constant round interactive protocol, then this
language can not be NP-Complete, unless the polynomial hierarchy collapses. ��
The new formalism introduced in this part allows to upper bound the theoretical
hardness of IP, 2PLE, and IP1S. More generally, it provides a new insight on the
complexity of “IP-like” problems. The previous corollary can be indeed easily
adapted to any instance of the Polynomial Equivalence problem. An “IP-like”
problem is then intrinsically not NP-Hard. Furthermore, we believe that our
formalism is of independent interest. It indeed procures a general framework for
studying “IP-like” problems. However, this is out of the scope of this paper. We
investigate now another aspect of these problems.

4 An Algorithm for Solving 2PLE

We study here the practical hardness of a particular Polynomial Equivalence
problem, namely 2PLE. Precisely, we present a new algorithm for solving this
problem. We emphasize that – as explained in 1.1 – it is usually sufficient to
consider this problem rather than its affine variant IP. Besides, any algorithm
solving 2PLE can be transformed into an algorithm solving IP [11, 12].

4.1 A First Attempt: Evaluation and Linearization

Instead of directly describing the details of our method, we present the different
steps that yielded to this algorithm. Anyway, most of the intermediate results
that we are going to present will be used in our final algorithm, but differently.
Our earliest idea for solving 2PLE was based on the following remark. If b(x) =
a(xS)U , for (S, U) ∈ GLn(Fq) × GLu(Fq), then:

b(p)U−1 = a(pS), for all p ∈ Fn
q . (1)

We hence obtain, for each p ∈ Fn
q , u non-linear equations in the n2 + u2 compo-

nents of the matrices S and U−1. We point out that the coefficients of U−1 only

40 J.-C. Faugère and L. Perret

appear linearly in these equations. This is the advantage of considering the in-
verse of U rather than simply U in (1). The number of equations obtained is then
significantly bigger than the number of unknowns. In this situation, one can sim-
ply use a linearization method (i.e. associating a new variable to each monomial)
for solving the algebraic system. Unfortunately, our experiments rapidly revealed
that the equations generated in this way are not all linearly independent. Be-
sides, it also appeared that the number of unknowns is significantly bigger than
the number of linearly independent equations. The use of a linearization method
is then clearly no longer relevant. Let us explain this phenomenon.

Lemma 3. Let y=(y1,1, . . . , y1,n, . . . , yn,1, . . . , yn,n), and z = (z1,1, . . . , z1,u, . . .
, zu,1, . . . , zu,u). For each i, 1 ≤ i ≤ u, there exists a subset Si ⊆ Fn

q and polyno-
mials pα,i ∈ Fq[y, z], such that the following equality holds:(

b(x)U−1 − a(xS)
)

i
=

∑
α∈Si

pα,i(S, U−1)xα, (2)

pα,i(S, U−1) being the evaluation of pα,i on S = {si,j}1≤i,j≤n, U−1 = {u′
i,j}1≤i,j≤u.

Proof. The polynomial
(
b(x)U−1 − a(xS)

)
i
can be regarded as an element of:

Fq[s1,1, . . . , s1,n, . . . , sn,1, . . . , sn,n, u′
1,1, . . . , u

′
1,u, . . . , u′

u,u, . . . , u′
u,u][x1, . . . , xn], (3)

i.e. a polynomial with unknowns x1, . . . , xn and whose coefficients are polyno-
mials in the components of S and U−1. In this setting, the polynomials pα,i

exactly correspond to the coefficients of the monomials (in x1, . . . , xn) occurring
in

(
b(x)U−1 − a(xS)

)
i
. Lastly Si = {α ∈ Fn

q : pα,i �= 0}. ��

The cost of generating the polynomials pα,i is proportional to the number of
monomials occurring in

(
b(x)U−1 − a(xS)

)
i
viewed as a polynomial of (3), i.e.

O(n2D). Note also that each pα,i is by construction the sum of a polynomial in
y, plus a linear polynomial in z. Furthermore, the maximal total degree reached
by a monomial in the variables y is equal to D.
From (2), we obtain that for all i, 1 ≤ i ≤ u:(
b(p)U−1−a(pS)

)
i
=

∑
α∈Si

pα,i(S, U−1)pα1
1 · · · pαn

n , for all p = (p1, . . . , pn) ∈ Fn
q .

It follows that, for all p ∈ Fn
q , the equations procured by (1) are linear combi-

nations of the pα,i(S, U−1). The number of polynomials pα,i is limited by the
number of monomials occuring in

(
b(p)U−1 − a(pS)

)
i
. Thus, u · CD

n+D bounds
from above the number of linearly independent equations provided by linearizing
(1). On the other hand, the number of unknowns in the linearized system is equal
to the number of monomials in the variables y of degree smaller than D, plus the
u2 variables corresponding to z. Using a rough bound, the linearization method
yields a linear system of at most O(u · nD) linearly independent equations with
O(u · n2D) unknowns.

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects 41

4.2 The 2PLE Algorithm

The linearization can thus not be employed for solving efficiently 2PLE. However,
Gröbner basis procures another method for solving the algebraic system given by
(1). From a practical point of view, this approach is quite promising. Indeed, the
system obtained by evaluating b(x)U−1 = a(xS) on several vectors is overde-
termined. Nevertheless, all the equations derived from b(p)U−1 = a(pS) are
according to (2) linear combinations the polynomials pα,i. It is hence sufficient
to only consider the system formed by these equations. Formally:

Proposition 2. Let I = 〈pα,i : for all i, 1 ≤ i ≤ u, and for all α ∈ Si〉 ⊂
Fq[y, z] be the ideal generated by the polynomials pα,i defined as in Lemma 3,
and V (I) be the following variety:

V (I) =
{
s ∈ Fn2+u2

q : pα,i(s) = 0, for all i, 1 ≤ i ≤ u, and for all α ∈ Si

}
.

If b(x) = a(xS)U , for some (S, U) ∈ GLn(Fq) × GLu(Fq), then:(
φ1(S), φ2(U−1)

) ∈ V (I),

with:

φ1 : Mn,n(Fq)→Fn2

q , S ={si,j}1≤i,j≤n �→(s1,1, . . . , s1,n, . . . , sn,1, . . . , sn,n), and
φ2 : Mu,u(Fq) → Fu2

q , U−1 = {u′
i,j}1≤i,j≤u �→ (u′

1,1, . . . , u
′
1,u, . . . , u′

u,1, . . . , u
′
u,u).

Proof. For all, i, 1 ≤ i ≤ u:(
b(x)U−1 − a(xS)

)
i
=

∑
α∈Si

pα,i(S, U−1)xα = 0.

Thus, pα,i(S, U−1) = 0, ∀i, 1 ≤ i ≤ u, and ∀α ∈ Si, i.e.
(
φ1(S), φ2(U−1)

) ∈ V (I).
��

In other words, if b = a(xS)U , for some (S, U) ∈ GLn(Fq)×GLu(Fq), then the
variety V (I) contains the components of the matrices S and U−1. The system
associated to I has n2+u2 variables and is of degree D. Once again, we recall that
the variables of z only appear linearly in this system. The number of equations
of the system is equal to the number of monomials occurring in the polynomials
of a, i.e. O

(
u · CD

n+D

)
. The system is then overdetermined.

Remark 2. In order to guarantee that V (I) ⊆ F2n
q , we must generally join the

field equations to the initial system. The fields considered in our case can be rela-
tively large, leading then to a significant increase of the system’s degree. This can
artificially render impracticable the computation of a Gröbner basis. Fortunately,
our systems are overdetermined and it is not necessary in practice to include the
field equations. In our experiments the elements of V (I) were indeed – without
including these equations – all the times in F2n

q . It implies in particular that the
hardness of 2PLE is not related to the size of the field. This is an important
remark since the current security bound for 2PLE depends on this size.

42 J.-C. Faugère and L. Perret

The next proposition is fundamental to understand the practical behaviour of
our approach. This result permits furthermore to improve the efficiency of our
method.

Proposition 3. Let d be a positive integer, and Id ⊂ Fq[y, z] be the ideal gen-
erated by the polynomials pα,i of maximal total degree smaller than d. Let also
V (Id) be the variety associated to Id. If b(x) = a(xS)U , for some (S, U) ∈
GLn(Fq) × GLu(Fq), then:(

φ1(S), φ2(U−1)
) ∈ V (Id), for all d, 0 ≤ d ≤ D,

φ1 and φ2 being defined as in proposition 2.

The proof is obviously deduced from the following result:

Lemma 4. Let (S, U) ∈ GLn(Fq) × GLu(Fq). We have:

b(x) = a(xS)U ⇐⇒ b(d)(x) = a(d)(xS)U, for all d, 0 ≤ d ≤ D,

b(d)
(
resp. a(d)

)
being the homogeneous components of degree d (i.e. the sum of

the terms of total degree d) of the polynomials of b (resp. a).

The systems associated to I1 and I0 only contain linear equations in the
components of S and U−1. Indeed, let 0n be the null vector of Fn

q , and A ∈
Mn,u(Fq)

(
resp. B ∈ Mn,u(Fq)

)
be the matrix representation of a(1)

(
resp. b(1)

)
,

i.e. xA = a(1)(x)
(
resp. xB = b(1)(x)

)
. According to Lemma 4:

b = a(xS)U, for (S, U) ∈ GLn(Fq)×GLu(Fq) =⇒
{

b(0)(0n)U−1 = a(0)(0n),
BU−1 = SA.

That is, we get linear dependencies between the components S and U−1. More
precisely, we obtain u(n+1) linear equations in the n2+u2 components of the ma-
trices solution. Anyway, we can not solve 2PLE just by using these equations. On
the other hand, it is not necessary to consider the system formed by all the poly-
nomials pα,i. According to Proposition 3, we can actually restrict our attention
on Id0 , with d0 being the smaller integer rendering the system overdetermined.
This d0 can be defined in function of a. Indeed, d0 ≈ min{d > 1 : a(d) �= 0u}. In
practice, it is usually sufficient to take d0 = 2. The hardness of an instance of
2PLE is then related to d0 rather than to the maximal total degree D of this in-
stance. It is also an important remark since the maximal degree of an instance is
taken into account in the security estimate of 2PLE given by J. Patarin [28, 29].
Our algorithm for solving this problem is as follows:

Input: (a,b) ∈ Fq[x]u × Fq[x]u

Let d0 = min{d > 1 : a(d) �= 0u}
Construct the polynomials pα,i of max. total deg. smaller than d0
Compute V (Id0) using the F5 algorithm
Find an element of V (Id0) corresponding to a solution of 2PLE
Return this solution

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects 43

The system associated to Id0 is overdetermined by its very construction(
u2 + n2 unknowns, and O

(
u · Cd0

n+d0

)
equations

)
. The variety V (Id0) is then

very likely reduced to a solution of 2PLE (this has been indeed verified in
our experiments). The complexity of this algorithm is (theoretically) domi-
nated by the Gröbner basis computation. It is difficult to obtain a complexity
bound really reflecting the practical behavior of the F5 algorithm. We therefore
carry out now experimental results illustrating the practical efficiency of our
approach.

4.3 Experimental Results

We present in this part experimental results obtained with our algorithm. Before
that, we provide the conditions of our experiments

Generation of the instances
We have only considered instances (a,b) of 2PLE admitting a solution. We
constructed the instances in the following way:

(1) Choose the polynomials of a
(2) Randomly choose (S, U) ∈ GLn(Fq) × GLu(Fq)
(3) Return

(
a(x),b(x) = a(xS)U

)
Precisely, we constructed the polynomials of a in two different ways. The

first one simply consists in randomly choosing – w.r.t. a given maximal total
degree D – the polynomials of a. Precisely, each polynomial is a random linear
combination of all the monomials of total degree smaller (or equal) to D. Note
that we obtain in this way dense polynomials. We shall call random instance, an
instance of 2PLE generated in this manner. In the second method, a corresponds
to the public key of a C∗ scheme [26]. An instance of 2PLE generated in this
way will be named C∗ instance.

Programming Language – Workstation
The experimental results have been obtained with an Opteron bi-processors 2.4
Ghz, with 8 Gb of Ram. The systems associated to an instance of 2PLE have
been generated using the Magma software[25]. We used our own implementation
(in language C) of F5 for computing the Gröbner bases. However, for the sake of
comparison, we sometimes used the last version of Magma (i.e. 2.12) for obtaining
these bases. This version includes an implementation of the F4 algorithm.

Table Notations
The following notations are used in the tables below:
– n, the number of variables,
– q, the size of the field,
– deg, the maximal total degree of the considered instance,
– TGen, the time needed to construct the system,
– TF5 , the time of our algorithm for finding a solution of 2PLE (using the F5
algorithm for computing the Gröbner bases,
– T , the total time of our algorithm, i.e. T = TF5 + TGen,

44 J.-C. Faugère and L. Perret

– TF4/Mag , the time of our algorithm for recovering a solution of 2PLE, using
Magma v. 2.12 for computing Gröbner bases,
– qn/2 (resp. qn), the security bound given in [11, 12] for instances of deg = 2
(resp. deg > 2).

Practical Results – Random Instances
We present here the results obtained on random instances of 2PLE. We em-
phasize that this family of instances is the one employed in the authentication
and signature schemes based on 2PLE proposed by J. Patarin at Eurocrypt’96
[28, 29]. He suggested to use u = n in practice. Since our main motivation is to
study the security of these schemes, we can restrict our attention on the case
u = n.

n q deg TGen TF5 TF4/Mag/TF5 T qn/2

8 216 2 0.35 s. 0.14 s. 6 0.49 s. 264

10 216 2 1.66 s. 0.63 s. 10 2.29 s. 280

12 216 2 7.33 s. 2.16 s. 16 9.49 s. 296

15 216 2 48.01 s. 10.9 s. 23 58.91 s. 2120

17 216 2 137.21 s. 27.95 s. 31 195.16 s. 2136

20 216 2 569.14 s. 91.54 s. 41 660.68 s. 2160

10 65521 2 1.21 s. 0.44 s. 10 1.65 s. ≈ 280

15 65521 2 35.58 s. 8.08 s. 23 43.66 s. ≈ 2120

20 65521 2 434.96 s. 69.96 s. 41 504.92 s. ≈ 2160

23 65521 2 1578.6 s. 235.92 s. 1814 s. ≈ 2184

Remark 3. Our implementation of F5 is faster than the Gröbner basis algorithm
available in Magma 2.12. For n = 20, F5 is for instance 41 times faster than
Magma. To fix ideas, u = n = 8, and u = n = 16 were two challenges proposed at
Eurocrypt’96 [29]. We obtained exactly the same results as the ones quoted in the
previous table for random instances of deg > 2. On the other hand, the security
estimate for these instances is at least equal to 2128(n = 8). The maximal total
degree of the systems is indeed the same as for instances of deg = 2, i.e. d0
is equal to 2 independently of D. In other words, increasing the maximal total
degree of a random instance will not change its practical hardness. We observe
the same behavior for the size of the field, that is increasing q does not really
change the hardness of a random instance. This will indeed modify only the cost
of the arithmetic operations in the different steps our algorithm.

Interpretation of the Results
In all these experiments, the varieties computed were reduced to one element, i.e.
the components of the matrices solution of 2PLE. Furthermore, we observe in
practice that the complexity of our algorithm is dominated by the time required
to construct the system, and not by the Gröbner basis computation. This is
surprising, but it clearly highlights that the systems considered here can be
easily solved in practice. The generation of the systems being polynomial, we
then conclude experimentally that our algorithm solves random instances of

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects 45

2PLE in polynomial-time. This conclusion is supported by the fact that in all
these experiments, the matrices generated by F5 (see the Appendix) were of size
at most equal to n3. Experimentally, we deduce a complexity of (n3)3 = n9 for
our algorithm on random instances of 2PLE.

Practical Results – C∗ Instances
We now present the results obtained on C∗ instances (a,b) of degree D. We
highlight that these instances are used in the traitor tracing scheme described
in [5]. In this context, we also have u = n. The polynomials of a correspond to
the public-key of a C∗ scheme [26]. Precisely, these polynomials are the “multi-
variate representation” of a univariate monomial (see [5] for details concerning
the generation of this multivariate representation). The univariate monomial has
the following shape:m1+qθ1+qθ2+···+qθD−1

, with θ1, θ2, · · · , θD−1 ∈ N∗.

n q deg TGen TF5 TF4/Mag/TF5 T qn

5 216 4 0.2 s. 0.13 s. 45 0.33 s. 280

6 216 4 0.7 s. 1.03 s. 64 1.73 s. 296

7 216 4 1.5 s. 6.15 s. 90 7.65 s. 2112

8 216 4 3.88 s. 54.34 s. 112 58.22 s. 2128

9 216 4 5.43 s. 79.85 s. 145 85.28 s. 2144

10 216 4 12.9 s. 532.33 s. 170 545.23 s. 2160

Remark 4. n = 5 , and deg = 4 is the first challenge proposed at Asiacrypt’03
[5]. Similarly to random instances, we observed that the size of the field does not
really change the practical hardness of the C∗ instances. We can conclude that
it is a general behaviour of 2PLE instances.

Interpretation of the Results and Future Work
Our algorithm is no longer polynomial for C∗ instances. The systems obtained
for these instances are indeed harder to solve than the random ones. We be-
lieve that it is due to the fact that the systems are here sparser. The equality
b(0n) = a(0n)U does not provide any information

(
b(0n) = a(0n) = 0n in the

C∗ case
)
. It is not clear yet but it seems that C∗ instances with n = 19 (the

second challenge proposed in [5]), can not be solved with our approach.
More generally, we think that d0 = min{d ≥ 0 : a(d) �= 0u} provides a rele-
vant measure of the practical hardness of 2PLE instances. It seems actually that
this practical difficulty increases in function of d0. Indeed, for random instances
of 2PLE, d0 = 0 and our algorithm solves 2PLE efficiently. For C∗ instances,
dmin = 1 and there is a change of complexity class. We also checked that the
practical complexity increases for homogeneous instances of degree 2, i.e. d0 = 2.
To summarize, for d0 = 0 it is relatively clear that our algorithm solves 2PLE
efficiently (likely in polynomial-time). For d0 ≥ 1, we conjecture that our algo-
rithm is subexponential in n, and will depend on d0. This anyway needs further
investigations. It is an open problem to precisely determine, as a function of d0,
the asymptotic complexity of our algorithm. It could be possible that techniques
presented in [3, 4] provide an answer.

46 J.-C. Faugère and L. Perret

Acknowledgements

We thank Françoise Levy-dit-Vehel and anonymous referees for numerous
comments which improved the presentation of the results.

References

1. W.W. Adams and P. Loustaunau. An Introduction to Gröbner Bases. Graduate
Studies in Mathematics, Vol. 3, AMS, 1994.

2. G. Ars, J.-C. Faugère, H. Imai, M. Kawazoe, and M. Sugita. Comparison Between
XL and Gröbner Basis Algorithms. Advances in Cryptology – ASIACRYPT 2004,
Lecture Notes in Computer Science, vol. 3329, pp. 338-353, 2004.

3. M. Bardet, J-C. Faugère, B. Salvy and B-Y. Yang. Asymptotic Behaviour of the
Degree of Regularity of Semi-Regular Polynomial Systems. In MEGA 2005, Eighth
International Symposium on Effective Methods in Algebraic Geometry, 15 pages,
2005.

4. M. Bardet, J-C. Faugère, and B. Salvy. On the Complexity of Gröbner Basis
Computation of Semi-Regular Overdetermined Algebraic Equations. In Proc. of
International Conference on Polynomial System Solving (ICPSS), pp. 71–75, 2004.

5. O. Billet, and H. Gilbert. A Traceable Block Cipher. Advances in Cryptology –
ASIACRYPT 2003, Lecture Notes in Computer Science, vol. 2894, Springer–Verlag,
pp. 331-346, 2003.

6. A. Biryukov, C. De Cannière, A. Braeken, and B. Preneel. A Toolbox for Crypt-
analysis: Linear and Affine Equivalence Algorithms. Advances in Cryptology – EU-
ROCRYPT 2003, Lecture Notes in Computer Science, vol. 2656, Springer–Verlag,
pp. 33-50, 2003.

7. R. B. Boppana, J. Hastad, and S. Zachos. Does co–NP Have Short Interactive
Proofs? Information Processing Letters, 25(2), pp. 127–132, 1987.

8. B. Buchberger. Gröbner Bases : an Algorithmic Method in Polynomial Ideal The-
ory. Recent trends in multidimensional systems theory. Reider ed. Bose, 1985.

9. B. Buchberger, G.-E. Collins, and R. Loos. Computer Algebra Symbolic and Alge-
braic Computation. Springer-Verlag, second edition, 1982.

10. N. Courtois. La sécurité des primitives cryptographiques basées sur des problèmes
algébriques multivariables: MQ, IP, MinRank, HFE. Ph.D. Thesis, Paris, 2001.

11. N. Courtois, L. Goubin, and J. Patarin. Improved Algorithms for Isomorphism
of Polynomials. Advances in Cryptology - EUROCRYPT 1998, Lecture Notes in
Computer Science, vol. 1403, Springer-Verlag, pp. 84–200, 1998.

12. N. Courtois, L. Goubin, and J. Patarin. Improved Algorithms for Isomorphism of
Polynomials - Extended Version. Available from http://www.minrank.org.

13. N. Courtois, L. Goubin, and J. Patarin. SFLASH, a Fast Asymmetric Signature
Scheme for low-cost Smartcards – Primitive Specification and Supporting Docu-
mentation. Available at http://www.minrank.org/sflash-b-v2.pdf.

14. N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations. Advances in Cryptol-
ogy – EUROCRYPT 2000, Lecture Notes in Computer Science, vol. 1807, Springer–
Verlag, pp. 392-407, 2000.

15. D. A. Cox, J.B. Little and, D. O’Shea. Ideals, Varieties, and Algorithms: an
Introduction to Computational Algebraic Geometry and Commutative Algebra.
Undergraduate Texts in Mathematics. Springer-Verlag. New York, 1992.

Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects 47

16. J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Bases (F4).
Journal of Pure and Applied Algebra, 139(1-3), pp. 61–88, June 1999.

17. J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner Basis without
Reduction to Zero: F5. Proceedings of ISSAC, pp. 75–83. ACM press, July 2002.

18. J.-C. Faugère, and A. Joux. Algebraic Cryptanalysis of Hidden Field Equation
(HFE) Cryptosystems using Gröbner bases. Advances in Cryptology - CRYPTO
2003, Lecture Notes in Computer Science, vol. 2729, Springer-Verlag, pp. 44–60,
2003.

19. J. C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient Computation of Zero-
Dimensional Gröbner Bases by Change of Ordering. Journal of Symbolic Compu-
tation, 16(4), pp. 329–344, 1993.

20. P. Felke On certain Families of HFE-type Cryptosystems. Proceedings of WCC’05,
International Workshop on Coding and Cryptography, March 2005.

21. S. Fortin. The Graph Isomorphism problem. Technical Report 96-20, University of
Alberta, 1996.

22. M. R. Garey, and D. B. Johnson. Computers and Intractability. A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

23. W. Geiselmann, R. Steinwandt, and T. Beth. Attacking the Affine Parts of
SFLASH. Cryptography and Coding, 8th IMA International Conference, vol. 2260,
Springer–Verlag, pp. 355-359, 2001.

24. M. Hoffman. Group-theoretic algorithms and Graph Isomorphism. Lecture Notes
in Computer Science, vol. 136, Springer–Verlag, 1982.

25. http://magma.maths.usyd.edu.au/magma/
26. T. Matsumoto, and H. Imai. Public Quadratic Polynomial-tuples for efficient

signature-verification and message-encryption. Advances in Cryptology – EU-
ROCRYPT 1988, Lecture Notes in Computer Science, vol. 330, Springer–Verlag,
pp. 419–453, 1988.

27. https://www.cosic.esat.kuleuven.be/nessie/deliverables/decision-final.pdf.
28. J. Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials

(IP): two new families of Asymmetric Algorithms. Advances in Cryptology – EU-
ROCRYPT 1996, Lecture Notes in Computer Science, vol. 1070, Springer-Verlag,
pp. 33–48, 1996.

29. J. Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): two new families of Asymmetric Algorithms – Extended Version. Available
from http://www.minrank.org/hfe/.

30. J. Patarin. Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eu-
rocrypt’88. Advances in Cryptology – CRYPTO 1995, Lecture Notes in Computer
Science, Springer-Verlag, vol. 963, pp. 248-261, 1995.

Alien vs. Quine, the Vanishing Circuit
and Other Tales from the Industry’s Crypt

Vanessa Gratzer1 and David Naccache1,2

1 Université Paris ii Panthéon-Assas, Hall Goullencourt, casier 55,
12 place du Panthéon, f-75231, Paris, cedex 05, France

vanessa@gratzer.fr
2 École Normale Supérieure, Équipe de Cryptographie,

45 rue d’Ulm, f-75230, Paris, cedex 05, France
david.naccache@ens.fr

Abstract. This talk illustrates the everyday challenges met by embed-
ded security practitioners by five real examples. All the examples were
actually encountered while designing, developing or evaluating commer-
cial products.

This note, which is not a refereed research paper, presents the details
of one of these five examples. It is intended to help the audience follow
that part of our presentation.

1 Foreword

When I was asked to give this talk, I was delighted, but a bit concerned.
What in my brief decade in the card industry would be of interest to a group

of practitioners far more experienced in security than myself?
What will my story be?
As I started to question ex-colleagues, competitors and suppliers, I quickly

realized that the problem would be in deciding what to leave out rather than
what to include. I was finally able to narrow my list to five examples.

The first ones will deal with an electronic circuit that mysteriously vanished
into thin air, des and rsa key-management in early-generation cards, a crypto-
graphic watchdog chasing own tail and the story of the industry’s first on-board
sensors.

This note, which is not a refereed paper, presents the details of the fifth
example – coauthored with one of my students. It is intended to help the audi-
ence follow that part of the talk – a talk that I dedicate to the memory of our
friends and colleagues Prof. Dr. Thomas Beth (1949–2005) and Prof. Dr. Hans
Dobbertin, (1952–2006).

David Naccache

2 Introduction

Aliens are a fictional bloodthirsty species from deep space that reproduce as
parasites. Aliens lay eggs that release araneomorph creatures (facehuggers) when

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 48–58, 2006.
c© International Association for Cryptologic Research 2006

Alien vs. Quine, the Vanishing Circuit and Other Tales 49

a potential host comes near. The facehugger slides a tubular organ down the
victim’s throat, implanting a larva in the victim’s stomach.

Within a matter of hours the larva evolves into a chestburster and emerges,
violently killing the host; chestbursters develop quickly and the cycle restarts.

Just as Aliens, rootkits, worms, trojans and viruses penetrate healthy systems
and, once in, alter the host’s phenotype or destroy its contents. Put differently,
malware covertly inhabits seemingly normal systems until something triggers
their awakening.

As illustrated recently [4], detecting new malware species may be a nontrivial
task. In theory, the easiest way to exterminate malware is a disk reformat fol-
lowed by an os reinstallation from a trusted distribution cd. This relies on the
assumption that computers can be forced to boot from trusted media.

However, most modern pcs have a flash bios. This means that the code-
component in charge of booting has been recorded on a rewritable memory
chip that can be updated by specific programs called flashers or, sometimes, by
malware such as the cih (Tchernobyl) virus.

Hence, a natural question arises:

How can we ascertain that malware did not re-flash the bios to derail
disk reformatting attempts and simulate their successful completion?

Flash smart cards1 are equally problematic. Consider a sim-card produced by
Alice and sold empty to Bob. Bob keys the card. Alice reveals an os code but
flashes a malware simulating the legitimate os. When some trigger-event occurs2

the malware responds (to Alice) by revealing Bob’s keys.
This note describes methods allowing Bob to check that sims bought from

Alice contain no malware. Bob’s only assumption is that his knowledge of the
device’s hardware specifications is correct.

In biology, the term Alien refers to organisms introduced into a foreign locale.
Alien species usually wreak havoc on their new ecosystems – where they have
no natural predators. In many cases, humans deliberately introduce matching
predators to eradicate the alien species. This is the approach taken here.

Related topic. What we try to achieve differs fundamentally from program
competitions for the control of a virtual computer, such as Core War. Here the
verifier cannot see what happens inside a device and seeks to infer the machine’s
state given its behavior.

3 The Arena

We tested the approach on Motorola’s 68hc05, a very common eight-bit micro-
controller (more than five billion units sold). The chip’s specifications were very
slightly modified to better reflect the behavior of a miniature pc.
1 e.g. sst Emosyn, Atmel at90sc3232, Infineon sle88cfx4000p, Electronic Marin’s

emtcg, etc.
2 e.g. a specific 128-bit challenge value sent during the gsm authentication protocol.

50 V. Gratzer and D. Naccache

The 68hc05 has an accumulator A, an index register X, a program counter
PC (pointing to the memory instruction being executed), a carry flag C and
a zero flag Z indicating if the last operation resulted in a zero or not. We
denote by ζ(x) a function returning one if x = 0 and zero otherwise (e.g.
ζ(x) = �2−x�).

The platform has � ≤ 216 = 65536 memory bytes denoted M[0], . . . , M[� − 1].
Any address a ≥ � is interpreted as a mod �. We model the memory as a state
machine insensitive to power-off. This means that upon shut-down, execution
halts and the machine’s ram is backed-up in non-volatile memory. Reboot re-
stores ram, resets A, X, C and Z and launches execution at address 0x0002 (which
alias is start).

The very first ram state (digital genotype) is recorded by the manufacturer in
the non-volatile memory. Then the device starts evolving and modifies its code
and data as it interacts with the external world.

The machine has two i/o ports (bytes) denoted In and Out. Reading In
allows a program to receive data from outside while assigning a value to Out
displays this value outside the machine. In and Out are located at memory
cells M[0] and M[1] respectively. Out’s value is restored upon reboot (In isn’t).
If the device attempts to write into In, execute In or execute Out, execution
halts.

The (potentially infested) system pretends to implement an os function named
Install(p). When given a string p, Install(p) installs p at start. We do not
exclude the possibility that Install might be modified, mimicked or spied by
malware. Given that the next reboot will grant p complete control over the chip,
Install would typically require some cryptographic proof before installing p.

We reproduce here some of the 68hc05’s instructions (for the entire set see
[3]). β denotes the function allowing to encode short-range jumps 3.

effect lda i sta i bne k bra k

new A ← M[i mod �]
new X ←
new Z ← ζ(new A) ζ(A)
effect on M M[i mod �] ← A
new PC ← PC + 2 mod � PC + 2 mod � β(PC, Z, k, �) β(PC, 0, k, �)
opcode 0xB6 0xB7 0x26 0x20
cycles 3 4 3 3

3 The seventh bit of k indicates if k mod 128 should be regarded as positive or negative,
i.e.

β(PC, z, k, �) = PC + 2 + (1 − z) × k − 256 × k

128
mod �.

Alien vs. Quine, the Vanishing Circuit and Other Tales 51

effect inca incx lda ,X ldx ,X

new A ← A + 1 mod 256 M[X]
new X ← X + 1 mod 256 M[X]
new Z ← ζ(new A) ζ(new X) ζ(new A) ζ(new X)
effect on M
new PC ← PC + 1 mod � PC + 1 mod � PC + 1 mod � PC + 1 mod �

opcode 0x4C 0x5C 0xF6 0xFE
cycles 3 3 3 3

effect ldx i sta i,X lda i,X tst i

new A ← M[i + X mod �]
new X ← M[i mod �]
new Z ← ζ(new X) ζ(A) ζ(new A) ζ(M[i mod �])
effect on M M[i + X mod �] ← A
new PC ← PC + 2 mod � PC + 2 mod � PC + 2 mod � PC + 2 mod �

opcode 0xBE 0xE7 0xE6 0x3D
cycles 3 5 4 4

effect ora i inc i stx i

new A ← A ∨ M[i mod �]
new X ← ζ(X)
new Z ← ζ(new A) ζ(new M[i mod �])
effect on M M[i mod �] ← M[i mod �] + 1 mod 256 M[i mod �] ← X
new PC ← PC + 2 mod � PC + 2 mod � PC + 2 mod �

opcode 0xBA 0x3C 0xBF
cycles 3 5 4

4 Quines as Malware Predators

A Quine (named after the logician Willard van Orman Quine) is a program that
prints a copy of its own code [1, 2]. Writing Quines is a tricky programming
exercise yielding Lisp, C or natural language examples such as:

((lambda (x) (list x (list (quote quote) x)))
(quote (lambda (x) (list x (list (quote quote) x)))))

char *f="char*f=%c%s%c;main(){printf(f,34,f,34,10);}%c";
main() {printf(f,34,f,34,10);}

Copy the next sentence twice. Copy the next sentence twice.

We start by loading a Quine into the tested computer. The device might
be under the malware’s total spell. The malware might hence neutralize the
Quine or even analyze it and mutate (adapt its own code in an attempt to fool
the verifier). As download ends, we start a protocol, called phenotyping, with
whatever survived inside the platform.

52 V. Gratzer and D. Naccache

Phenotyping will allow us to prove (Section 5) or assess the conjecture
(Section 4) that the Quine survived and is now in full control of the platform. If
the Quine survived we use it to reinstall the os and eliminate itself; otherwise we
know that the platform is infected. As we make no assumptions on the malware’s
malefic abilities, there exist extreme situationswhere decontamination by software
is impossible. A trivial case is a malware controlling the i/o port and not letting
anything new in. Under such extreme circumstances the algorithms presented in
this note will only detect the malware but will be of no avail to eliminate it.

The underlying idea is that, upon activation, the Quine will (allegedly!) start
dumping-out its own code plus whatever else found on board. We then prove or
conjecture that the unique program capable of such a behavior, under specific
complexity constraints, is only the Quine itself.

In several aspects, the setting is analogous to the scenario of Alien vs. Preda-
tor, where a group of humans (os and legitimate applications) finds itself in the
middle of a brutal war between two alien species (malware, Quine) in a confined
environment (68hc05).

5 Space-Constrained Quines

We start by analyzing the simple Quine given below (Quine1.asm). This 19-
byte program inspects � = 256 bytes platforms. Quine1 is divided into three
functional blocks separated by artificial horizontal lines. First, a primitive com-
mand dispatcher reads a byte from In and determines if the verifier wants to
read the device’s contents (In = 0) or write a byte into the ram (In �= 0).

As the program enters print the index register is null. print is a simple loop
causing 256 bytes to be sent out of the device. As the loop ends, the device
re-jumps to start to interpret a new command.

The store block queries a byte from the verifier, stores it in M[X] and re-jumps
to start.

start: ldx In ; X←In 0xBE 0x00
bne store ; if X �=0 goto store 0x26 0x09

print: lda M,X ; A←M[X] 0xE6 0x00
sta Out ; Out←A 0xB7 0x01
incx ; X++ 0x5C
bne print ; if X �=0 goto print 0x26 0xF9
bra start ; if X=0 goto start 0x20 0xF3

store: lda In ; A←In 0xB6 0x00
sta M,X ; M[X]←A 0xE7 0x00
bra start ; goto start 0x20 0xED

The associated phenotyping φ1 is the following:

1. Install(Quine1.asm) and reboot.
2. Feed Quine1 with 235 random bytes to be stored at M[21], . . . , M[255].

Alien vs. Quine, the Vanishing Circuit and Other Tales 53

3. Activate print (command zero) and compare the observed output to:

s1 = 0x00 0x00 0xBE 0x00 0x26 0x09 0xE6 0x00 0xB7 0x01
0x5C 0x26 0xF9 0x20 0xF3 0xB6 0x00 0xE7 0x00 0x20
0xED M[21], . . . , M[255]

Is Quine1.asm the only nineteen-byte program capable of always printing s1
when subject to φ1?

We conjecture so although (unlike the variant presented in the next section)
we are unable to provide a formal proof. To illustrate the difficulty, consider a
slight variant:

start: ldx In ; X←In 0xBE 0x00
bne store ; if X �=0 goto store 0x26 0x0B

label: tst label ; 0x3D 0x06
print: lda M,X ; A←M[X] 0xE6 0x00

...
... ; same code as in Quine1

For all practical purposes, this modification (Quine2.asm)4 has nearly no
effect on the program’s behavior: instead of printing s1, this code will print:

s2 = 0x00 0x00 0xBE 0x00 0x26 0x0B 0x3D 0x06 0xE6 0x00
0xB7 0x01 0x5C 0x26 0xF9 0x20 0xF1 0xB6 0x00 0xE7
0x00 0x20 0xEB M[23], . . . , M[255]

Let Quine3 be Quine2 where tst is replaced by inc.
When executed, inc will increment the memory cell at address label which

is precisely inc’s own opcode. But since inc’s opcode is 0x3C, execution will
transform 0x3C into 0x3D which is... the opcode of tst.

All in all, φ2 does not allow to distinguish a tst from an inc present at label,
as both Quine2 be Quine3 will output s2.

The subtlety of this example shows that a microprocessor-Quine-phenotyping
triple {μ, Q, φ} rigorously defines a problem:

Given a state machine μ find a state M (malware) that simulates the
behavior of a state Q (legitimate os) when μ is subject to stimulus φ
(phenotyping).

Security practitioners can proceed by analogy to the assessment of cryptosys-
tems which specifications are published and submitted to public scrutiny. If an
M simulating Q with respect to φ is found, a fix can either replace Q or φ
or both. Note the analogy: Given a stream-cipher μ and a key Q (defining an
observed cipher-steam φ), prove that the key Q has no equivalent-keys M .

An alternative solution, described in the next section, consists in proving the
Quine’s behavior under the assumption that the verifier is allowed to count clock
cycles (state transitions if μ is a Turing Machine).
4 φ1 should be slightly twitched as well (233 random values to write).

54 V. Gratzer and D. Naccache

6 Time-Constrained Quines

Consider the following program loaded at address start:

start: ldx In ; 3 cycles ; X←In (instruction I1)
stx Out ; 4 cycles ; Out←X (instruction I2)
...

... ; ; other instructions

Latch a first value v1 at In and reboot, as seven cycles elapse v1 pops-up at
Out. If we power-off the device before the eighth cycle and reboot, v1 reappears
on Out5 immediately. Repeating the process with values v2 and v3, we witness
two seven-cycle transitions v1 � v2 and v2 � v3.

It is impossible to modify two memory cells in seven cycles as all instructions
capable of modifying a memory cell require at least four cycles. Hence we are
assured that between successive reboots, the only memory changes are in Out.
This means that no matter what the examined code is, this code has no time to
mutate in seven cycles and necessarily remains invariant between reboots.

The instructions other than sta and stx capable of modifying directly Out
are: ror, rol, neg, lsr, lsl, asl, asr, bset, bclr, clr, com, dec and inc. Hence,
it suffices to select v2 �= dir(v1) and v3 �= dir(v2), where dir stands for any of
the previous instructions6, to ascertain that Out is being modified by an sta or
an stx (we also need v1 �= v2 �= v3 to actually see the transition).

v1 = 0x04, v2 = 0x07, v3 = 0x10 satisfy these constraints.
As reading or computing with a memory cell takes at least three cycles there

are only four cycles left to alter the contents of Out; consequently, the only sta
and stx instructions capable of causing the transitions fast enough are:

I2 ∈ sta Out stx Out sta ,X stx, X

To aim at Out (which address is 0x0001), sta ,X and stx ,X would require
an X=0x01 but this is impossible (if the code takes the time to assign a value to
X it wouldn’t be able to compute the transition’s value by time). Hence, we infer
that the code’s structure is:

start: ??? ??? ; 3 cycles; an instruction causing • ←In
st• Out ; 4 cycles; an instruction causing Out← •
...

... ; ; other instructions

where • stands for register A or register X. The only possible code fragments
capable of doing so are:

I1
I2

∈
adc In adc ,X add In add ,X eor In eor ,X
sta Out sta Out sta Out sta Out sta Out sta Out

lda In lda ,X ora In ora ,X ldx In ldx ,X
sta Out sta Out sta Out sta Out stx Out stx Out

5 Out being a memory cell, its value is backed-up upon power-off.
6 for ror and rol, consider the two sub-cases C = 0 and C = 1.

Alien vs. Quine, the Vanishing Circuit and Other Tales 55

There is no way to further refine the analysis without more experiments, but
one can already guarantee that as the execution of any of these fragments ends,
the machine’s state is either SA = {A = v3, X = 0x00} or SX = {A=0x00,X = v3}.

Now assume that Out = v3 = 0x10. Consider the code:

start: ldx In ; 3 cycles; X←In
stx Out ; 4 cycles; Out←X
lda ,X ; 3 cycles; A←M[X] (instruction I3)
sta Out ; 4 cycles; Out←A (instruction I4)
...

... ; ; other instructions

– Latch In ← v4 = 0x02, reboot, wait fourteen cycles; witness the transition7

0x10 � 0x02 � 0xBE; power-off before the fifteenth cycle completes.
– Latch In ← v6 = 0x04, reboot, wait fourteen cycles; witness the transition8

0xBE � 0x06 � 0xF6; power-off before the fifteenth cycle completes.

As v5 �= dir(v4) and v7 �= dir(v6) the second transition is, again, necessarily
caused by some member of the sta or stx families and, more specifically9 one
of the following:

I4 ∈ sta Out stx Out sta ,X

I3 cannot be an instruction that has no effect on X and A as this will either
inhibit a transition or cause a transition to zero (remember: immediately before
the execution of I3 the machine’s state is either SA or SX). This rules-out eighteen
jump instructions as well as all cmp, bit, cpx, tsta and tstx variants. lda i
and ldx i are impossible as both would have forced 0x02 and 0x04 to transit to
the same constant value.

In addition, v5 �= dir(v4) implies that I3 cannot be a dir-variant operating
on A or X, which rules-out negx, nega, comx, coma, rorx, rora, rolx, rola, decx,
deca, dec, incx, inca, clrx, clra, lsrx, lsra, lslx, lsla, aslx, asla, asrx
and asra altogether.

As no carry was set, we sieve-out sbc and adc whose effects will be strictly
identical to sub i and add i (dealt with below).

add i, sub i, eor i, and i and ora i are impossible as the system{
0x02
 x=0xBE
0x06
 x=0xF6

has no solutions when operator
 is substituted by +,−,⊕,∧ or ∨.
The only possible I3 candidates at this point are:

I3 ∈ sub ,X and ,X eor ,X ora ,X add ,X lda, X ldx ,X

7 v5 = 0xBE is the opcode of ldx, read from address 0x02.
8 v7 = 0xF6 is the opcode of lda ,X, read from address 0x06.
9 taking timing constraints into account and ruling-out stx ,X who can only cause an
Out = 0x01, a value never witnessed.

56 V. Gratzer and D. Naccache

But before the execution of I3 the machine’s state is:

SA = {A = 0x06, X = 0x00} or SX = {A = 0x00, X = 0x06}
The ",X" versions of sub, and, eor, ora and add are impossible because:

– if the device is in state SA we note that

0x06
 0x06 �= 0xF6 for
 ∈ {−,∨,⊕,∧+}
– and if the device is in state SX we note that

A− opcode(sub, X) = 0x00− 0xF0= 0x10 �= 0xF6
A ∧ opcode(and, X) = 0x00 ∧ 0xF4= 0x00 �= 0xF6
A⊕ opcode(eor, X) = 0x00⊕ 0xF8= 0xF8 �= 0xF6
A ∨ opcode(ora, X) = 0x00 ∨ 0xFA= 0xFA �= 0xF6
A+ opcode(add, X) = 0x00+ 0xFB= 0xFB �= 0xF6

ldx ,X is impossible as it would have caused a transition to opcode(ldx, X) =
0xFE �= 0xF6 (if SX) or to 0x06 (if SA).

I3 is hence identified as being necessarily lda ,X.
It follows immediately that I4 = sta Out and that the ten register-A-type

candidates for {I1, I2} are inconsistent.
The phenotyped code is thus one of the following two:

ldx In ldx ,X
↘ ↙

stx Out
lda ,X
sta Out

Only the leftmost is capable of causing the observed transition 0x02 � 0xBE.
All in all, we have built a proof that the device actually executed the fragment

presented at the beginning of this section.
Extending the code further ahead to:

start: ldx In ; X←In 0xBE 0x00
stx Out ; Out←X 0xBF 0x01

print: lda ,X ; A←M[X] 0xF6
sta Out ; Out←A 0xB7 0x01
incx ; X ← X + 1 0x5C
bne print ; if X �= 0 goto print 0x26 0xFA

and subjecting the chip to three additional experiments, we observe:

In ← 0x09 ⇒ 0xF6 � 0x09 � 0x5C

In ← 0x0A ⇒ 0x5C � 0x0A � 0x26

In ← 0x0B ⇒ 0x26 � 0x0B � 0xFA

Alien vs. Quine, the Vanishing Circuit and Other Tales 57

Note that the identified code ”happens to” allow the verifier to inspect with
absolute certainty the platform’s first 256 bytes. The rest is clear. The verifier
does a last time measurement, allowing the Quine to print the device’s first 256
bytes (power-off as soon as the last bne iteration completes, to avoid falling into
the jaws of Aliens hiding beyond address 0x000B).

It remains to check the Quine’s payload (code between 0x000C and 0x00FF)
and unleash the Quine’s execution beyond address 0x000B. Quine won the game.

7 Questions

This work raises a number of intriguing questions: Is it possible to prove security
using only space constraints? In the negative, can we modify the assembly lan-
guage to allow such proofs10? Can space-constrained Quines solve space-complete
problems to flood memory instead of receiving random data?

Another interesting challenge consists in developing a time-constrained Quine
whose proof does not require rebooting but the observation of one long succession
of transitions. We conjecture that such programs exist. A possible starting point
might be a code (not necessarily located at start) similar to:

loop: sta Out
lda In
sta Out
ldx In
stx Out
lda ,X
sta Out
bne loop

Here the idea is that the verifier will feed the Quine with values chosen ran-
domly in a specific set (to rule-out dir-variants) to repeatedly explore the code’s
immediate environment until some degree of certainty is acquired11.

If possible, this would have the advantage of making the Quine a function
automatically insertable into any application whose code needs to be authen-
ticated. Moreover, if we manage to constrain the capabilities of such a Quine,
e.g. not allow it read data beyond a given offset12, we could offer the selective
ability to audit critical program parts while preserving the privacy of others.
For instance, the code of an accounting program could be audited while secret
signature keys would provably remain out of the Quine’s reach.

Finally, as time-constrained phenotyping is extremely quick (a few clock cy-
cles), preserves nearly all the platform’s data and requires only table lookups
and comparisons, we currently try to extend the approach to more complex
microprocessors and implement it between chips in motherboards.
10 The approach would analogous to Java bytecode which is purposely shaped to fit

type-inference.
11 To exit the bne loop the verifier will purposely read a zero somewhere.
12 e.g. the example above cannot read data beyond address 255.

58 V. Gratzer and D. Naccache

References

1. J. Burger, D. Brill and F. Machi, Self-reproducing programs, Byte, volume 5, Au-
gust 1980, pp. 74–75.

2. D. Hofstadter, Godel, Escher, and Bach: An eternal golden braid, Basic Books, Inc.
New York, pp. 498–504.

3. Motorola Inc., 68hc(7)05h12 General release specifications, hc05h12grs/d Rev. 1.0,
November 1998.

4. T. Zeller, The ghost in the cd; Sony bmg stirs a debate over software used to guard
content, The New York Times, c1, November 14, 2005.

Hiding Secret Points Amidst Chaff

Ee-Chien Chang and Qiming Li�

Department of Computer Science,
National University of Singapore

changec@comp.nus.edu.sg, qiming.li@ieee.org

Abstract. Motivated by the representation of biometric and multime-
dia objects, we consider the problem of hiding noisy point-sets using a
secure sketch. A point-set X consists of s points from a d-dimensional
discrete domain [0, N − 1]d. Under permissible noises, for every point
〈x1, .., xd〉 ∈ X, each xi may be perturbed by a value of at most δ.
In addition, at most t points in X may be replaced by other points in
[0, N − 1]d. Given an original X, we want to compute a secure sketch P .
A known method constructs the sketch by adding a set of random points
R, and the description of (X ∪ R) serves as part of the sketch. However,
the dependencies among the random points are difficult to analyze, and
there is no known non-trivial bound on the entropy loss. In this paper,
we first give a general method to generate R and show that the entropy
loss of (X ∪ R) is at most s(d log Δ + d + 0.443), where Δ = 2δ + 1.
We next give improved schemes for d = 1, and special cases for d = 2.
Such improvements are achieved by pre-rounding, and careful partition
of the domains into cells. It is possible to make our sketch short, and
avoid using randomness during construction. We also give a method in
d = 1 to demonstrate that, using the size of R as the security measure
would be misleading.

1 Introduction

Many biometric data are noisy in the sense that small noises are introduced dur-
ing acquisition and processing. Hence, two biometric samples that are different
but close to each other, are considered to belong to the same identity. This poses
technical challenges in applying classical cryptographic operations on them. Re-
cently, new generic techniques such as fuzzy commitment [10], helper data [15]
and secure sketch [7] are introduced to handle noisy data. These techniques at-
tempt to remove the noise with the aid of some additional public data P . Here
we follow Dodis et al. [7] and call such P a sketch. During registration, given orig-
inal data X , a sketch P is constructed and made public. During reconstruction,
given some other data Y and the sketch P , the original X can be reconstructed
if Y is close1 to X . In other words, the sketch aids in removing noise from noisy

� The author is currently with Department of Computer and Information Science,
Polytechnic University.

1 The formal definition of “closeness” will be given in Section 3.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 59–72, 2006.
c© International Association for Cryptologic Research 2006

60 E.-C. Chang and Q. Li

data Y . It is important that such sketch P should be secure in the sense that
it reveals only limited information about the original X , so that the privacy of
the original data can be sufficiently maintained. In other words, it is desirable
to bound the entropy loss of X given P (Section 3 gives the definitions).

Not surprisingly, the design of a secure sketch is very much dependent on
the definition of “closeness”. Secure sketch for the following two main types
of data have been proposed: (1) The data are from a vector space, and two
sequences are close to each other if their distance (e.g., Hamming distance) is
less than a threshold. (2) The data X and Y are subsets of a universe U , where
|X | = |Y | = s, and they are close with respect to a threshold t, if the set
difference s − |X ∩ Y | ≤ t.

We observe that in many applications, a combination of the above is required.
For example, a fingerprint template is typically represented as a set of minutiae
points in a discrete 2-dimensional space, or even 3-dimensional if the less reliable
orientation attribute is included [6]. Under noise, each points may be slightly
perturbed, and a small number of points may be replaced.

We study secure sketch schemes for such point-sets. A point-set X is a set of s
points from a discrete d-dimensional domain [0, N −1]d. Under permissible white
noise, for every point 〈x1, .., xd〉 ∈ X , each xi, 1 ≤ i ≤ d, may be perturbed by
at most δ. In addition, under replacement noise, at most t points in X may be
replaced by randomly selected points. Hence, two point-sets X and Y are close
to each other if we can find a subset X ′ ⊂ X , |X ′| ≥ s − t, such that for each
x ∈ X ′, there is a unique y ∈ Y that satisfies ‖x − y‖∞ ≤ δ, where ‖ · ‖∞ is the
infinity norm. We assume that a point-set X is always well-separated, that is,
for any x, x′ ∈ X , the distant ‖x − x′‖∞ ≥ 3δ. This assumption is reasonable in
practice. For example, in a fingerprint template, two minutiae points cannot be
too close to each other, otherwise they will be considered as false minutiae and
should be corrected [11].

Clancy et al. [5] give the following construction of a two-part sketch for a
point-set. The first part of the sketch is a codebook C, which is a collection of
points that are well-separated. We call each point in C a codeword, and we assume
that all codewords are properly indexed in a pre-defined manner. The codebook
C is the union of the original data X and a set of random chaff points R, i.e.,
C = (X ∪ R). Consider another point-set Y that is a version of X corrupted
only by white noise. For each point y ∈ Y , the codeword in C that is closest
to y must be the corresponding x ∈ X . Thus, with C, the white noise can be
corrected. Hence we call C the white noise sketch. The second part of the sketch
is constructed from the indices of the points in X , where the index of a point
x ∈ X is its location in the codebook C = (X ∪ R). By using existing schemes
for set difference, replacement of at most t points can be corrected. Hence we
call it the replacement sketch. In this paper, we will focus on the construction
of the white noise sketch. That is, we study how to hide the original points X
amidst some chaff points R.

Clancy et al. propose the following method to generate R: The points in R
are iteratively selected. During each iteration, a chaff point is chosen uniformly

Hiding Secret Points Amidst Chaff 61

at random. If it is too close to any previously selected points or a point in X , then
it is discarded. Otherwise it is selected. The iteration is repeated until sufficient
points are selected or it is impossible to add more points. The above process of
selecting a set of random points is essentially the online parking process which
has intrinsic statistical properties [14, 13, 8].

Due to the dependencies among the selected points, the analysis of online
parking process is difficult. This is especially so in higher dimensions. Many
fundamental questions remain open, for example, the Palasti’s Conjecture [13]. In
our context of secure sketch, there is no known non-trivial bound of the entropy
loss by revealing (X ∪ R). Furthermore, although the points generated seem
to be “random”, due to the dependencies, the original X may be statistically
distinguishable from R. Indeed, an empirical study suggests a method to find X
among (X ∪ R) [4].

Therefore, we propose another method of generating the points. First, many
points are generated independently. Next, some points are removed so that
among the remaining points, no two points are near to each other. In this way,
we can eliminate the dependencies among the chaff points and give an upper
bound LH on the information revealed (i.e., the entropy loss) by the codebook
C = (X ∪ R). There are many ways to generate the points independently. The
challenging issue now is to find a method whereby the randomness invested dur-
ing generation is not much less than the number of bits required to represent
the codebook.

For the second part of the sketch that corrects the replacement noise, we
employ known techniques for set difference. Let LSD(s, t, n) be the entropy loss
of the sketch for set difference, where n = |C| is the size of codebook. There are
sketch schemes such that LSD(s, t, n) is in O(t log n) (e.g., those proposed by
Juels and Wattenberg [9], Dodis et al. [7], and Chang et al. [3]).

In this paper, we propose a generic method to generate the white noise sketch
and show that the upper bound of the entropy loss LH < s(d log Δ+d+log(e/2)),
where Δ = 2δ + 1, e is the base of natural logarithm and log(e/2) ≈ 0.443.
The overall entropy loss is at most LH + LSD(s, t, Nd/(4δ + 1)d). The bound is
quite tight in the sense that there is a distribution of X such that the entropy
loss of C is at least LH − ε where ε is a positive constant that is at most 3.
When t = 0 (i.e., no replacement noise), a lower bound of the entropy loss is
sd log Δ. Hence, the gap between our construction and the optimal is at most
s(d+log(e/2)). By pre-rounding and carefully partitioning the domain [0, N −1]
into cells, we can improve the entropy loss in d = 1 to at most s(1+log(Δ−1))+
LSD(s, t, N/(3δ)). We further apply the technique of partitioning to some special
cases in two dimensions (d = 2) and obtain some improvements. Such technique
probably can be extended to d = 2 in general, and to higher dimensions. In
addition, we give two methods to reduce the size of the sketch. In one of them,
we can avoid using randomness during sketch construction, thus some limited
form of reusability can be achieved [2]. We also give another method in one
dimension to demonstrate that, using the size of R as the security measure
would be misleading.

62 E.-C. Chang and Q. Li

2 Related Works

Recently, a few new cryptographic primitives for noisy data are proposed. Fuzzy
commitment scheme [10] is one of the earliest formal approaches to error tol-
erance. The fuzzy commitment scheme uses an error correcting code to handle
Hamming distance. The notions of secure sketch and fuzzy extractor are intro-
duced by Dodis et al. [7], which gives constructions for Hamming distance, set
difference, and edit distance. Under their framework, a reliable key is extracted
from noisy data by reconstructing the original data with a given sketch, and then
applying a normal extractor (such as pair-wise independent hash functions) on
the data.

An important requirement of a secure sketch scheme is that the amount of
information about X revealed by publishing the sketch P should be limited.
Dodis et al. [7] propose a notion of entropy loss to measure the security of the
sketch. They also provide a convenient way to bound the entropy loss for any
distribution of X . Such worst case analysis is important in practice because
typically, the actual distribution of the biometric data is not known.

The issue of reusability of sketches is addressed by Boyen [2]. It is shown
that a sketch scheme that is provably secure may be insecure when multiple
sketches of the same biometric data are obtained. It is also shown by Boyen that
a sketch that can be constructed deterministically can achieve some limited form
of reusability [2].

The set difference metric was first considered by Juels and Wattenberg [9],
who gave a fuzzy vault scheme. Later, Dodis et al. [7] proposed three construc-
tions. The entropy loss by all these schemes are roughly the same. They differ
in the sizes of the sketches, decoding efficiency and also the degree of ease in
practical implementation. The BCH-based scheme [7] has small sketches and
achieves “sublinear” (with respect to the size of the universe) decoding by care-
ful reworking of the standard BCH decoding algorithm. Chang et al. [3] gave a
scheme for multi-sets, using the idea in set reconciliation [12].

A fuzzy fingerprint vault scheme is proposed by Clancy et al. [5], which is to
be used in secure fingerprint verification using a smart card. The security of the
scheme is analyzed by considering force attackers. Yang and Verbauwhede [16]
employed similar approaches with different fingerprint representation.

3 Preliminaries

Entropy and entropy loss. We follow the definitions of entropy by Dodis et al.
[7]. They propose to examine the average min-entropy of X given P , which gives
the minimum length of an almost uniform secret key that can be extracted even
if the sketch P is made public.

Let H∞(A) be the min-entropy of the random variable A, i.e., H∞(A) =
− log(maxa Pr[A = a]). For two random variables A and B, the average min-
entropy of A given B is defined as H̃∞(A | B) = − log(Eb←B [2−H∞(A|B=b)]).

The entropy loss of X given sketch P is defined as L = H∞(X)− H̃∞(X |P).
When it is clear in the context, we simply call L the entropy loss of sketch P .

Hiding Secret Points Amidst Chaff 63

This definition is useful in the analysis of entropy loss, since for any �-bit string
B, we have H̃∞(A | B) ≥ H∞(A) − �. For any secure sketch scheme, let R be
the randomness invested in constructing the sketch, it can be shown that when
R can be recovered from X and P , then

L = H∞(X) − H̃∞(X | P) ≤ |P | − H∞(R). (1)

Inequality (1) implies that the entropy loss can be bounded from above by the
difference between the size of the sketch and the randomness we invested during
construction. This gives a general method to find an upper bound of L that is
independent of X , and hence it applies to any distribution of X . Therefore, L is
an upper bound of entropy loss in the “worst-case”.
Secure sketch. Let M be a set with a closeness relation C ⊆ M × M. When
(X, Y) ∈ C, we say the Y is close to X , or (X, Y) is a close pair. Similar to Dodis
et al. [7], define

Definition 1. A sketch scheme is a tuple (M, C, Enc, Dec), where Enc : M →
{0, 1}∗ is an encoder and Dec : M× {0, 1}∗ → M is a decoder such that for all
X, Y ∈ M, Dec(Y, Enc(X)) = X if (X, Y) ∈ C. The string P = Enc(X) is to be
made public and we call it the sketch. We say that the sketch scheme is L-secure
if for all random variable X over M, the entropy loss of P is at most L. That
is, H∞(X) − H̃∞(X | Enc(X)) ≤ L.

Closeness relations. For any two points x and y from the d-dimensional space
[0, N − 1]d, we define the closeness Cδ, where (x, y) ∈ Cδ if ‖x − y‖∞ ≤ δ. We
further define the closeness PSδ,s,t for two point-sets.

Definition 2. For any two sets of s points X ={x1,. . . , xs} and Y ={y1, . . . , ys},
we say that (X, Y) ∈ PSδ,s,t if there exists a 1-1 correspondence f on {1, . . . , s}
such that |{i | (xf(i), yi) ∈ Cδ}| ≥ s − t.

A lower bound of the entropy loss. Here we give a lower bound L0 of the entropy
loss. We say that L0 is a lower bound if, for any sketch scheme (P([0, N −
1]d), PSδ,s,t, Enc, Dec), there exists a distribution of X such that the entropy loss
of P = Enc(X) is at least L0.

For any distribution of X , let Xb to be the set of all possible original point-sets
given sketch P = b. We observe that

max
a

Pr[X = a | P = b] ≥ 1
|Xb| .

Substitute it into the definition, we have

H̃∞(X |P) ≤ max
b,Pr[P=b] 	=0

log |Xb|. (2)

Now, by considering X that is uniformly distributed over all well-separated sets
of size s in [0, N − 1]d, using (2), we can show that (details omitted) when
s < (N

2Δ)d and t < (N
2Δ)

d
2 , L0 is in

sd log Δ + Ω(td log
N

2Δ
). (3)

64 E.-C. Chang and Q. Li

Recall that Δ = 2δ + 1. An intuitive interpretation of the bound is that, it is
the minimum number of bits needed to describe the noise. The first term in (3)
is for the white noise, and the second term is for the replacement noise. When
t = 0 (i.e., there is no replacement noise), the bound becomes sd log Δ.

4 The Basic Construction

Recall that our sketch consists of two parts PHPS , where PH is the white noise
sketch that removes the white noise. During encoding, a large number of points R
is generated to form the codebook C = (X∪R), and PH is its description. During
decoding, the points in Y are matched with the nearest codewords in C, so that
white noise can be removed. The sketch PS for set difference is constructed using
known schemes on C to correct the replacement noise. We also assume that X
is well-separated.

Here we focus on the construction of PH . We will first give our basic con-
struction in one dimension (d = 1), and then show that it can be extended to
higher dimensions.

The main idea of our construction is to first independently generate many
points, but avoiding regions near the original X . We can also view the generation
of these points as a two dimensional Poisson process. Next, remove some points
so that among the remaining points, no two points are near to each other. The
retained points form the codebook C. Since the points are generated indepen-
dently, it is easier to bound the entropy loss. To minimize the entropy loss, we
need to find a way so that the size of the sketch is not much larger than the
randomness we invested during the construction.

4.1 Construction of PH in One Dimension (d = 1)

For any point x ∈ [0, N − 1], call the set S1(x) = {x + 1, x + 2, . . . , x + 2δ} the
half-sphere of x.

Given X = {x1, . . . , xs}, the white noise PH is constructed as below. We first
construct a sequence 〈h0, h1, . . . , hN−1〉, where each hi ∈ [0, p1 − 1], and p1 is a
parameter that is chosen to be p1 = |S1(x)|+1 = 2δ+1 for optimal performance.

1. For each x ∈ X , set hx = 0, and for each a ∈ S1(x), ha is uniformly chosen
at random from {1, . . . , p1 − 1}.

2. For each hi that has not been set in step 1, uniformly choose its value from
{0, . . . , p1 − 1}.
For each w ∈ [0, N − 1], we select it to be in the codebook if and only if

hw = 0 and ha �= 0 for all a ∈ S1(w). Hence, if w is a codeword, there would
be no other codeword in the half-sphere S1(w). The sequence 〈h0, . . . , hN−1〉 is
published as the white noise sketch PH . Note that in practice, we can simply
publish a description of the codebook C as the sketch. However, we choose to
publish the entire sequence 〈h0, . . . , hN−1〉 for the ease of analysis.

From the codebook C, we can construct PS , the second part of the sketch,
using known schemes for set difference.

Hiding Secret Points Amidst Chaff 65

During decoding, given Y , each point y ∈ Y is matched with its nearest
codeword in C. Suppose y is a noisy version of an x ∈ X , i.e. |y − x| ≤ δ,
it is easy to verify that x is its closest point in C. Hence, PH can correct the
white noise. Lemma 3 gives the entropy loss, and Lemma 4 shows that the
bound is quite tight. Note that Lemma 3 and 4 still hold if we choose to publish
a shorter description of the codebook instead of the entire sequence. In other
words, publishing the entire sequence might seem to reveal more information
about X , the “worst-case” entropy loss would not be much different.

Lemma 3. The entropy loss of X given PH is at most

s

(
log Δ + (Δ − 1) log(1 +

1
Δ − 1

)
)

which is less than s (log Δ + log e), where e is the base of natural logarithm.

Proof. Since the randomness invested in constructing PH can be recovered from
X and PH , we can apply (1) in Section 3. In particular, we look at the difference
between the size of the sketch PH , which is N log p1, and the randomness invested
in constructing PH . For any hi in PH , if it is not set in Step 1 of the above
construction, then |hi| = log p1, which equals to the invested randomness, and
hence it does not contribute to the difference. For each hx such that x ∈ X ,
it is set to 0, which contributes log p1 to the difference. For each ha such that
a ∈ S1(x) for some x ∈ X , we use log(p1 − 1) bits of randomness, hence the
difference introduced is log p1

p1−1 .
Therefore, the total difference (hence the entropy loss) is no greater than

s

(
log p1 + 2δ log

p1

p1 − 1

)
.

When p1 = 2δ + 1, and substituting Δ = 2δ + 1, we have

LH ≤ s

(
log Δ + (Δ − 1) log(1 +

1
Δ − 1

)
)

.

Since (1 + 1
Δ−1)Δ−1 approaches e from below when Δ approaches infinity, we

have the above claimed bound.

Lemma 4. There exists a distribution of X, where the entropy loss of X given
PH is at least s(log Δ + (Δ − 1) log(1 + 1

Δ−1)) − ε for some positive constant ε.

Proof. Consider the distribution X = {x1, x1 + 2Δ, · · · , x1 + 2(s − 1)Δ},
where x1 is uniformly chosen from a set A = {a1, · · · , aλ} of λ points. Hence,
H∞(X) = log λ. Recall that, given PH , a point w is a codeword if and only if
hw = 0 and hb �= 0 for all b ∈ S1(w). Certainly, each point xi in X itself must
be a codeword. Hence, each point ai ∈ A is a possible candidate of the original
point x1 if and only if all the points in {ai, ai + 2Δ, . . . , ai + 2(s − 1)Δ} are
codewords in C.

66 E.-C. Chang and Q. Li

For any ai �= x1, the probability that ai is a possible candidate of x1 is at
most 1

Δs (1− 1
Δ)(Δ−1)s. Let C be the number of candidates of x1 for a given PH ,

then we have

E[C] ≤ 1 +
λ − 1
Δs

(1 − 1
Δ

)(Δ−1)s ≤ 1 +
λ

Δs
(1 − 1

Δ
)(Δ−1)s.

Now by choosing
λ = 2s(log Δ+(Δ−1) log(1+ 1

Δ−1))

we have E[C] ≤ 2. By Markov’s Inequality, we have

Pr[C ≤ 4] ≥ 1 − E[C]/4 ≥ 1/2.

We note that

Eb←PH

[
2−H∞(X|PH=b)

]
=Eb←PH

[
max

a
Pr[X = a|PH = b]

]
≥1

4
Pr[C ≤ 4] ≥ 1

8
.

Therefore, the left-over entropy H̃∞(X |P) ≤ − log 1
8 = 3. Considering that

H∞(X) = log λ = s
(
log Δ + (Δ − 1) log(1 + 1

Δ−1)
)
, and let ε = 3, we have the

claimed bound.

4.2 Extension to Higher Dimensions

The construction in one dimension can be easily extended to higher dimensions
by giving an appropriate notion of half-sphere. Let us first define a total order
for the points in [0, N − 1]d. Define 〈x1, x2, . . . , xd〉 � 〈x′

1, x
′
2, . . . , x

′
d〉 if and only

if there exists an i such that xi > x′
i and xj = x′

j for all 1 ≤ j < i. We define the
half-sphere of x in d-dimensions Sd(x) = {y | 0 < ‖y − x‖∞ ≤ 2δ and y � x}.

The sketch PH is a set of Nd symbols. For each hy ∈ PH , we have y ∈
[0, N − 1]d and hy ∈ {0, . . . , pd − 1} for some parameter pd that is to be chosen
later. We construct PH as below.

1. For each x ∈ X , set hx = 0. For every a ∈ Sd(x), uniformly choose ha at
random from {1, . . . , pd − 1}.

2. For each hy that is not set in step 1, choose its value uniformly at random
from {0, . . . , pd − 1}.
From PH we can determine the codebook C as follows. A point x ∈ [0, N −1]d

is in C if and only if hx = 0 and for every a ∈ Sd(x), we have ha �= 0. We can
then construct the second part PS of the sketch for set difference. Suppose y is
a noisy version of an x ∈ X , that is, ‖y − x‖∞ ≤ δ, it is not difficult to verify
that its closest point in C is x.

In fact, this construction is essentially the same as the construction for d = 1,
except that Sd(x) is larger when d > 1. By simple counting we have

Hiding Secret Points Amidst Chaff 67

|Sd(x)| =
(4δ + 1)d − 1

2
.

Similar to the one-dimensional case, we choose pd = |Sd(x)|+1. By substituting
Δ = 2δ + 1, we have

Theorem 5. The entropy loss of X given sketch PH is at most

s

(
log pd + (pd − 1) log(1 +

1
pd − 1

)
)

≤ s
(
d log Δ + d + log

e

2

)
in d-dimensions, where pd = (4δ+1)d+1

2 , and e is the base of natural logarithm.

Similarly to the one-dimensional case, the above bound is tight. That is, there
is a distribution of X such that the entropy loss is at least

s

(
log pd + (pd − 1) log(1 +

1
pd − 1

)
)

− ε

for some positive constant ε. Taking into consideration the entropy loss of sketch
for set difference, we have

Corollary 6. In d-dimensions, the entropy loss of X given sketch PHPS is at
most s

(
d log Δ + d + log e

2

)
+ LSD

(
s, t, Nd

(2δ+1)d

)
.

5 Improved Schemes

The generic construction in Section 4.2 can indeed be further improved in terms
of entropy loss. We employ two techniques. The first is pre-rounding. That is,
each point in X and Y is rounded prior to both encoding and decoding. We
observe that, the effect of the white noise is reduced on the rounded points. The
second technique is partitioning, where we carefully partition the domain into
cells. Instead of selecting points independently from the space, in the improved
scheme, at most one point is selected in each cell. Both techniques are useful in
reducing the randomness required in constructing PH .

5.1 Improvement in One Dimension (d = 1)

First, we give an improvement for δ = 1 using partitioning, and we observe that
this scheme can be extended to any δ > 1 by pre-rounding.

We partition the domain [0, N − 1] into cells of size 3, such that the i-th cell
contains the 3 consecutive points {3i, 3i + 1, 3i + 2}. There are n′ = �N/3 cells
in total. We want to assign one bit hi to the i-th cell for all 0 ≤ i ≤ n′ − 1, and
construct PH as the binary sequence 〈h0, h1, . . . hn′−1〉.

Our main idea is to use this binary sequence to describe the codewords in
the cells. At the first glance, it seems impossible since each cell would have three
different possible codewords, which cannot be described by one bit. However,

68 E.-C. Chang and Q. Li

since two codewords cannot be too close to each other, we can eliminate certain
cases by considering each two consecutive cells together. In this way, we can use
only two bits to describe the codewords in two consecutive cells.

Here is how the values in the binary sequence are determined: For each x ∈ X ,
it is in the i = �x/3�-th cell, and r = x mod 3 indicates the location of x in the
i-th cell. We set two values hi and hi+1 in PH according to Table 1(a). Since there
are s points in X , the above process sets the values for 2s bits in 〈h1, h2, . . . hn′−1〉.
For each hi that is not set, we randomly assign a value from {0, 1} to it.

Now, from 〈h0, h1, . . . hn′−1〉, we determine a set of “potential codewords”.
For each i-th cell, the potential codeword in the cell is determined by hi and
hi+1 using Table 1(b). Next, for a potential codewords x, if there is another
potential codeword x′ such that x′ ∈ S1(x), then x is removed. The retained
points form the codebook C. By the design of Table 1(a) & (b), each x ∈ X will
be a codeword.

Table 1. Improved Scheme for d = 1

hi hi+1

r = 0 0 0
r = 1 0 1
r = 2 1 1

hi+1 = 0 hi+1 = 1
hi = 0 3i 3i + 1
hi = 1 3i + 2 3i + 2

(a) (b)

Similar to the basic construction, in practice, we can publish a description
of C as the sketch. However, for the ease of analysis, we choose to publish
〈h0, h1, . . . , hn′−1〉. During decoding, each y is simply matched to the nearest
codeword in C.

Since we invested n′−2s bits of randomness, and the size of sketch is 2s, the
entropy loss is at most 2s.

Extension to any δ. To extend this scheme to any δ, we employ rounding. The
rounding is essentially a many-to-one mapping. For each point w ∈ [0, N − 1],
we map it to ŵ = �w/δ�. Note that under white noise, the perturbed point w′

can only be mapped to ŵ − 1, ŵ or ŵ + 1. In other words, under the mapping,
the white noise (that appears to be on ŵ) is reduced to −1, 0, or +1, which
corresponds to white noise with unit strength. Since the mapping is many-to-
one, for each x ∈ X , we keep the rounding error x − δ(�x/δ�) and publish it as
part of the sketch. Hence, the additional entropy loss due to the rounding is at
most log δ for each x ∈ X . In total, we have

Theorem 7. The entropy loss for the above scheme is at most (2 + log δ)s +
LSD (s, t, N/(3δ)) .

5.2 Improvement for d = 2 and δ = 1

For δ = 1 in two dimensions, with a parameter α ∈ [0, 4], we partition the space
such that every 5 points of the form {(w, 5k +α), (w, 5k +α + 1), (w, 5k +α + 2),

Hiding Secret Points Amidst Chaff 69

d1 d3

d4

d5

d6
d2

(a) (b)

Fig. 1. Cells of size 5. For each scenario, the black point is a data point, the white
points cannot be in the codebook.

(w, 5k +α+3), (w, 5k+α+4)} for some non-negative integer k, are grouped into
a cell (Fig. 1). Each cell will be assigned a number q ∈ [0, p2 − 1] where p2 is a
constant to be decided later. If the assigned value q is less than or equal to 4, then
we select the point (w, 5k+q) to be a codeword in the cell, otherwise no codeword
is selected in this cell.

There are five possible scenarios for a point x ∈ X , corresponding to the five
different possible locations it occupies in a cell. Two of the five possible scenarios
are illustrated in Fig. 1. Now we count the entropy loss for the scenario in Fig.
1(a). Same as in the basic construction, for any x ∈ X , all the points in the
half-sphere S2(x) cannot be codewords. Therefore, all the white points in the
figure cannot be codewords. Hence, for cell labeled d1, there is only 1 choice for
the value of the corresponding q, for d3 and d5, there are p2 − 3 choices, and for
d2, d4, and d6, there are p2 − 2 choices. Hence the entropy loss for this point is
log p2 + 2 log(p2/(p2 − 3)) + 3 log(p2/(p2 − 2)).

Now we choose p2 = 14, and the entropy loss for all five scenarios are as
shown in Table 2.

Table 2. Entropy loss of the five scenarios

(a) log p2 + 2 log(p2/(p2 − 3)) + 3 log(p2/(p2 − 2)) < 5.1704
(b) log p2 + 2 log(p2/(p2 − 4)) + 3 log(p2/(p2 − 1)) < 5.0990
(c) log p2 + 2 log(p2/(p2 − 5)) < 5.0823
(d) log p2 + 2 log(p2/(p2 − 4)) + 2 log(p2/(p2 − 1)) < 4.9921
(e) log p2 + 2 log(p2/(p2 − 3)) + 2 log(p2/(p2 − 2)) < 4.9480

Next, we choose a value for α, such that scenario (e) happens most often.
By this choice of α, we can show that LH ≤ 5.0750s, whereas in the basic
construction in Section 4.2, the bound is at least 5.0861s for δ = 1.

Although the improvement is small, this construction suggests that the basic
construction can be further improved by partitioning. There are many ways to
partition the 2-d domain, and it is interesting to find the optimal partition in
terms of entropy loss.

70 E.-C. Chang and Q. Li

6 Short Description of PH

In the basic constructions (Section 4.2), we can view the sketch PH as a random
sequence of length Nd log pd with two types of constraints: Type 0 constraint is
of the form (k, 0), which requires that hk = 0, and type 1 constraint is of the form
(k, 1) which requires that hk �= 0. The main idea is as follows: Find the seed of
some pseudo-random generator, such that the generated sequence satisfies all the
type 0 and 1 constraints, and use the seed as the sketch. In this section, we give
two methods. The first method has efficient decoding and encoding algorithms,
but still requires randomness. The second method eliminates all randomness but
there is no known efficient encoder.

Using a high degree polynomial. Let n = Nd, and assign each x ∈ [0, N − 1]d

a unique index ind(x) in [0, n − 1]. Given a constraint set S = {(k1, r1), . . . ,
(km, rm)}, we construct a polynomial f(x) of degree at most m− 1 in Zn as the
following.

1. Uniformly choose d1, . . . , dm ∈ Zn at random such that for 1 ≤ i ≤ m, if
ri = 0, then di ≡ 0 mod pd, otherwise di �≡ 0 mod pd.

2. Find the polynomial f of degree at most m − 1 such that f(ind(ki)) ≡ di

mod n for 1 ≤ i ≤ m.

The m coefficients of f is published as the sketch. During decoding, each hk in
PH can be recovered by computing hk = (f(ind(k)) mod n) mod pd. Since for
each point x we can have at most |Sd(x)|+ 1 constraints, The polynomial f can
be represented using ds((4δ+1)d+1)

2 log N bits.
When pd divides n, the entropy loss of this sketch is the same as the basic

construction.
Using almost k-wise independence [1]. A sample space of n bits is almost k-wise
independent if the probability distribution, induced on every k bit locations in a
randomly chosen string from the sample space, is statistically close to uniform.
The number of bits required to describe one sample is (2+o(1))(log log n+3k/2+
log k). The sample space is pre-computed and made public.

We observe that this construction can be employed to make the sketch
shorter. For instance, for d = 1 and δ = 1 in our basic construction, we can
construct such a sample space with k = 3s and n = N . Given an original X ,
which in turn gives a set of constraints, we find the first sample that satisfies
the constraints. The description of the sample is the sketch, whose size is in
o(s + log log N), which is also an upper bound for the entropy loss. In general,
the size of the sketch would be in o

(
sΔd + log log(Nd)

)
in d-dimensional space.

However, we are not aware of a better bound on the entropy loss other than the
size of the sketch.

7 Entropy Loss of a Random Placement Method

Intuitively, it seems that it is better to have the codebook C = (X ∪R) as large
as possible, since then a brute-force attacker will need to try more guesses to

Hiding Secret Points Amidst Chaff 71

get X . In this section we give a seemingly natural random placement method to
construct PH with a large R in one dimension, and we show that the entropy
loss is high for certain distributions of X .

The secure sketch PH is a description of the sequence
〈
r0, r1, . . . , r
N/Δ�

〉
.

Each ri describes the gap between two consecutive codewords in C (except for r0,
which can be considered as the description of an “imaginary” starting codeword).
Hence, instead of generating the codewords directly, we randomly choose the
gaps between the codewords.

The sequence PH is generated incrementally, starting from r1. Most of the
times the value of each gap can be chosen from Δ different values, but when a
codeword w is close to a point x ∈ X , then the gap between w and the next
codeword will be selected from a smaller interval (Steps 2 and 3).

1. Let r0 = −δ, i = 1.
2. If there is an x ∈ X s.t. x − ri−1 ∈ [2δ, 4δ] then let ri = x − ri−1.
3. If there is an x ∈ X s.t. x − ri−1 ∈ [4δ + 1, 6δ], uniformly choose ri from

[Δ − 1, x − ri−1 − Δ]. Otherwise, uniformly choose ri from [Δ − 1, 2Δ − 2].
4. Increase i by 1, and repeat from Step 2 until i = �N/Δ + 1.
5. Output PH =

〈
r1, . . . , r
N/Δ�

〉
.

The codewords can be recovered from PH . In particular, the k-th codeword is∑k
i=0 ri, for 1 ≤ k ≤ �N/Δ . If a codeword recovered in this process is greater

than N − 1, it is removed. It is not necessary for PH to have exactly �N/Δ
elements, and the extra padding is only for the ease of analysis.

Consider X = {x1, x1+2Δ, . . . , x1+2(s−1)Δ}, where x1 is uniformly distrib-
uted. It can be shown that the entropy loss of X given PH is at least 2s logΔ− ε
for some small positive constant ε. Comparing with other constructions in this
paper, this method reveals the most information, even though it produces the
largest number of codewords.

8 Conclusions and Discussions

In this paper, we investigate the technique of hiding a set of secret points by
adding chaff points. Instead of considering brute force attackers as in known
previous works, we give rigorous treatment under the secure sketch framework.
We propose a construction of secure sketch for such point-sets, which can be
extended to any dimension, and also some improvements for certain specific
parameters. We give tight bounds of the entropy loss of our schemes.

Although we used infinity norm as the measure of closeness between any
pair of points in the space, it is not difficult to extend our basic construction to
any other closeness relations (e.g., using �2 norm). It seems that this is always
possible as long as a total order can be defined on the points, so that the half-
sphere of any given point is uniquely defined and is bounded.

On the other hand, the improvements in Section 5 are “ad-hoc” in the sense
that they are specially designed for particular values of δ and d. We can also
obtain improved schemes for another case where the white noise either leaves a

72 E.-C. Chang and Q. Li

coordinate unchanged or increased by one (we call this the 0-1 noise). An inter-
esting question now is whether there is a generic method to find the “optimal”
way of partitioning the space.

The proposed sketches are not suitable for large universe size Nd. The meth-
ods in Section 6 can reduce the sketch size, but the encoding and decoding
algorithms can still be inefficient for large universe.

References

1. Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple constructions
of almost k-wise independent random variables. In Proc. of the 31st FOCS, pages
544–553, 1990.

2. Xavier Boyen. Reusable cryptographic fuzzy extractors. In Proceedings of the 11th
ACM conference on Computer and Communications Security, pages 82–91. ACM
Press, 2004.

3. Ee-Chien Chang, Vadym Fedyukovych, and Qiming Li. Secure sketch for
multi-set difference. Cryptology ePrint Archive, Report 2006/090, 2006.
http://eprint.iacr.org/.

4. Ee-Chien Chang, Ren Shen, and Francis Weijian Teo. Finding the original point
set hidden among chaff. In ASIACCS, 2006. To appear.

5. T.C. Clancy, N. Kiyavash, and D.J. Lin. Secure smartcard-based fingerprint au-
thentication. In ACM Workshop on Biometric Methods and Applications, 2003.

6. Michael D.Garris and R.Michael McCabe. Fingerprint minutiae from latent and
matching tenprint images. NIST Special Database 27, 2000.

7. Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to gen-
erate strong keys from biometrics and other noisy data. In Eurocrypt’04, volume
3027 of LNCS, pages 523–540. Springer-Verlag, 2004.

8. E.G. Coffman Jr., L. Flatto, and P. Jelenković. Interval packing: The vacant-
interval distribution. The Annals of Applied Probability, 10(1):240–257, 2000.

9. Ari Juels and Madhu Sudan. A fuzzy vault scheme. In IEEE Intl. Symp. on
Information Theory, 2002.

10. Ari Juels and Martin Wattenberg. A fuzzy commitment scheme. In Proc. ACM
Conf. on Computer and Communications Security, pages 28–36, 1999.

11. D. Maltoni, D. Maio, A.K. Jain, and S. Prabhakar. Handbook of Fingerprint Recog-
nition. Springer, 2003.

12. Yaron Minsky, Ari Trachtenberg, and Richard Zippel. Set reconciliation with nearly
optimal communications complexity. In ISIT, 2001.

13. I. Palasti. On some random space filling problems. Publ. Math. Inst. Hung. Acad.
Sci., 5:353–359, 1960.

14. A. Rényi. On a one-dimensional problem concerning random space-filling. Publ.
Math. Inst. Hung. Acad. Sci., 3:109–127, 1958.

15. P. Tuyls and J. Goseling. Capacity and examples of template-protecting biometric
authentication systems. In ECCV Workshop BioAW, pages 158–170, 2004.

16. Shenglin Yang and Ingrid Verbauwhede. Automatic secure fingerprint verification
system based on fuzzy vault scheme. In IEEE Intl. Conf. on Acoustics, Speech,
and Signal Processing (ICASSP), pages 609–612, 2005.

Parallel and Concurrent Security of the
HB and HB+ Protocols

Jonathan Katz� and Ji Sun Shin��

Dept. of Computer Science, University of Maryland
{jkatz, sunny}@cs.umd.edu

Abstract. Juels and Weis (building on prior work of Hopper and Blum)
propose and analyze two shared-key authentication protocols — HB and
HB+ — whose extremely low computational cost makes them attrac-
tive for low-cost devices such as radio-frequency identification (RFID)
tags. Security of these protocols is based on the conjectured hardness
of the “learning parity with noise” (LPN) problem: the HB protocol
is proven secure against a passive (eavesdropping) adversary, while the
HB+protocol is proven secure against active attacks.

Juels and Weis prove security of these protocols only for the case of
sequential executions, and explicitly leave open the question of whether
security holds also in the case of parallel or concurrent executions. In
addition to guaranteeing security against a stronger class of adversaries,
a positive answer to this question would allow the HB+ protocol to be
parallelized, thereby substantially reducing its round complexity.

Adapting a recent result by Regev, we answer the aforementioned
question in the affirmative and prove security of the HB and HB+ proto-
cols under parallel/concurrent executions. We also give what we believe
to be substantially simpler security proofs for these protocols which are
more complete in that they explicitly address the dependence of the
soundness error on the number of iterations.

1 Introduction

Low-cost, severely resource-constrained devices such as radio-frequency identifi-
cation (RFID) tags or sensor nodes demand extremely efficient algorithms and
protocols. Securing such devices is a challenge since, in many cases, “traditional”
cryptographic protocols are simply too computationally-intensive to be utilized.
With this motivation in mind, Juels and Weis [20] — building upon work of
Hopper and Blum [18, 19] — investigate two highly-efficient, shared-key (unidi-
rectional) authentication protocols suitable for an RFID tag identifying itself to
a tag reader. (We will sometimes refer to the tag as a prover and the tag reader
as a verifier.) These protocols are extremely lightweight, requiring both parties
to perform only a relatively small number of primitive bit-wise operations such
� This research was supported by NSF Trusted Computing grants #0310499 and

#0310751, and NSF CAREER award #0447075.
�� Supported by NSF Trusted Computing grant #0310499.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 73–87, 2006.
c© International Association for Cryptologic Research 2006

74 J. Katz and J.S. Shin

as “XOR” and “AND,” and can thus be implemented using fewer than the 5-10K
gates required to implement even a block cipher such as DES or AES [20].

The twoprotocols studiedbyJuels andWeis arebothproven securevia reduction
to the “learning parity with noise” (LPN) problem [4, 5, 6, 9, 17, 21, 18, 19, 25]; a
formal definition of this problem as well as evidence for its difficulty are reviewed
in Section 2.1. The first protocol (called the HB protocol [18, 19]) is proven secure
against a passive (eavesdropping) adversary, while the second (called HB+) is
proven secure against the stronger class of active adversaries. In each case, Juels
and Weis focus on a single, “basic authentication step” of the protocol and prove
that a computationally-bounded adversary cannot succeed in impersonating a
tag in this case with probability noticeably better than 1/2; that is, a single iter-
ation of the protocol has soundness error 1/2. The implicit assumption (though
see below) is that repeating these “basic authentication steps” sufficiently-many
times yields a protocol with negligible soundness error.

Difficulties and limitations. There are, however, some subtle limitations of
the security proofs given by Juels and Weis. Most serious, perhaps, is a difficulty
explicitly highlighted by Juels and Weis and regarded by them as a potential
barrier to usage of the HB+ protocol in practice [20, Section 6]: the proof of
security for HB+ requires that the adversary’s interactions with the tag (i.e.,
when the adversary is impersonating a tag reader) be sequential. Besides leaving
in question the security of HB+ under concurrent executions, this also means
that the HB+ protocol itself (which, recall, consists of sufficiently-many rep-
etitions of an underlying basic authentication step) requires very high round
complexity since the multiple iterations of the basic authentication step cannot
be parallelized but must instead be performed sequentially. The difficulty and
importance of proving security of various identification protocols under concur-
rent or parallel composition is well-understood, and many results are known: for
example, the (black-box) zero-knowledge property of an identification protocol is
not preserved under parallel [14] or concurrent [8] composition (though it is pre-
served under sequential composition [16]), whereas witness indistinguishability
is preserved in these cases [11]. Unfortunately, the HB+ protocol is not known to
satisfy either zero knowledge or witness indistinguishability and so such results
are of no help here.

An additional difficulty, not explicitly mentioned in [20], is that it is unclear
what is the exact relationship between the soundness error and the number of
repetitions of the basic authentication step; this is true for both the HB and
HB+ protocols, regardless of whether the repetitions are carried out in par-
allel or sequentially.1 This is related to the more general question of “when
is solving multiple instances of a problem more difficult than solving a single
instance?” (i.e., hardness amplification) which has been studied in many con-
texts [26, 15, 3, 13, 24, 7] and turns out to be surprisingly non-trivial to answer.

1 Indeed, Juels and Weis only prove soundness 1/2 for a basic authentication step and
never make any claims regarding the security of multiple iterations (for either HB or
HB+); this indicates that those authors also recognized the difficulty of characterizing
the dependence of soundness on the number of iterations.

Parallel and Concurrent Security of the HB and HB+ Protocols 75

Unfortunately, there does not seem to be any prior work that applies in our
setting. Specifically:

• For the HB and HB+ protocols it is not possible to efficiently verify whether
a given transcript is “successful” without possession of the secret key; thus,
Yao’s “XOR-lemma” [26, 15] and related techniques that require efficient
verifiability do not apply.

• Work on hardness amplification for “weakly-verifiable puzzles” [7] does not
apply either. Although the HB/HB+ protocols can be viewed as efficiently-
verifiable puzzles, hardness amplification in [7] is only proved for completely
independent instances of the “puzzle.” In particular, then, the work of [7]
implies that running the basic authentication step of the HB protocol n times
using n independent keys yields soundness (roughly) 1/2n, but says nothing
about running n iterations using the same key (which is the case we are
interested in).

• The HB/HB+ protocols are computationally-sound only, and thus known
results [13, Appendix C] [24] on soundness reduction for interactive proof
systems (which apply only when soundness holds even against an all-powerful
cheating prover) do not apply either.

• Bellare, et al. [3] study soundness reduction in computationally-sound proto-
cols, and show a positive result [3, Sect. 4] for the case of protocols running
in 3 rounds. Unfortunately, their result is specifically stated to apply only
when the verifier does not hold a secret key (or, more generally, only when
the verifier does not share state across different iterations). As in the case of
weakly-verifiable puzzles, then, this result is of no help when the same secret
key is used across all iterations.

An additional difficulty in our setting is that the verifier is supposed to accept
even when some iterations have not been answered successfully; indeed, crucial to
both the HB and HB+ protocols is that the honest prover injects “noise” into its
answers and so even the honest prover does not succeed with probability 1. This
was not explicitly addressed in the security proofs of [20], either, and introduces
additional complications.

1.1 Our Contributions

In this work we address the difficulties and open questions mentioned above, and
show the following results: (1) the HB+ protocol remains secure under arbitrary
concurrent interactions of the adversarywith the honest prover/tag, and so in par-
ticular the iterations of the HB+ protocol can be parallelized; furthermore, (2) our
security proofs explicitly incorporate the dependence of the soundness error on the
number of iterations as well as the error introduced by the honest prover.

Besides the results themselves, we expect that the techniques and proofs we
give here will be of independent interest for future work on cryptographic appli-
cations of the LPN problem. Our main technical tool is a result due to Regev
[25] (see also [5]) showing that the hardness of the LPN problem implies the
pseudorandomness of a certain distribution. Using this, we give proofs which we

76 J. Katz and J.S. Shin

believe are substantially simpler than those given in [20], and also more complete
(in that, in contrast to [20], they explicitly deal with the dependence of sound-
ness on the number of iterations and also the issues arising due to non-perfect
completeness).

1.2 Additional Discussion

The problem of secure authentication using a shared, secret key is by now well-
understood, and many widely-known solutions based on, e.g., block ciphers are
available. We stress that the aim of the line of research considered here, as in [20],
is to develop protocols which are exceptionally efficient while still guaranteeing
some useful level of (provable) security. The estimates from [20] are that 5,000–
10,000+ gates are needed for block-cipher implementations, whereas a typical
RFID tag may only have 2,000 gates that can be dedicated to security. Moore’s
Law will not necessarily help here, either: as pointed out in [20], there is intense
pressure to keep prices for RFID tags low; as computational power per fixed unit
of currency increases, the trend has been to reduce the cost of tags and thus
expand their application domain rather than to increase their computational
power while keeping costs fixed. In short, there seems to be “little effective
change in tag resources for some time to come, and thus a pressing need for new
lightweight primitives” [20].

Gilbert, et al. [12] have recently shown a man-in-the-middle attack on the
HB+ protocol. Although their attack would be debilitating if carried out suc-
cessfully, the possibility of such an attack does not mean that it is now useless to
explore the security of the HB/HB+ protocols in weaker attack models! (Indeed,
only recently have man-in-the-middle attacks on identification protocols been
formally considered in general [2], yet certainly research in the area conducted
up to that point is not valueless.) There will always be some tradeoff between
efficiency and security, and our work can be viewed as mapping out where the
HB/HB+ protocols lie on this spectrum. Moreover, Juels and Weis [20, Appendix
A] note that the man-in-the-middle attack of [12] does not apply in a detection-
based system where numerous failed authentication attempts immediately raise
an alarm. Furthermore, especially in the case of RFID (where communication
is inherently short range), it appears much more difficult to mount a man-in-
the-middle attack than an active attack.2 The reader is referred to the work of
Wool, et al. [22, 23], for an illuminating discussion on the feasibility of man-in-
the-middle attacks in RFID systems.

2 Definitions and Preliminaries

We formally define the LPN problem and state and prove the main technical
lemma on which we rely. We also define our notion(s) of security for identifica-
2 Though there have been claims of being able to read some RFID tags over as much

as 69 feet [1], the maximum distance from which many commonly-used cards can be
read appears to be almost two orders of magnitude lower [22]. Note further that a
man-in-the-middle attack requires the ability to send data to the tag (and reader).

Parallel and Concurrent Security of the HB and HB+ Protocols 77

tion; these are standard, but some complications arise due to the fact that the
HB/HB+ protocols do not have perfect completeness.

2.1 The LPN Problem

View k as a security parameter. If s, a1, . . . ,a
 are binary vectors of length
k, let zi = 〈s,ai〉 denote the dot product of s and ai (modulo 2). Given the
values a1, z1, . . . ,a
, z
 for randomly-chosen {ai} and � = O(k), it is possible to
efficiently solve for s using standard linear-algebraic techniques. However, in the
presence of noise where each zi is flipped (independently) with probability ε,
finding s becomes much more difficult. We refer to the problem of learning s in
this latter case as the LPN problem.

For the formal definition, let Berε be the Bernoulli distribution with parameter
ε ∈ (0, 1

2) (so if ν ∼ Berε then Pr[ν = 1] = ε and Pr[ν = 0] = 1− ε), and let As,ε

be the distribution defined by:{
a ← {0, 1}k; ν ← Berε : (a, 〈s, a〉 ⊕ ν)

}
.

Also let As,ε denote an oracle which outputs (independent) samples according
to this distribution. Algorithm M is said to (t, q, δ)-solve the LPNε problem if

Pr
[
s ← {0, 1}k : MAs,ε(1k) = s

] ≥ δ,

and furthermore M runs in time at most t and makes at most q queries to its
oracle.3 In asymptotic terms, in the standard way, the LPNε problem is “hard”
if every probabilistic polynomial-time algorithm solves the LPNε problem with
only negligible probability (where the algorithm’s running time and success prob-
ability are functions of k).

Note that ε is usually taken to be a fixed constant independent of k, as will be
the case here. The value of ε to use depends on a number of tradeoffs and design
decisions: although, roughly speaking, the LPNε problem becomes “harder” as ε
increases, a larger value of ε also implies that the honest prover is rejected more
often (as will become clear when we describe the HB/HB+ protocols, below).
In any case, our results are meaningful for all ε ∈ (0, 1

4). For concreteness, the
reader can think of ε ≈ 1

8 .
The hardness of the LPNε problem (for constant ε ∈ (0, 1

2)) has been studied
in many previous works. It can be formulated also as the problem of decoding
a random linear code [4, 25], and is NP-complete [4] as well as hard to approx-
imate within a factor better than 2 (where the optimization problem is phrased
as finding an s satisfying the most equations) [17]. These worst-case hardness re-
sults are complemented by numerous studies of the average-case hardness of the
problem [5, 6, 9, 21, 18, 19, 25]. Most relevant for our purposes is that the current
best-known algorithm for solving the LPNε problem [6] requires t, q = 2Θ(k/ log k).
3 Our formulation of the LPN problem follows, e.g., [25]; the formulation in, e.g., [20]

allows M to output any s satisfying ≥ (1 − ε) fraction of the equations returned
by As,ε. It is easy to see that for q large enough these formulations are essentially
equivalent as with overwhelming probability there will be a unique such s.

78 J. Katz and J.S. Shin

We refer the reader to [20, Appendix D] for more exact estimates of the running
time of this algorithm, as well as suggested practical values for k.

2.2 A Technical Lemma

In this section we prove a key technical lemma: hardness of the LPNε problem
implies “pseudorandomness” of As,ε. Specifically, let Uk+1 denote the uniform
distribution on (k+1)-bit strings. The following lemma shows that oracle access
to As,ε (for randomly-chosen s) is indistinguishable from oracle access to Uk+1.
A proof of the following is essentially in [25, Sect. 4], although we have fleshed
out some of the details and worked out the concrete parameters of the reduction.

Lemma 1. Say there exists an algorithm D making q oracle queries, running
in time t, and such that∣∣Pr

[
s ← {0, 1}k : DAs,ε(1k) = 1

]− Pr
[
DUk+1(1k) = 1

]∣∣ ≥ δ.

Then there exists an algorithm M making q′ = O
(
q · δ−2 log k

)
oracle queries,

running in time t′ = O
(
t · kδ−2 log k

)
, and such that

Pr
[
s ← {0, 1}k : MAs,ε(1k) = s

] ≥ δ/4.

(Various tradeoffs are possible between the number of queries/running time of
M and its success probability in solving LPNε; see [25, Sect. 4]. We aimed for
simplicity in the proof rather than trying to optimize parameters.)

Proof. Set N = O
(
δ−2 log k

)
. Algorithm MAs,ε(1k) proceeds as follows:

1. M chooses random coins ω for D and uses these for the remainder of its
execution.

2. M runs DUk+1(1k; ω) for a total of N times to obtain an estimate p for the
probability that D outputs 1 in this case. (The probability here is over the
responses from the oracle.)

3. M obtains q · N samples {(a1,j , z1,j)}q
j=1, . . . , {(aN,j, zN,j)}q

j=1 from As,ε.
Then for i ∈ [k]:
(a) Run D(1k; ω) for a total of N times, each time using a fresh set of samples

{(aj , zj)}q
j=1 to answer the q oracle queries of D. Answer the jth oracle

query of D in each iteration by choosing a random bit cj and returning
(aj ⊕ (cj · ei), zj), where ei is the vector with 1 at position i and 0s
elsewhere. Obtain an estimate pi for the probability that D outputs 1 in
this case.

(b) If |pi − p| ≥ δ/4 set s′i = 0; else set s′i = 1.
4. Output s′ = (s′1, . . . , s

′
k).

Let us analyze the behavior of M . First note that, by standard averaging
argument, with probability at least δ/2 over choice of s and random coins ω it
holds that ∣∣Pr

[
DAs,ε(1k; ω) = 1

]− Pr
[
DUk+1(1k; ω) = 1

]∣∣ ≥ δ/2, (1)

Parallel and Concurrent Security of the HB and HB+ Protocols 79

where the probabilities are taken over the answers D receives from its oracle.
We restrict our attention to s, ω for which Eq. (1) holds and show that in this
case M outputs s′ = s with probability at least 1/2. The theorem follows.

By our choice of N we have that∣∣Pr
[
DUk+1(1k; ω) = 1

]− p
∣∣ ≤ δ/16 (2)

except with probability at most O(1/k). Next focus on a particular iteration i of
steps 3(a) and 3(b). Letting hybi denote the distribution of the answers returned
to D in this iteration, we again have∣∣Pr

[
Dhybi(1k; ω) = 1

]− pi

∣∣ ≤ δ/16 (3)

except with probability at most O(1/k). Applying a union bound (and setting
parameters appropriately) we see that with probability at least 1/2 Eqs. (2)
and (3) hold (the latter for all i ∈ [k]), and so we assume this to be the case for
the rest of the proof.

We claim that if si = 0 then hybi = As,ε, while if si = 1 then hybi = Uk+1.
To see this note that when si = 0 the answer (aj ⊕ (cj · ei), zj) returned to D is
distributed exactly according to As,ε since 〈s, aj ⊕ (cj · ei)〉 = 〈s, aj〉 = zj. On
the other hand, if si = 1 then zj = 〈s,aj〉 is independent of aj ⊕ (cj · ei) since
cj is random (and unknown to D).

It follows that if si = 0 then∣∣Pr
[
Dhybi(1k; ω) = 1

]− Pr
[
DUk+1(1k; ω) = 1

]∣∣ ≥ δ/2

(by Eq. (1)), and so |pi − p | ≥ δ
2 − 2 · δ

16 = 3δ
8 (by Eqs. (2) and (3)) and

s′i = 0 = si. When si = 1 then

Pr
[
Dhybi(1k; ω) = 1

]
= Pr

[
DUk+1(1k; ω) = 1

]
,

and so |pi −p | ≤ 2 · δ
16 = δ

8 (again using Eqs. (2) and (3)) and s′i = 1 = si. Since
this holds for all i ∈ [k], we conclude that s′ = s.

2.3 Overview of the HB/HB+ Protocols, and Security Definitions

The HB and HB+ protocols as analyzed here consist of n parallel iterations of
a “basic authentication step.” We describe the basic authentication step for the
HB protocol, and defer a discussion of the HB+ protocol to Section 3.2. In the
HB protocol, a tag T and a reader R share a random secret key s ∈ {0, 1}k;
a basic authentication step consists of the reader sending a random challenge
a ∈ {0, 1}k to the tag, which replies with z = 〈s,a〉⊕ ν for ν ∼ Berε. The reader
can then verify whether the response z of the tag satisfies z

?= 〈s, a〉; we say the
iteration is successful if this is the case. See Figure 1.

Even for an honest tag a basic iteration is unsuccessful with probability ε.
For this reason, a reader accepts upon completion of all n iterations of the basic
authentication step as long as ≈ ε ·n of these iterations were unsuccessful. More

80 J. Katz and J.S. Shin

T (s, ε) R(s)

� a a ← {0, 1}k

ν ← Berε

z := 〈s,a〉 ⊕ ν z �
verify: z

?= 〈s,a〉

Fig. 1. The basic authentication step of the HB protocol

precisely, let l, u be such that l ≤ ε · n ≤ u; then the reader accepts as long as
the number of unsuccessful iterations lies in the range [l, u]. Since ε · n is the
expected number of unsuccessful iterations for an honest tag, the completeness
error εc (i.e., the probability that an honest tag is rejected) can be calculated
via a Chernoff bound.4 Overall, then, the entire HB protocol is parameterized
by ε, l, u, and n.

Observe that by sending random answers in each of the n iterations, an ad-
versary trying to impersonate a valid tag succeeds with probability

δ∗ε,l,u,n
def= 2−n ·

u∑
i=l

(
n

i

)
;

that is, δ∗ε,l,u,n is the best possible soundness error we can hope to achieve for
the given setting of the parameters. Our definitions of security will be expressed
in terms of the adversary’s ability to do better than this. Looking at asymptotic
security (taking k as a security parameter), note that for any constant ε < 1/2
it is easy to find functions l, u, n of k such that n = O(k) and furthermore both
the completeness error εc and the “best achievable” soundness error δ∗ε,l,u,n are
negligible.

Let T HB
s,ε,n denote the tag algorithm in the HB protocol when the tag holds

secret key s (note that the tag algorithm is independent of l, u), and let RHB
s,ε,l,u,n

similarly denote the algorithm run by the tag reader. We denote a complete exe-
cution of the HB protocol between a party T̂ and the reader R by

〈
T̂ ,RHB

s,ε,l,u,n

〉
and say this equals 1 iff the reader accepts.

For a passive attack on the HB protocol, we imagine an adversary A running
in two stages: in the first stage the adversary obtains q transcripts5 of (honest)
executions of the protocol by interacting with an oracle transHB

s,ε,n (this models

4 Note in particular that if u is set to exactly ε · n then the completeness error will
be rather high. One can imagine changing the protocol so that the tag introduces at
most ε · n errors; see Section 4 for discussion of this point.

5 Following [18, 19, 20], a transcript comprises only the messages exchanged between
the parties and does not include the reader’s decision of whether or not to accept.
If the adversary is given this additional information, the adversary’s advantage may
increase by (at most) an additive factor of q · εc.

Parallel and Concurrent Security of the HB and HB+ Protocols 81

eavesdropping); in the second stage, the adversary interacts with the reader and
tries to impersonate the tag. We define the adversary’s advantage as

Advpassive
A,HB (ε, l, u, n) def=

Pr
[
s ← {0, 1}k;AtransHB

s,ε,n(1k) :
〈A,RHB

s,ε,l,u,n

〉
= 1

]
− δ∗ε,l,u,n.

As we will describe in Section 3.2, the HB+ protocol uses two keys s1, s2. We
let T HB+

s1,s2,ε,n denote the tag algorithm in this case, and let RHB+

s1,s2,ε,l,u,n denote
the algorithm run by the tag reader. For the case of an active attack on the
HB+ protocol, we again imagine an adversary running in two stages: in the first
stage the adversary interacts at most q times with the honest tag algorithm
(with concurrent executions allowed), while in the second stage the adversary
interacts only with the reader.6 The adversary’s advantage in this case is

Advactive
A,HB+(ε, l, u, n) def=

Pr
[
s1, s2 ← {0, 1}k;AT HB+

s1,s2,ε,n(1k) :
〈
A,RHB+

s1,s2,ε,l,u,n

〉
= 1

]
− δ∗ε,l,u,n.

We remark that in both the HB and HB+ protocols, the tag reader’s ac-
tions are independent of the secret key(s) it holds except for its final decision
whether or not to accept. So, allowing the adversary to interact with the reader
multiple times (even concurrently) does not give the adversary much additional
advantage (other than the fact that, as usual, the probability that the adversary
succeeds in at least one impersonation attempt scales linearly with the number
of attempts).

3 Proofs of Security for the HB and HB+ Protocols

3.1 Security of the HB Protocol Against Passive Attacks

Recall from the previous section that we parameterize the HB protocol by ε (a
measure of the noise introduced by the tag), l, u (which determine the complete-
ness error εc as well as the best achievable soundness δ∗), and n (the number
of iterations of the basic authentication step given in Figure 1). We stress that
these n iterations are run in parallel, and so the entire protocol requires only
two rounds.

The following result characterizes security of the HB protocol against passive
attack. This can be compared to [20, Lemma 1], where Juels and Weis prove
security for a single iteration of the HB protocol (i.e., they fix n = 1) and do not
explicitly take the non-zero completeness error into account (this is taken into
account in the following via the dependence on l, u).

6 As we have already noted, this is the “classical” notion of security against active
attacks which does not take into account man-in-the-middle attacks.

82 J. Katz and J.S. Shin

Theorem 1. Say there exists an adversary A eavesdropping on q executions of
the HB protocol, running in time t, and achieving Advpassive

A,HB (ε, l, u, n) ≥ δ. Then
there exists an algorithm D making (q + 1) · n oracle queries, running in time
O(t), and such that∣∣Pr

[
s ← {0, 1}k : DAs,ε(1k) = 1

]− Pr
[
DUk+1(1k) = 1

]∣∣
≥ δ + δ∗ε,l,u,n − εc − 2−n ·

2 u∑
i=0

(
n

i

)
.

Asymptotically, for any ε < 1
4 and n = Θ(k) all terms of the above expression

(other than δ) are negligible for appropriate choice of l, u. We thus conclude that
the HB protocol is secure (for n = Θ(k) and appropriate choice of l, u) assuming
the hardness of the LPNε problem.

Proof. Algorithm D, given access to an oracle returning (k+1)-bit strings (a, z),
proceeds as follows:

1. D runs the first phase of A. Each time A requests to view a transcript of
the protocol, D obtains n samples {(ai, zi)}n

i=1 from its oracle and returns
these to A.

2. When A is ready for the second phase, D again obtains n samples
{(āi, z̄i)}n

i=1 from its oracle. D then sends the challenge (ā1, . . . , ān) to A
and receives in return a response Z ′ = (z′1, . . . , z

′
n).

3. D outputs 1 iff Z̄ = (z̄1, . . . , z̄n) and Z ′ differ in at most 2u entries.
When D’s oracle is Uk+1, it is clear that D outputs 1 with probability ex-

actly 2−n · ∑2u
i=0

(
n
i

)
since Z̄ is in this case uniformly distributed and inde-

pendent of everything else. On the other hand, when D’s oracle is As,ε then
the transcripts D provides to A during the first phase of A’s execution are
distributed identically to real transcripts in an execution of the HB protocol.
Let Z∗ def= (〈s, ā1〉 , . . . , 〈s, ān〉) be the vector of “correct” answers to the chal-
lenge (ā1, . . . , ān) sent by D in the second phase. Then with probability at least
δ+δ∗ε,l,u,n it holds that Z ′ and Z∗ differ in at most u entries (since A successfully
impersonates the tag with this probability). Also, since Z̄ is distributed exactly
as the answers of an honest tag, Z̄ and Z∗ differ in at most u positions except
with probability at most εc. It follows that with probability at least δ+δ∗ε,l,u,n−εc

the vectors Z ′ and Z̄ differ in at most 2u entries, and so D outputs 1 with at
least this probability. ��

The above result provides a useful security guarantee only when ε < 1/4, since
when ε ≥ 1/4 then 2u ≥ 2ε · n ≥ n/2 and so 2−n ·∑2 u

i=0

(
n
i

) ≥ 1/2. We also note
that the concrete security reduction obtained above leaves much to be desired,
and in particular it is not clear whether useful levels of security are achieved for
reasonably-efficient settings of the parameters. On the other hand, it is unclear
what can be said about the tightness of the security reductions obtained by
Juels and Weis [20] since they do not explicitly handle multiple iterations of

Parallel and Concurrent Security of the HB and HB+ Protocols 83

the protocol nor do they consider the effect that the acceptance criteria (i.e., in
terms of l, u) have on the soundness.

We believe that the security reduction can be improved by taking into ac-
count the distribution on Z̄ when D’s oracle is As,ε (and modifying step 3 of
D appropriately), as well as by focusing on protocols with perfect completeness.
See Section 4 for some discussion of the latter possibility.

3.2 Security of the HB+ Protocol Against Active Attacks

The HB protocol is insecure against an active attack, as an adversary can simply
repeatedly query the tag with the same challenge vector (a1, . . . ,an) and thereby
determine with high probability the correct values of 〈s, a1〉 , . . . , 〈s, an〉 (after
which solving for s is easy). To combat such an attack, Juels and Weis propose to
modify the HB protocol by having the tag and reader share two (independent)
keys s1, s2 ∈ {0, 1}k. A basic authentication step now consists of three rounds:
first the tag sends a random “blinding factor” b ∈ {0, 1}k; the reader replies
with a random challenge a ∈ {0, 1}k as before; and finally the tag replies with
z = 〈s1,b〉 ⊕ 〈s2,a〉 ⊕ ν for ν ∼ Berε. As in the HB protocol, the tag reader can
then verify whether the response z of the tag satisfies z

?= 〈s1,b〉 ⊕ 〈s2, a〉, and
we again say the iteration is successful if this is the case. See Figure 2.

T (s1, s2, ε) R(s1, s2)

b ← {0, 1}k b �
� a a ← {0, 1}k

ν ← Berε

z := 〈s1,b〉 ⊕ 〈s2,a〉 ⊕ ν z �
verify: z

?= 〈s1,b〉 ⊕ 〈s2, a〉

Fig. 2. The basic authentication step of the HB+ protocol

The actual HB+ protocol consists of n parallel iterations of the basic authenti-
cation step (and so the entire protocol requires only three rounds). The protocol
also depends upon parameters l, u as in the case of the HB protocol, and the
values εc and δ∗ε,l,u,n are defined exactly as there.

The following result characterizes security of the HB+ protocol under active
attacks. It can be compared to [20, Lemma 3], where Juels and Weis prove
security for a single iteration of the HB+ protocol (i.e., they fix n = 1). Their
proof requires rewinding of the adversary A in order to simulate the first phase of
A, and therefore their proof does not extend to the case of parallel or concurrent
executions of the basic authentication step.

We remark that by combining the proofs of Theorem 2 and Lemma 1 (i.e.,
reducing the HB+ protocol directly to the LPN problem rather than relying

84 J. Katz and J.S. Shin

on Lemma 1 as an intermediate step) we can improve the security reduction
stated in the following theorem. By applying techniques from [25, Sect. 4], the
parameters of the reduction can be improved further.

Theorem 2. Say there exists an adversary A interacting with the tag in at most
q executions of the HB+ protocol (possibly concurrently), running in time t, and
achieving Advactive

A,HB+(ε, l, u, n) ≥ δ. Then there exists an algorithm D making q ·n
oracle queries, running in time O(t), and such that∣∣Pr

[
s ← {0, 1}k : DAs,ε(1k) = 1

]− Pr
[
DUk+1(1k) = 1

]∣∣
≥

(
δ + δ∗ε,l,u,n

2

)3

− 2n

2k
− 2−n ·

2 u∑
i=0

(
n

i

)
.

Asymptotically, for any ε < 1
4 and appropriate choice of n, l, u the last two terms

of the above expression (and also εc) are negligible. We thus conclude that the
HB+ protocol is secure (for appropriate choice of n, l, u) assuming the hardness
of the LPNε problem.

Proof. Algorithm D, given access to an oracle returning (k+1)-bit strings (b, z̄),
proceeds as follows:

1. D chooses s2 ∈ {0, 1}k uniformly at random. Then, it runs the first phase
of A. To simulate a basic authentication step, D does the following: it obtains
a sample (b, z̄) from its oracle and sends b as the initial message. A replies
with a challenge a, and then D responds with z = z̄ ⊕ 〈s2, a〉. Note that
since D does not rewind A here, there is no difficulty in simulating parallel
executions of the basic authentication step (i.e., as part of an execution of
the “full” HB+ protocol) or concurrent executions of the HB+ protocol.

2. When A is ready for the second phase of the HB+ protocol, A sends an
initial message b1, . . . ,bn (we now explicitly look at the actual HB+ protocol
rather than focusing on a single basic authentication step). In response, D
chooses random a1

1, . . . ,a
1
n ∈ {0, 1}k, sends these challenges to A, and records

A’s response z1
1 , . . . , z1

n. Then D rewinds A, chooses random a2
1, . . . ,a

2
n ∈

{0, 1}k, sends these to A, and records A’s response z2
1 , . . . , z

2
n.

3. Let z⊕i := z1
i ⊕ z2

i and set Z⊕ def=
(
z⊕1 , . . . , z⊕n

)
. Let âi = a1

i ⊕ a2
i and

ẑi = 〈s2, âi〉, and set Ẑ
def= (ẑ1, . . . , ẑn). D outputs 1 iff Z⊕ and Ẑ differ in

at most 2u entries.
Let us analyze the behavior of D:

Case 1: Say D’s oracle is Uk+1. In step 1, above, since z̄ is uniformly distributed
and independent of everything else, the answers z that D returns to A are
uniformly distributed and independent of everything else. It follows that A’s
view throughout the experiment is independent of the secret s2 chosen by D.

The {âi}n
i=1 are uniformly and independently distributed, and so except with

probability 2n

2k they are linearly independent and non-zero (cf. the claim proved
below). Assuming this to be the case, Ẑ is uniformly distributed over {0, 1}n

Parallel and Concurrent Security of the HB and HB+ Protocols 85

from the point of view of A. But then the probability that Z⊕ and Ẑ differ in
at most 2u entries is exactly 2−n ·∑2 u

i=0

(
n
i

)
. We conclude that D outputs 1 in

this case with probability at most 2n

2k + 2−n ·∑2 u
i=0

(
n
i

)
.

Case 2: Say D’s oracle is As1,ε for randomly-chosen s1. In this case, D pro-
vides a perfect simulation for the first phase of A. By a standard averaging
argument, with probability at least δ̂

def=
δ+δ∗

ε,l,u,n

2 over the randomness used in
the first phase of A (which includes the keys s1, s2, the randomness of A, and
the randomness used in responding to A’s queries) the probability (over random
challenges a1, . . . ,an sent by the tag reader in the second phase) that A success-
fully impersonates the tag in the second phase is at least δ̂. Assume this is the
case. Then the probability that A successfully responds to both sets of queries
a1

1, . . . ,a
1
n and a2

1, . . . ,a
2
n is at least δ̂2. But this means that (z1

1 , . . . , z1
n) differs

in at most u entries from the “correct” answer

ans1 def=
(〈s1,b1〉 ⊕

〈
s2,a1

1
〉
, . . . , 〈s1,bn〉 ⊕

〈
s2, a1

n

〉)
and also (z2

1 , . . . , z2
n) differs in at most u entries from the “correct” answer

ans2 def=
(〈s1,b1〉 ⊕

〈
s2,a2

1
〉
, . . . , 〈s1,bn〉 ⊕

〈
s2, a2

n

〉)
.

But then (z1
1 , . . . , z1

n) ⊕ (z2
1 , . . . , z

2
n) = Z⊕ differs in at most 2u entries from

ans1 ⊕ ans2 =
(〈

s2,a1
1
〉⊕ 〈

s2,a2
1
〉
, . . . ,

〈
s2, a1

n

〉⊕ 〈
s2, a2

n

〉)
=

(〈
s2, (a1

1 ⊕ a2
1)
〉
, . . . ,

〈
s2, (a1

n ⊕ a2
n)
〉)

= Ẑ.

We conclude that D outputs 1 in this case with probability at least δ̂ · δ̂2. This
completes the proof of the theorem. ��

The following technical claim, used above, is quite straightforward:

Claim. Assume n vectors a1, . . . ,an are chosen uniformly at random from {0, 1}k.
The probability that these vectors are not linearly independent is less than 2n

2k .

Proof. Say event Badi occurs if ai is linearly dependent on the previous i − 1
vectors chosen (for the case i = 1 this is the event a1 = 0k). Since the subspace
spanned by i−1 vectors has size at most 2i−1, the probability of Badi is at most
2i−1

2k . Applying a union bound, we have:

Pr

[
n∨

i=1

Badi

]
≤ 2−k ·

n−1∑
i=0

2i <
2n

2k
,

yielding the claim. ��

A typical range of parameters might be k ≈ 200 and n ≈ 40–50, so the 2n

2k term
above is truly inconsequential.

86 J. Katz and J.S. Shin

4 Conclusions and Open Questions

The main technical results of this paper are the first rigorous proofs of (1) secu-
rity of the HB+ protocol against active attacks, even under parallel and concur-
rent executions; and (2) “hardness amplification” for the HB and HB+ protocols
as the number of iterations of the basic authentication step increases. Our proofs
are also the first to explicitly take into account the non-zero completeness error
and the impact this has on the security of the protocol as a whole.

We believe our proofs are remarkably simple, and view this as an additional
contribution of this work (rather than as a drawback!). Indeed, we expect there
will be further applications of Lemma 1 to the analysis of other cryptographic
constructions based on the LPN problem, and hope this paper inspires and aids
others in exploring such applications.

It would be nice to improve the analysis (or propose new protocols) so as to
obtain meaningful security guarantees even in the case 1

4 ≤ ε < 1
2 . It would also

be wonderful to improve the concrete security reductions obtained here, or to
propose new protocols with tighter security reductions. (As we have mentioned,
it is not clear whether the proofs provided here yield sufficiently-high security
for practically-efficient settings of the parameters.) As one possible approach
toward this goal, one can imagine changing the HB/HB+ protocols so that the
tag always introduces at most ε ·n errors, rather than introducing errors in each
of the n iterations with independent probability ε.7 (A related idea, in a different
context, was explored in [5]; their analysis does not seem to apply to our setting.)
This would give protocols with perfect completeness, and would help improve
the concrete security bounds as well since the upper bound u could be set to
exactly ε ·n and the “problem” mentioned in footnote 5 would also go away. On
the other hand it is not clear what can be said of the hardness of the natural
variant of the LPN problem such protocols would be based on.

It would also be very interesting to see an efficient protocol based on the LPN
problem that is provably resistant to man-in-the-middle attacks.

References

1. Associated Press. “Geeks Flex Hacker Muscles at Defcon.” Article appeared Aug. 2,
2005 on CNN.com.

2. M. Bellare, M. Fischlin, S. Goldwasser, and S. Micali. Identification Protocols Se-
cure against Reset Attacks. Adv. in Cryptology — Eurocrypt 2001, LNCS vol. 2045,
Springer-Verlag, pp. 495–511, 2001.

3. M. Bellare, R. Impagliazzo, and M. Naor. Does Parallel Repetition Lower the Error
in Computationally-Sound Protocols? 38th IEEE Symposium on Foundations of
Computer Science, IEEE, pp. 374–383, 1997.

4. E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg. On the Inherent In-
tractability of Certain Coding Problems. IEEE Trans. Info. Theory 24: 384–386,
1978.

7 Note that introducing exactly ε · n errors in the n iterations is insecure.

Parallel and Concurrent Security of the HB and HB+ Protocols 87

5. A. Blum, M. Furst, M. Kearns, and R. Lipton. Cryptographic Primitives Based
on Hard Learning Problems. Adv. in Cryptology — Crypto ’93, LNCS vol. 773,
Springer-Verlag, pp. 278–291, 1994.

6. A. Blum, A. Kalai, and H. Wasserman. Noise-Tolerant Learning, the Parity Prob-
lem, and the Statistical Query Model. J. ACM 50(4): 506–519, 2003.

7. R. Canetti, S. Halevi, and M. Steiner. Hardness Amplification of Weakly Verifiable
Puzzles. 2nd Theory of Cryptography Conference (TCC 2005), LNCS vol. 3378,
Springer-Verlag, pp. 17–33, 2005.

8. R. Canetti, J. Kilian, E. Petrank, and A. Rosen. Black-Box Concurrent Zero-
Knowledge Requires (Almost) Logarithmically Many Rounds. SIAM J. Computing
32(1): 1–47, 2002.

9. F. Chabaud. On the Security of Some Cryptosystems Based on Error-Correcting
Codes. Adv. in Cryptology — Eurocrypt ’94, LNCS vol. 950, Springer-Verlag,
pp. 131–139, 1995.

10. W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Trans. Info.
Theory 22(6): 644–654 (1976).

11. U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Proto-
cols. 22nd ACM Symposium on Theory of Computing, ACM, pp. 416–426, 1990.

12. H. Gilbert, M. Robshaw, and H. Silbert. An Active Attack against HB+

— a Provably Secure Lightweight Authentication Protocol. Available at
http://eprint.iacr.org/2005/237

13. O. Goldreich. Modern Cryptography, Probabilistic Proofs, and Pseudorandomness.
Springer-Verlag, 1998.

14. O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof
Systems. SIAM J. Computing 25(1): 169–192, 1996.

15. O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR-Lemma. Available at
http://eccc.uni-trier.de/eccc-reports/1995/TR95-050/

16. O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof
Systems. J. Cryptology 7(1): 1–32, 1994.

17. J. H̊astad. Some Optimal Inapproximability Results. J. ACM 48(4): 798–859, 2001.
18. N. Hopper and M. Blum. A Secure Human-Computer Authentication Scheme.

Technical Report CMU-CS-00-139, Carnegie Mellon University, 2000.
19. N. Hopper and M. Blum. Secure Human Identification Protocols. Adv. in Cryptol-

ogy — Asiacrypt 2001, LNCS vol. 2248, pp. 52–66, 2001.
20. A. Juels and S. Weis. Authenticating Pervasive Devices with Human Protocols.

Adv. in Cryptology — Crypto 2005, LNCS vol. 3621, Springer-Verlag, pp. 293–308,
2005. Updated version available at: http://www.rsasecurity.com/rsalabs/staff/
bios/ajuels/publications/pdfs/lpn.pdf

21. M. Kearns. Efficient Noise-Tolerant Learning from Statistical Queries. J. ACM
45(6): 983–1006, 1998.

22. Z. Kfir and A. Wool. Picking Virtual Pockets using Relay Attacks on Contactless
Smartcard Systems. Available at http://eprint.iacr.org/2005/052

23. I. Kirschenbaum and A. Wool. How to Build a Low-Cost, Extended-Range RFID
Skimmer. Available at http://eprint.iacr.org/2006/054

24. R. Raz. A Parallel Repetition Theorem. SIAM J. Computing 27(3): 763–803, 1998.
25. O. Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryp-

tography. 37th ACM Symposium on Theory of Computing, ACM, pp. 84–93, 2005.
26. A. C.-C. Yao. Theory and Applications of Trapdoor Functions. 23rd IEEE Sym-

posium on Foundations of Computer Science, IEEE, pp. 80–91, 1982.

Polling with Physical Envelopes: A Rigorous
Analysis of a Human-Centric Protocol�

Tal Moran1 and Moni Naor1,��

Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot, Israel

Abstract. We propose simple, realistic protocols for polling that allow
the responder to plausibly repudiate his response, while at the same time
allow accurate statistical analysis of poll results. The protocols use simple
physical objects (envelopes or scratch-off cards) and can be performed
without the aid of computers. One of the main innovations of this work is
the use of techniques from theoretical cryptography to rigorously prove
the security of a realistic, physical protocol. We show that, given a few
properties of physical envelopes, the protocols are unconditionally secure
in the universal composability framework.

1 Introduction

In the past few years, a lot of attention has been given to the design and analy-
sis of electronic voting schemes. Constructing a protocol that meets all (or even
most) of the criteria expected from a voting scheme is generally considered to
be a tough problem. The complexity of current protocols (in terms of how dif-
ficult it is to describe the protocol to a layperson) reflects this fact. A slightly
easier problem, which has not been investigated as extensively, is that of polling
schemes.

Polling schemes are closely related to voting, but usually have slightly less
exacting requirements. In a polling scheme the purpose of the pollster is to
get a good statistical profile of the responses, however some degree of error
is admissible. Unlike voting, absolute secrecy is generally not a requirement
for polling, but some degree of response privacy is often necessary to ensure
respondents’ cooperation.

The issue of privacy arises because polls often contain questions whose an-
swers may be incriminating or stigmatizing (e.g., questions on immigration sta-
tus, drug use, religion or political beliefs). Even if promised that the results of
the poll will be used anonymously, the accuracy of the poll is strongly linked
to the trust responders place in the pollster. A useful rule of thumb for polling
sensitive questions is “better privacy implies better data”: the more respondents
trust that their responses cannot be used against them, the likelier they are to

� This work was partially supported by the Minerva Foundation.
�� Incumbent of the Judith Kleeman Professorial Chair.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 88–108, 2006.
c© International Association for Cryptologic Research 2006

Polling with Physical Envelopes 89

answer truthfully. Using polling techniques that clearly give privacy guarantees
can significantly increase the accuracy of a poll.

A well-known method for use in these situations is the “randomized response
technique” (RRT), introduced by Warner [25]. Roughly, Warner’s idea was to
tell responders to lie with some fixed, predetermined, probability (e.g., roll a
die and lie whenever the die shows one or two). As the probability of a truthful
result is known exactly, statistical analysis of the results is still possible1, but an
individual answer is always plausibly deniable (the respondent can always claim
the die came up one).

Unfortunately, in some cases this method causes its own problems. In pre-
election polls, for example, responders have a strong incentive to always tell the
truth, ignoring the die (since the results of the polls are believed to affect the
outcome of the elections). In this case, the statistical analysis will give the cheat-
ing responders more weight than the honest responders. Ambainis, Jakobsson
and Lipmaa [1] proposed the “Cryptographic Randomized Response Technique”
to deal with this problem. Their paper contains a number of different proto-
cols that prevent malicious responders from biasing the results of the poll while
preserving the deniability of the randomized response protocol. Unlike Warner’s
original RRT, however, the CRRT protocols are too complex to be implemented
in practice without the aid of computers. Since the main problem with polling is
the responders’ lack of trust in the pollsters, this limitation makes the protocols
of [1] unsuitable in most instances.

The problem of trust in complex protocols is not a new one, and actually
exists on two levels. The first is that the protocol itself may be hard to under-
stand, and its security may not be evident to the layman (even though it may
be formally proved). The second is that the computers and operating system
actually implementing the protocol may not be trusted (even though the proto-
col itself is). This problem is more acute than the first. Even for an expert, it is
very difficult to verify that a computer implementation of a complex protocol is
correct.

Ideally, we would like to design protocols that are simple enough to grasp
intuitively and can also be implemented transparently (so that the user can
follow the steps and verify that they are correct).

1.1 Our Results

In this paper we propose two very simple protocols for cryptographic randomized
response polls, based on tamper-evident seals (introduced in a previous paper
by the authors [18]). A tamper-evident seal is a cryptographic primitive that
captures the properties of a sealed envelope: while the envelope is sealed, it is
1 For instance, suppose p > 1

2 is the probability of a truthful response, n is the total
number of responses, x is the number of responders who actually belong in the “yes”
category and R is the random variable counting the number of “yes” responses. R
is the sum of n independent indicator random varables, so R is a good estimation
for E(R) = px + (1− p)(n− x) = x(2p − 1) + n(1 − p). Therefore, given R, we can
accurately estimate the actual number of “yes” responders: x = E(R)−n(1−p)

2p−1 .

90 T. Moran and M. Naor

impossible to tell what’s inside, but if the seal is broken the envelope cannot be
resealed (so any tampering is evident). In fact, our CRRT protocols are meant
to be implemented using physical envelopes (or scratch-off cards) rather than
computers. Since the properties of physical envelopes are intuitively understood,
even by a layman, it is easy to verify that the implementation is correct.

The second important contribution of this paper, differentiating it from pre-
vious works concerning human-implementable protocols, is that we give a for-
mal definition and a rigorous proof of security for the protocols. The security is
unconditional: it relies only on the physical tamper-evidence properties of the
envelopes, not on any computational assumption. Furthermore, we show that
the protocols are “universally composable” (as defined by Canetti [3]). This is a
very strong notion of security that implies, via Canetti’s Composition Theorem,
that the security guarantees hold even under general concurrent composition

Our protocols implement a relaxed version of CRRT (called weakly secure
in [1]). We also give an inefficient strong CRRT protocol (that requires a large
number of rounds), and give impossibility results and lower bounds for strong
CRRT protocols with a certain range of parameters (based on Cleve’s lower
bound for coin flipping [8]). These suggest that constructing a strong CRRT
protocol using scratch-off cards may be difficult (or even impossible if we require
a constant number of rounds).

1.2 Related Work

Randomized Response Technique. The randomized response technique for polling
was first introduced in 1965 [25]. Since then many variations have been proposed
(a survey can be found in [6]). Most of these are attempts to improve or change
the statistical properties of the poll results (e.g., decreasing the variance), or
changing the presentation of the protocol to emphasize the privacy guarantee
(e.g., instead of lying, tell the responders to answer a completely unrelated ques-
tion). A fairly recent example is the “Three Card Method” [14], developed for
the United States Government Accountability Office (GAO) in order to estimate
the size of the illegal resident population. None of these methods address the case
where the responders maliciously attempt to bias the results.

To the best of our knowledge, the first polling protocol dealing explicitly with
malicious bias was given by Kikuchi, Akiyama, Nakamura and Gobioff. [17], who
proposed to use the protocol for voting (the protocol described is a randomized
response technique, although the authors do not appear to have been aware of
the previous research on the subject). Their protocol is still subject to malicious
bias using a “premature halting” attack (this is equivalent to the attack on the
RRT protocol in which the responder rolls a die but refuses to answer if result
of the die is not to his liking). A more comprehensive treatment, as well as a
formal definition of cryptographic randomized response, was given by Ambainis
et al. [1]. In their paper, Ambainis et al. also give a protocol for Strong CRRT,
in which the premature halting attack is impossible. In both the papers [17, 1],
the protocols are based on cryptographic assumptions and require computers to
implement.

Polling with Physical Envelopes 91

Independently of this work, Stamm and Jakobsson show how to implement
the protocol of [1] using playing cards [24]. They consider this implementation
only as a visualization tool. However, if we substitute envelopes for playing cards
(and add a verification step), this protocol gives a Responder-Immune protocol
(having some similarities to the one described in Section 3.2).

Deniable and Receipt-Free Protocols. The issues of deniability and coercion have
been extensively studied in the literature (some of the early papers in this area
are [2, 22, 4, 5, 15]). There are a number of different definitions of what it means
for a protocol to be deniable. Common to all of them is that they protect against
an adversary that attacks actively only after the protocol execution: in partic-
ular, this allows the parties to lie about their random coins. Receipt-Free pro-
tocols provide a stronger notion of security: they guarantee that even if a party
is actively colluding with the adversary, the adversary should have no verifiable
information about which input they used. Our notion of “plausible deniability”
is weaker than both “traditional” deniability and receipt-freeness, in that we
allow the adversary to gain some information about the input. However, as in
receipt-freeness, we consider an adversary that is active before and during the
protocol, not just afterwards.

Secure Protocols Using “Real” Objects. The idea of using real objects to provide
security predates cryptography: people have been using seals, locks and envelopes
for much of history. Using real objects to implement protocols that use them
in non-obvious ways is a newer notion. Fagin, Naor and Winkler [16] propose
protocols for comparing secret information that use various objects, from paper
cups to the telephone system. In a more jocular tone, Naor, Naor and Reingold
[19] propose a protocol that provides a “zero knowledge proof of knowledge”
of the correct answer to the children’s puzzle “Where’s Waldo” using “low-tech
devices” (e.g., a large newspaper and scissors). In all these works the security
assumptions and definitions are informal or unstated. Crépeau and Kilian [10]
show how to use a deck of cards to play “discreet” solitary games (these involve
hiding information from yourself). Their model is formally defined, however it
is not malicious; the solitary player is assumed to be honest but curious.

A related way of using real objects is as aids in performing a “standard”
calculation. Examples in this category include Schneier’s “Solitaire” cipher [23]
(implemented using a pack of cards), and the “Visual Cryptography” of Naor
and Shamir [21] (which uses the human visual system to perform some basic
operations on images). The principles of Visual Cryptography form the basis for
some more complex protocols, such as the “Visual Authentication” protocol of
Naor and Pinkas [20], and Chaum’s human verifiable voting system [7].

Tamper-Evident Seals. This work can be viewed as a continuation of a previous
work by the authors on tamper-evident seals [18]. In [18], we studied the possi-
bility of implementing basic cryptographic primitives using different variants of
physical, tamper-evident seals. In the current work we focus on their use in real-
istic cryptographic applications, rather than theoretical constructs (for instance,
there is a very sharp limit on the number of rounds and the number of envelopes

92 T. Moran and M. Naor

that can be used in a protocol that we expect to be practical for humans). We
limit ourselves to the “distinguishable envelope” (DE) model, as this model has
a number of intuitive physical embodiments, while at the same time is powerful
enough, in theory, to implement many useful protocols2 (an informal description
of this model is given in Section 2.3; for a formal definition see [18]).

Overview of Paper. In Section 2, we give formal definitions of the functionalities
we would like to realize and the assumptions we make about the humans im-
plementing the protocols. Section 3 gives an informal description of the CRRT
protocols. In Section 4, we show how to amplify a weak CRRT protocol in order
to construct a strong CRRT protocol, and give some impossibility results and
lower bounds for strong CRRT protocols. Finally, a discussion and some open
problems appear in Section 5.

The formal protocol specification and proof of security for our Pollster-
Immune CRRT protocol appears in Appendix A. Due to space constraints, the
complete specifications and formal proofs for the other protocols will appear
only in the full version of this paper.

2 The Model

Ideal Functionalities. Many two-party functionalities are easy to implement us-
ing a trusted third party that follows pre-agreed rules. In proving that a two-
party protocol is secure, we often want to say that it behaves “as if it were
performed using the trusted third party”. The “Universal Composability” frame-
work, defined by Canetti [3], is a formalization of this idea. In the UC model,
the trusted third party is called the ideal functionality. If every attack against
the protocol can also be carried out against the ideal functionality, we say the
protocol realizes the functionality. Canetti’s Composition Theorem says that
any protocol that is secure using the ideal functionality, will remain secure if we
replace calls to the ideal functionality with executions of the protocol.

Defining the security guarantees of our protocols as ideal functionalities has
an additional advantage as well: it is usually easier to understand what it means
for a protocol to satisfy a definition in this form than a definition given as a
list of properties. Below, we describe the properties we wish to have in a CRRT
protocol, and give formal definitions in the form of ideal functionalities.

2.1 Cryptographic Randomized Response

A randomized response protocol involves two parties, a pollster and a responder.
The responder has a secret input bit b (this is the true response to the poll
question). In the ideal case, the pollster learns a bit c, which is equal to b with
probability p (p is known to the pollster) and to 1 − b with probability 1 − p.

2 Although the “indistinguishable envelope model” (also defined in [18]) is stronger
(e.g., oblivious transfer is possible in this model), it seems to be very hard to devise
a secure, physical realization of this functionality.

Polling with Physical Envelopes 93

Since p is known to the pollster, the distribution of responders’ secret inputs can
be easily estimated from the distribution of the pollster’s outputs.

The essential property we require of a Randomized Response protocol is
plausible deniability: A responder should be able to claim that, with reasonable
probability, the bit learned by the pollster is not the secret bit b. This should be
the case even if the pollster maliciously deviates from the protocol.

A Cryptographic Randomized Response protocol is a Randomized Response
protocol that satisfies an additional requirement, bounded bias : The probability
that c = b must be at most p, even if the responder maliciously deviates from
the protocol. The bounded bias requirement ensures that malicious responders
cannot bias the results of the poll (other than by changing their own vote). Note
that even in the ideal case, a responder can always choose any bias p′ between p
and 1−p, by randomly choosing whether to vote b or 1−b (with the appropriate
probability).

Strong p-CRRT. In a strong CRRT protocol, both the deniability and boun-
ded bias requirements are satisfied. Formally, this functionality has a single
command:

Vote b. The issuer of this command is the responder. On receiving this com-
mand the functionality tosses a weighted coin c, such that c = 0 with prob-
ability p. It then outputs b ⊕ c to the pollster and the adversary.

Unfortunately, we do not know how to construct a practical strong CRRT
protocol that can be implemented by humans. In Section 4, we present evidence
to suggest that finding such a protocol may be hard (although we do show an
impractical strong CRRT protocol, that requires a large number of rounds). The
protocols we propose satisfy relaxed conditions: The first protocol is immune to
malicious pollsters (it is equivalent to strong CRRT if the pollster is honest),
while the second is immune to malicious responders (it is equivalent to strong
CRRT if the responder is honest).

Pollster-Immune p-CRRT (Adapted from Weak CRRT in [1]). This
is a weakened version of CRRT, where a malicious pollster cannot learn more
than an honest pollster about the responder’s secret bit. A malicious responder
can bias the result by deviating from the protocol (halting early). A cheating
responder will be caught with fixed probability, however, so the pollster can ac-
curately estimate the number of responders who are cheating (and thus bound
the resulting bias). When the pollster catches the responder cheating, it out-
puts � instead of its usual output. Formally, the ideal functionality accepts the
following commands:

Query. The issuer of this command is the pollster, the other party is the re-
sponder. The functionality ignores all commands until it receives this one.
On receiving this command the functionality chooses a uniformly random
bit r and a bit v, such that v = 1 with probability 2p − 1. If the responder
is corrupted, the functionality then sends both bits to the adversary.

94 T. Moran and M. Naor

Vote b. On receiving this command from the responder, the functionality checks
whether v = 1. If so, it outputs b to the pollster, otherwise it outputs r to
the pollster.

Halt. This command captures the responder’s ability to cheat. On receiving
this command from a corrupt responder, the functionality outputs � to the
pollster and halts.

The functionality is slightly more complex (and a little weaker) than would
appear to be necessary, and this requires explanation. Ideally, the functionality
should function as follows: the responder casts her vote, and is notified of the
actual bit the pollster would receive. The responder then has the option to halt
(and prevent the pollster from learning the bit). Our protocol gives the corrupt
responder a little more power: the responder first learns whether the pollster will
receive the bit sent by the responder, or whether the pollster will receive a bit
fixed in advance (regardless of what the responder sends). The responder can
then plan her actions based on this information. The functionality we describe
is the one that is actually realized by our protocol (for p = 3

4).

Responder-Immune p-CRRT. In this weakened version of CRRT, malicious
responders cannot bias the results more than honest responders, but a malicious
pollster can learn the responder’s secret bit. In this case, however, the responder
will discover that the pollster is cheating. When the responder catches the poll-
ster cheating, it outputs � to signify this. The functionality accepts the following
commands:

Vote b. The issuer of this command is the responder. On receiving this
command the functionality tosses a weighted coin c, such that c = 0 with
probability p. It then outputs b ⊕ c to the pollster and adversary.

Reveal. The command may only be sent by a corrupt pollster after the Vote
command was issued by the responder. On receiving this command, the
functionality outputs b to the adversary and � to the responder.

Test x. The command may only be sent by a corrupt pollster, after the Vote
command was issued by the responder. On receiving this command:
– if x = b, then with prob. 1

2 it outputs b to the adversary and � to the
responder, and with prob. 1

2 it outputs ⊥ to the adversary (and nothing
to the responder).

– if x = 1 − b the functionality outputs ⊥ to the adversary (and nothing
to the responder).

Ideally, we would like to realize responder-immune CRRT without the Test
command. Our protocol realizes this slightly weaker functionality (for p = 2

3).
It may appear that a corrupt pollster can cheat without being detected using
the Test command. However, for any corrupt pollster strategy, if we condition
on the pollster’s cheating remaining undetected, the pollster gains no additional
information about the responder’s choice (since in that case the response to the
Test command is always ⊥).

Polling with Physical Envelopes 95

2.2 Modelling Humans

The protocols introduced in this paper are meant to be implemented by humans.
To formally prove security properties of the protocols, it is important to make
explicit the abilities and limitations we expect from humans.

Following Instructions. The most basic assumption we make about the parties
participating in the protocol is that an honest party will be able to follow the in-
structions of the protocol correctly. While this requirement is clearly reasonable
for computers, it may not be so easy to achieve with humans (e.g., one of the
problems encountered with the original randomized response technique is that
the responders sometimes had difficulty understanding what they were supposed
to do). The ability to follow instructions depends on the complexity of the proto-
col (although this is a subjective measure, and hard to quantify). Our protocols
are secure and correct only assuming the honest parties are actually following the
protocol. Unfortunately, we do not know how to predict whether this assumption
actually holds for a specific protocol without “real” experimental data.

Random Choice. Our protocols require the honest parties to make random
choices. Choosing a truly random bit may be very difficult for a human (in
fact, even physically tossing a coin has about 0.51 probability of landing on
the side it started on [13]). For the purposes of our analysis, we assume that
whenever we require a party to make a random choice it is uniformly random.
In practice, a random choice may be implemented using simple physical means
(e.g., flipping a coin or rolling a die). In practice, the slight bias introduced by
physical coin flipping will not have a large effect on the correctness or privacy
of our protocols.

Non-requirements. Unlike many protocols involving humans, we do not assume
any additional capabilities beyond those described above. We don’t require par-
ties to forget information they have learned, or to perform actions obliviously
(e.g., shuffle a deck without knowing what the permutation was). Of particular
note, we don’t require the parties to watch each other during the protocol: this
means the protocols can be conducted by mail.

2.3 Distinguishable Envelopes

Our CRRT protocols require a physicial assumption: tamper-evident envelopes
or scratch-off cards. Formally, we model these by an ideal functionality we call
“Distinguishable Envelopes” (defined in [18]). Loosely speaking, a distinguish-
able envelope is an envelope in which a message can be sealed. Anyone can open
the envelope (and read the message), but the broken seal will be evident to
anyone looking at the envelope.

3 An Informal Presentation of the Protocols

It is tempting to try to base a CRRT protocol on oblivious transfer (OT), since
if the responder does not learn what the pollster’s result is, it may be hard to

96 T. Moran and M. Naor

influence it (in fact, one of the protocols in [1] is based on OT). However, OT is
impossible in the DE model [18]. As we show in Section 4.1, this proof implies
that in any CRRT protocol using distinguishable envelopes, the responder must
learn a lot about the pollster’s result. In both our protocols, the responder gets
complete information about the final result.

To make the presentation more concrete, suppose the poll question is “do you
eat your veggies?”. Clearly, no one would like to admit that they do not have a
balanced diet. On the other hand, pressure groups such as the “People for the
Ethical Treatment of Salad” have a political interest in biasing the results of the
poll, making it a good candidate for CRRT.

3.1 Pollster-Immune CRRT

This protocol can be implemented with pre-printed scratch-off cards: The re-
sponder is given a scratch-off card with four scratchable “bubbles”, arranged in
two rows of two bubbles each. In each row, the word “Yes” is hidden under one
bubble and the word “No” under the other (the responder doesn’t know which
is which). The responder scratches a random bubble in each row. Suppose the
responder doesn’t eat her veggies. If one of the rows (or both) show the word
“No”, she “wins” (and the pollster will count the response as expressing dislike of
vegetables). If both bubbles show “Yes”, she “loses” (and the pollster will count
the response as expressing a taste for salad). In any case, before returning the
card to the pollster, the responder “eliminates” the row that shows the unfavored
answer by scratching the entire row (she picks one of the rows at random if both
rows show the same answer) Thus, as long as the responder follows the protocol,

Fig. 1. Sample execution of pollster-immune protocol

Polling with Physical Envelopes 97

the pollster receives a card that has one “eliminated” (entirely scratched) row
and one row showing the result he will count. An example of protocol execution
appears in Figure 1.

Security Intuition. Note that in exactly 3
4 of the cases the counted result will

match the responder’s intended result. Moreover, without invalidating the entire
card, the responder cannot succeed with higher probability. On the other hand,
this provides the responder with plausible deniability: she can always claim both
rows were “bad”, and so the result didn’t reflect her wishes. Because the pollster
doesn’t know which were the two bubbles that were scratched first, he cannot
refute this claim. An important point is that plausible deniability is preserved
even if the pollster attempts to cheat (this is what allows the responder to
answer the poll accurately even when the pollster isn’t trusted). Essentially, the
only way the pollster can cheat without being unavoidably caught is to put
the same answer under both bubbles in one of the rows. To get a feeling for
why this doesn’t help, write out the distribution of responses in all four cases
(cheating/honest, Yes/No). It will be evident that the pollster does not get any
additional information about the vote from cheating in this way.

On the other hand, the responder learns the result before the pollster, and
can decide to quit if it’s not to her liking (without revealing the result to the
pollster). Since the pollster does not know the responder’s outcome, this has
the effect of biasing the result of the poll. However, by counting the number of
prematurely halted protocol executions, the pollster can accurately estimate the
number of cheating responders.

The formal protocol specification and proof appear in Appendix A.

Generalizing to Any Rational p. The protocol above realizes Pollster-Immune
3
4 -CRRT. In some cases we require a p-CRRT protocol for different values of p.
In particular, if we need to repeat the poll, we need the basic protocol to have
p closer to 1

2 (in order to maintain the plausible deniability).
The following protocol will work for any rational p = k

n (assume k > 1
2n):

As in the former protocol, the pollster generates two rows of bubbles. One row
contains k “Yes” bubbles and n − k “No” bubbles in random order (this row is
the “Yes” row), and the other contains k “No” bubbles and n− k “Yes” bubbles
(this row is the “No” row). The rows are also in a random order. The responder’s
purpose is to find the row matching her choice. She begins by scratching a single
bubble in each row. If both bubbles contain the same value, she “eliminates”
a random row (by scratching it out completely). Otherwise, she “eliminates”
the row that does not correspond to her choice. The pollster’s output is the
majority value in the row that was not eliminated. The probability that the
pollster’s output matches the responder’s choice is exactly p.

Unfortunately, this protocol is completely secure only for a semi-honest poll-
ster (one that correctly generates the scratch-off cards). A malicious pollster can
cheat in two possible ways: he can replace one of the rows with an invalid row
(one that does not contain exactly k “Yes” bubbles or exactly k “No” bubbles),
or he can use two valid rows that have the same majority value (rather than
opposite majority values). In both cases the pollster will gain additional infor-

98 T. Moran and M. Naor

mation about the responder’s choice. This means the protocol does not realize
the ideal Pollster-Immune CRRT functionality.

If the pollster chooses to use an invalid row, he will be caught with probability
at least 1

2 (1− p) (since with this probability the responder will scratch identical
bubbles in both rows, and choose to eliminate the invalid row). We can add
“cheating detection” to the protocol to increase the probability of detecting this
attack. In a protocol with cheating detection, the pollster gives the responder
� scratch-off cards rather than just one (each generated according to the basic
protocol). The responder chooses one card to use as in the basic protocol. On
each of the other cards, she scratches off a single row (chosen randomly), and
verifies that it contains either exactly k “Yes” bubbles or exactly k “No” bubbles.
She then returns all the cards to the pollster (this step is necessary to prevent
the responder from increasing her chances by trying multiple cards until one
gives the answer she wants). A pollster that cheats by using an invalid row will
be caught with probability 1 − 1

 .
A malicious pollster can still cheat undetectably by using two valid rows with

identical majorities. This gives only a small advantage, however, and in practice
the protocol may still be useful when p is close to 1

2 .

3.2 Responder-Immune CRRT

The responder takes three envelopes (e.g., labelled “1”, “2” and “3”), and places
one card containing either “Yes” or “No” in each of the envelopes. If she would
like to answer “No”, she places a single “Yes” card in a random envelope, and one
“No” card in each of the two remaining envelopes. She then seals the envelopes
and gives them to the pollster (remembering which of the envelopes contained
the “Yes” card).

The pollster chooses a random envelope and opens it, revealing the card to
the responder. He then asks the responder to tell him which of the two remaining
envelopes contains a card with the opposite answer. He opens that envelope as
well. If the envelope does contain a card with the opposite answer, he records
the answer on the first card as the response to the poll, and returns the third
(unopened) envelope to the responder.

If both opened envelopes contain the same answer, it can only be because the
responder cheated. In this case, the pollster opens the third envelope as well. If
the third envelope contains the opposite answer, the pollster records the answer
on the first card as the response to the poll. If, on the other hand, all three
envelopes contain the same answer, the pollster rolls a die: A result of 1 to 4
(probability 2

3) means he records the answer that appears in the envelopes, and
a result of 5 or 6 means she records the opposite answer. An example of protocol
execution (where both parties follow the protocol) appears in Figure 2.

Security Intuition. In this protocol, the responder gets her wish with probability
at most 2

3 no matter what she does. If she follows the protocol when putting
the answers in the envelopes, the pollster will choose the envelope containing
the other answer with probability 1

3 . If she tries to cheat by putting the same
answer in all three envelopes, the pollster will roll a die and choose the opposite

Polling with Physical Envelopes 99

Fig. 2. Sample execution of responder-immune protocol

answer with probability 1
3 . The pollster, on the other hand, can decide to open

all three envelopes and thus discover the real answer favored by the responder.
If he does this, however, the responder will see that the seal on the returned
envelope was broken and know the pollster was cheating.

The pollster may also be able to cheat in an additional way: he can open two
envelopes before telling the responder which envelope he opened, and hope that
the responder will not require him to return an envelope that was already opened.
This attack is what requires us to add the Test command to the functionality.

Implementation Notes. This protocol requires real envelopes (rather than scratch-
off cards) to implement, since the responder must choose what to place in the
envelopes (and we cannot assume the responder can create a scratch-off card).
In general, tamper-evidence for envelopes may be hard to achieve (especially
as the envelopes will most likely be provided by the pollster). In this protocol,
however, the pollster’s actions can be performed in full view of the responder,
so any opening of the envelopes will be immediately evident. When this is the
case, the responder can tell which envelope the pollster opened first, so the
protocol actually realizes the stronger version of the Responder-Immune CRRT
functionality (without the Test command).

If the penalty for a pollster caught cheating is large enough, the privacy guar-
anteed by this protocol, may be enough to convince responders to answer accu-
rately in a real-world situation even with the weaker version of the functionality.
This is because any pollster cheating that can possibly reveal additional in-

100 T. Moran and M. Naor

formation about the responder’s choice carries with it a corresponding risk of
detection.

Generalizing to Any Rational p. When the pollster’s actions are performed in
view of the responder (in particular, when the responder can see exactly which
envelopes are opened by the pollster), this protocol has a straightforward gen-
eralization to any rational p = k

n , where k > 1
2n: the responder uses n (rather

than 3) envelopes, of which k contain her choice and n − k contain its opposite.
After the pollster chooses an envelope to open, the responder shows him n − k
envelopes that contain the opposite value.

Note that when this generalized protocol is performed by mail, it does not
realize the ideal functionality defined in Section 2.1.

4 Strong CRRT Protocols

Ideally, we would like to have CRRT protocols that cannot be biased at all by
malicious responders, while perfectly preserving the responder’s deniability, even
against malicious pollsters. Unfortunately, the protocols described in Section 3
do not quite achieve this. At the expense of increasing the number of rounds, we
can get arbitrarily close to the Strong-CRRT functionality defined in Section 2.1.

Consider a protocol in which the pollster and responder perform the pollster-
immune p-CRRT protocol r times, one after the other (with the responder using
the same input each time). The pollster outputs the majority of the subprotocols’
outputs. If the responder halts at any stage, the pollster uses uniformly random
bits in place of the remaining outputs.

This protocol gives a corrupt responder at most O(1√
r
) advantage over an

honest responder. We give here only the intuition for why this is so: Clearly, if a
corrupt responder wants to bias the result to some bit b, it is in her best interest
to use b for all the inputs. Since the subprotocol securely realizes p-CRRT, the
only additional advantage she can gain is by halting at some round i. However,
halting affects the result only if the other r − 1 rounds were balanced (this is
the only case in which the outcome of the ith round affects the majority). In
the case where p = 1

2 , it is easy to see that the probability for this occurring is
O(1√

r
). However, the probability that r − 1 independent weighted coin flips are

balanced is maximized when p = 1
2 . Thus, the additional advantage that can be

gained by the adversary is at most O(1√
r
).

The problem with the amplification protocol described above is that the
probability that an honest responder will get the result she wants tends to 1
as the number of rounds grows, for any constant p > 1

2 . Therefore, to preserve
plausible deniability we must use a p-CRRT protocol where p is very close to 1

2 ,
such as the protocol described in Section 3.1 that works for any rational p. This
adds further complexity to the protocol (e.g., our generalized Pollster-Immune
protocol requires Ω(1

ε) bubbles on the scratch-off card for p = 1
2 + ε). This, this

multi-round protocol is probably not feasible in practice.

Polling with Physical Envelopes 101

4.1 Lower Bounds and Impossibility Results

In this section we attempt to show that constructing practical strong CRRT
protocols is a difficult task. We do this by giving impossibility results and lower
bounds for implementing subclasses of the strong CRRT functionality. We con-
sider a generalization of the strong p-CRRT functionality defined in Section 2.1,
which we call (p, q)-CRRT. The (p, q)-CRRT functionality can be described as
follows:

Vote b. The issuer of this command is the responder. On receiving this com-
mand the functionality tosses a weighted coin c, such that c = 0 with prob-
ability p. It then outputs b⊕ c to the pollster. The functionality supplies the
responder with exactly enough additional information so that she can guess
c with probability q ≥ p.

In the definition of strong CRRT given in Section 2.1, we specify exactly how
much information the pollster learns about the responder’s choice, but leave
completely undefined what a cheating responder can learn about the pollster’s
result. The (p, q)-CRRT functionality quantifies this information: in a (p, p)-
CRRT, the responder does not gain any additional information (beyond her pre-
existing knowledge that the pollster’s result will equal her choice with probability
p). In a (p, 1)-CRRT, the responder learns the pollster’s result completely. We
show that (p, p)-CRRT implies oblivious transfer (and is thus impossible in the
DE model), while (p, 1)-CRRT implies strong coin-flipping (and thus we can
lower-bound the number of rounds required for the protocol). For values of q
close to p or close to 1, the same methods can still be used to show lower bounds.

(p, q)-CRRT When q Is Close to p. First, note that when p = q we can view
the (p, q)-CRRT functionality as a binary symmetric channel (BSC) with error
probability 1 − p. Crépeau and Kilian have shown that a protocol for Oblivious
Transfer (OT) can be constructed based on any BSC [9]. However, it is impossible
to implement OT in the Distinguishable Envelope (DE) model [18]. Therefore
(p, p)-CRRT cannot be implemented in the DE model. It turns out that this is
also true for any q close enough to p. This is because, essentially, the (p, q)-CRRT
functionality is a (1 − q, 1 − p)-Passive Unfair Noisy Channel (PassiveUNC), as
defined by Damg̊ard, Kilian and Salvail [12]. A (γ, δ)-PassiveUNC is a BSC
with error δ which provides the corrupt sender (or receiver) with additional
information that brings his perceived error down to γ; (i.e., a corrupt sender can
guess the bit received by the receiver with probability 1 − γ, while an honest
sender can guess this bit only with probability 1− δ). For γ and δ that are close
enough (the exact relation is rather complex), Damg̊ard, Fehr, Morozov and
Salvail [11] show that a (γ, δ)-PassiveUNC is sufficient to construct OT. For the
same range of parameters, this implies that realizing (p, q)-CRRT is impossible
in the DE model.

(p, q)-CRRT When q Is Close to 1. When q = 1, both the pollster and the
responder learn the poll result together. A (p, 1)-CRRT can be used as a protocol

102 T. Moran and M. Naor

for strongly fair coin flipping with bias p − 1
2 . In a strongly fair coin flipping

protocol with bias ε, the bias of an honest party’s output is at most ε regardless
of the other party’s actions — even if the other party aborts prematurely. If
q is close to 1, we can still construct a coin flipping protocol, albeit without
perfect consistency. The protocol works as before, except that the responder
outputs his best guess for the pollster’s output: both will output the same bit
with probability q.

A result by Cleve [8] shows that even if all the adversary can do is halt pre-
maturely (and must otherwise follow the protocol exactly), any r-round protocol
in which honest parties agree on the output with probability 1

2 + ε can be biased
by at least ε

4r+1 . Cleve’s proof works by constructing 4r + 1 adversaries, each of
which corresponds to a particular round. An adversary corresponding to round
i follows the protocol until it reaches round i. It then halts immediately, or after
one extra round. The adversary’s decision is based only on what the ourput of
an honest player would be in the same situation, should the other party halt af-
ter this round. Cleve shows that the average bias achieved by these adversaries
is ε

4r+1 , so at least one of them must achieve this bias. The same proof also
works in the DE model, since all that is required is that the adversary be able
to compute what it would output should the other player stop after it sends the
messages (and envelopes) for the current round. This calculation may require a
party to open some envelopes (the problem being that this might prevent the
adversary from continuing to the next round). However, an honest player would
be able to perform the calculation in the next round, after sending this round’s
envelopes, so it cannot require the adversary to open any envelopes that may be
sent in the next round.

Cleve’s lower bound shows that a (p, q)-CRRT protocol must have at least
q− 1

2
4(p− 1

2) − 1
4 rounds. Since a protocol with a large number of rounds is impractical

for humans to implement, this puts a lower bound on the bias p (finding a CRRT
protocol with a small p is important if we want to be able to repeat the poll
while still preserving plausible deniability).

This result also implies that it is impossible to construct a (p, 1)-CRRT pro-
tocol in which there is a clear separation between the responder’s choice and
the final output. That is, the following functionality, which we call p-CRRT with
confirmation, is impossible to implement in the DE model:

Vote b. The issuer of this command is the responder. On receiving this com-
mand the functionality outputs “Ready?” to the pollster. When the pollster
answers with “ok” the functionality tosses a weighted coin c, such that c = 0
with probability p. It then outputs b ⊕ c to the pollster and responder.

p-CRRT with confirmation is identical to (p, 1)-CRRT, except that the output
isn’t sent until the pollster is ready. The reason it is impossible to implement is
that this functionality can be amplified by parallel repetition to give a strongly
fair coin flipping protocol with arbitrarily small p. Since the amplification is in
parallel, it does not increase the number of rounds required by the protocol,
and thus contradicts Cleve’s lower bound. Briefly, the amplified protocol works

Polling with Physical Envelopes 103

as follows: the responder chooses k inputs randomly, and sends each input to
a separate (parallel) instance of p-CRRT with confirmation. The pollster waits
until all the inputs have been sent (i.e., it receives the “Ready?” message from
all the instances), then sends “ok” to all the instances. The final result will
be the xor of the outputs of all the instances. Since the different instances act
independently, the bias of the final result is exponentially small in k.

5 Discussion and Open Problems

Polling Protocols by Mail. The pollster-immune CRRT protocol requires only a
single round; This makes it convenient to use in polls through the post (it only
requires the poll to be sent to the responder, “filled out” and returned). The
responder-immune protocol presents additional problems when used through the
post. First, in this case the protocol realizes a slightly weaker functionality than
in the face-to-face implementation. Second, it requires two rounds, and begins
with the responder. This means, in effect, that it would require an extra half-
round for the pollster to notify the responder about the existence of the poll.
It would be interesting to find a one-round protocol for the responder-immune
functionality as well. It may be useful, in this context, to differentiate between
“information-only” communication (which can be conducted by phone or email),
and transfer of physical objects such as envelopes (which require “real” mail).

Efficient Generalization to Arbitrary p. We describe efficient p-CRRT protocols
for specific values of p: p = 3

4 in the Pollster-Immune case, and p = 2
3 in the

Responder-Immune case. Our generalized protocols are not very efficient: for
p = 1

2 + ε they require Ω(1
ε) envelopes. In a protocol meant to be implemented

by humans, the efficiency of the protocol has great importance. It would be
useful to find an efficient general protocol to approximate arbitrary values of p
(e.g., logarithmic in the approximation error).

Side-Channel Attacks. The privacy of our protocols relies on the ability of
the responder to secretly perform some actions. For instance, in the pollster-
immune protocol we assume that the order in which the bubbles on the card
were scratched remains secret. In practice, some implementations may be vul-
nerable to an attack on this assumption. For example, if the pollster uses a
light-sensitive dye on the scratch-off cards that begins to darken when the coat-
ing is scratched off, he may be able to tell which of the bubbles was scratched
first. Side-channel attacks are attacks on the model, not on the CRRT protocols
themselves. As these attacks highlight, when implementing CRRT using a phys-
ical implementation of Distinguishable Envelopes, it is important to verify that
this implementation actually does realize the required functionality.

Dealing with Human Limitations. Our protocols make two assumptions about
the humans implementing them: that they can make random choices and that
they can follow instructions. The former assumption can be relaxed: if the ran-
domness “close to uniform” the security and privacy will suffer only slightly

104 T. Moran and M. Naor

(furthermore, simple physical aids, such as coins or dice, make generating ran-
domness much easier). The latter assumption is more critical; small deviations
from the protocol can result in complete loss of privacy or security. Constructing
protocols that are robust to human error could be very useful.

Practical Strong CRRT Protocols. As we discuss in Section 4.1, for a range of
parameters p, q-CRRT is impossible, and for a different range of parameters it is
impractical. For some very reasonable values, such as 3

4 -Strong CRRT, we can
approximate the functionality using a large number of rounds, but do not know
how to prove any lower bound on the number of rounds required. Closing this
gap is an obvious open question. Alternatively, finding a physical model in which
efficient Strong CRRT is possible is also an interesting direction.

Acknowledgements

We would like to thank Adi Shamir and Yossi Oren for pointing out possible
side-channel attacks in the scratch-off card model, and the anonymous reviewers
for many helpful comments.

References

1. A. Ambainis, M. Jakobsson, and H. Lipmaa. Cryptographic randomized response
techniques. In PKC ’04, volume 2947 of LNCS, pages 425–438, 2004.

2. J. Benaloh and D. Tuinstra. Receipt-free secret-ballot elections. In STOC ’94,
pages 544–553, 1994.

3. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS ’01, pages 136–145, 2001.

4. R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In
CRYPTO ’97, volume 1294 of LNCS, pages 90–104, 1997.

5. R. Canetti and R. Gennaro. Incoercible multiparty computation. In FOCS ’96,
pages 504–513, 1996.

6. A. Chaudhuri and R. Mukerjee. Randomized Response: Theory and Techniques,
volume 85. Marcel Dekker, 1988.

7. D. Chaum. E-voting: Secret-ballot receipts: True voter-verifiable elections. IEEE
Security & Privacy, 2(1):38–47, Jan./Feb. 2004.

8. R. Cleve. Limits on the security of coin flips when half the processors are faulty.
In STOC ’86, pages 364–369, 1986.

9. C. Crépeau and J. Kilian. Achieving oblivious transfer using weakened security
assumptions. In FOCS ’88, pages 42–52, 1988.

10. C. Crépeau and J. Kilian. Discreet solitary games. In CRYPTO ’93, volume 773
of LNCS, pages 319–330, 1994.

11. I. B. Damg̊ard, S. Fehr, K. Morozov, and L. Salvail. Unfair noisy channels and
oblivious transfer. In TCC ’04, volume 2951 of LNCS, pages 355–373, 2004.

12. I. B. Damg̊ard, J. Kilian, and L. Salvail. On the (im)possibility of basing oblivious
transfer and bit commitment on weakened security assumptions. In Eurocrypt ’99,
volume 1592 of LNCS, pages 56–73, 1999.

13. P. Diaconis, S. Holmes, and R. Montgomery. Dynamical bias in the coin toss, 2004.
http://www-stat.stanford.edu/∼cgates/PERSI/papers/headswithJ.pdf.

Polling with Physical Envelopes 105

14. J. A. Droitcour, E. M. Larson, and F. J. Scheuren. The three card method: Estimat-
ing sensitive survey items–with permanent anonymity of response. In Proceedings
of the American Statistical Association, Social Statistics Section [CD-ROM], 2001.

15. C. Dwork, M. Naor, and A. Sahai. Concurrent zero knowledge. In STOC ’98,
pages 409–418, New York, NY, USA, 1998. ACM Press.

16. R. Fagin, M. Naor, and P. Winkler. Comparing information without leaking it.
Commun. ACM, 39(5):77–85, 1996.

17. H. Kikuchi, J. Akiyama, G. Nakamura, and H. Gobioff. Stochastic voting protocol
to protect voters privacy. In WIAPP ’99, pages 102–111, 1999.

18. T. Moran and M. Naor. Basing cryptographic protocols on tamper-evident seals.
In ICALP 2005, volume 3580 of LNCS, pages 285–297, July 2005.

19. M. Naor, Y. Naor, and O. Reingold. Applied kid cryptography, Mar. 1999.
http://www.wisdom.weizmann.ac.il/∼naor/PAPERS/waldo.ps.

20. M. Naor and B. Pinkas. Visual authentication and identification. In CRYPTO ’97,
volume 1294 of LNCS, pages 322–336, 1997.

21. M. Naor and A. Shamir. Visual cryptography. In Eurocrypt ’94, volume 950 of
LNCS, pages 1–12, 1995.

22. K. Sako and J. Kilian. Receipt-free mix-type voting schemes. In EUROCRYPT
’95, volume 921 of LNCS, pages 393–403, 1995.

23. B. Schneier. The solitaire encryption algorithm, 1999. http://www.schneier.com/
solitaire.html.

24. S. Stamm and M. Jakobsson. Privacy-preserving polling using playing cards. Cryp-
tology ePrint Archive, Report 2005/444, December 2005.

25. S. Warner. Randomized response: a survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, pages 63–69, 1965.

A A Pollster-Immune 3
4-CRRT Protocol

A.1 Formal Specification

Let P be the pollster and R the responder. Denote P ’s random bits p0, p1 and
R’s random bits r0, r1, r2.

1. To implement Query: P creates two pairs of envelopes, each pair containing
a 0 and a 1. The first pair contains (p0, 1 − p0) and the second (p1, 1 − p1).
P sends both pairs to R.

2. To implement Vote b: R opens a random envelope from each pair (the index
of the first envelope opened is given by r0 and the second by r1. Denote the
values of the opened envelopes x0 = p0 ⊕ r0 and x1 = p1 ⊕ r1.
(a) If x0 = x1 (i.e., both the opened values are equal), R chooses a random

pair and opens the remaining envelope in that pair (the first pair if r2 = 0
and the second if r2 = 1).

(b) If x0 �= x1, R opens the remaining envelope in the pair whose open
envelope is not equal to b.

(c) In both cases, R verifies that the envelopes in the completely opened
pair contain different values (i.e., that the pair is valid). If so, R then
sends all four envelopes back to P , otherwise R halts.

106 T. Moran and M. Naor

3. If R halted in the previous step, P outputs � and halts. Otherwise, P verifies
that exactly three of the four envelopes received from R are open. If so, P
outputs the contents of the open envelope in the pair that contains the sealed
envelope. If not, P outputs �.

A.2 Proof of Security

In this section we give the proof that the protocol securely realizes Pollster-
Immune 3

4 -CRRT in the UC model. The proof follows the standard outline for
a UC proof: we describe an ideal adversary, I, that works in the ideal world
by simulating a real adversary, A (given black-box access to A), along with the
envelope functionalities used to implement the protocol in the real world. We
then show that no environment machine, Z (which is allowed to set the parties’
inputs) can distinguish between the case that it is communicating with A in the
real world, and the case where it is communicating with I in the ideal world
(for a more in-depth explanation of the UC model, see [3]). We’ll deal separately
with the case when A corrupts P and when it corrupts R (since we assume the
corruption occurs as a first step). The proof that the views of Z in the real and
ideal worlds are identical is by exhaustive case analysis.

A Corrupts P
1. I waits to receive c, the outcome of the poll from the ideal functionality. I

now begins simulating FDE and R (as if he were a real honest party). The
simulation runs until P sends four envelopes as required by the protocol (up
to this point R did not participate at all in the protocol).

2. If both pairs of envelopes are valid (contain a 0 and a 1), I chooses one of
the pairs at random, and simulates opening the envelope in the pair that
contains c and both envelopes in the other pair (there is an assignment to
the random coins of R which would have this result in the real world). It
then simulates the return of all four envelopes to P .

3. If both pairs of envelopes are invalid, I simulates R halting (this would
eventually happen in a real execution as well).

4. If exactly one pair of envelopes is invalid, denote the value in the invalid pair
by z.
(a) If c = z, I simulates opening both envelopes in the valid pair, and a

random envelope in the invalid pair (depending on the random coins of
R, this is a possible result in the real world). It then simulates the return
of all four envelopes to P

(b) If c �= z, I simulates R halting (depending on the random coins of R,
this is also a possible result in the real world).

5. I continues the simulation until A halts.

Note that throughout the simulation, all simulated parties behave in a manner
that is feasible in the real world as well. Thus, the only possible difference be-
tween the views of Z in the ideal and real worlds is the behavior of the simulated
R, which depends only on the contents of the four envelopes sent by P and the

Polling with Physical Envelopes 107

output of the ideal functionality (which in turn depends only on b). It is easy
(albeit tedious) to go over all 32 combinations of envelopes and input, and verify
that the distribution of R’s output in both cases (the real and ideal worlds) are
identical. We enumerate the basic cases below. All other cases are identical to
one of the following by symmetry:

1. A sends two valid pairs of envelopes. Assume it sends [(b, 1−b), (b, 1−b)] (the
other combinations follow by symmetry). I returns the following distribution
(“*” denotes a sealed envelope):
(a) With probability 3

4 (c = b) it selects uniformly from
{[(b, ∗), (b, 1 − b)], [(b, 1 − b), (b, ∗)]}

(b) With probability 1
4 (c �= b) it selects uniformly from

{[(∗, 1 − b), (b, 1 − b)], [(b, 1 − b), (∗, 1 − b)]}
In the real world, the order of envelopes opened by R would be distributed
uniformly from one of the following sets (each with probability 1

4):
(a) {[(1, ∗), (3, 2)]}
(b) {[(1, ∗), (2, 3)], [(1, 3), (2, ∗)]}
(c) {[(3, 1), (2, ∗)]}
(d) {[(3, 1), (∗, 2)], [(∗, 1), (3, 2)]}
Note that the observed result is distributed identically in both cases.

2. A sends two invalid pairs of envelopes: in this case, in both the real and ideal
worlds the adversary will see the responder halting with probability 1.

3. A sends one valid and one invalid pair of envelopes:
(a) A sends [(b, b), (b, 1 − b)] (the other case where the invalid pair matches

b is symmetric). The distribution of the returned envelopes in the ideal
world is:
i. With probability 3

4 (c = b) it selects uniformly from
{[(b, ∗), (b, 1 − b)], [(∗, 1 − b), (b, 1 − b)]}

ii. With probability 1
4 (c �= b) it halts.

In the real world, the order of envelopes opened by R would be distrib-
uted uniformly from one of the following sets (each with probability 1

4);
the sets marked with † lead to R halting:
i. {[(1, ∗), (3, 2)]}
ii.

{
[(1, ∗), (2, 3)], [(1, 3), (2, ∗)]†}

iii.
{
[(∗, 1), (2, 3)], [(3, 1), (2, ∗)]†}

iv. {[(∗, 1), (3, 2)]}
Note that in both worlds R halts with probability 1

4 , and otherwise the
returned envelopes are identically distributed.

(b) A sends [(1 − b, 1 − b), (b, 1 − b)] (the other case where the invalid pair
matches 1 − b is symmetric). The distribution of the returned envelopes
in the ideal world is:
i. With probability 1

4 (c �= b) it selects uniformly from
{[(1 − b, ∗), (b, 1 − b)], [(∗, 1 − b), (b, 1 − b)]}

ii. With probability 3
4 (c = b) it halts.

In the real world, the order of envelopes opened by R would be distrib-
uted uniformly from one of the following sets (each with probability 1

4);
the sets marked with † lead to R halting:

108 T. Moran and M. Naor

i.
{
[(1, ∗), (3, 2)], [(1, 3), (∗, 2)]†

}
ii.

{
[(1, 3), (2, ∗)]†}

iii.
{
[(∗, 1), (3, 2)], [(3, 1), (∗, 2)]†

}
iv.

{
[(3, 1), (2, ∗)]†}

Note that in both worlds R halts with probability 3
4 , and otherwise the

returned envelopes are identically distributed.

A Corrupts R
1. I waits to receive v and r from the ideal functionality (in response to the

Query command sent by the ideal P).
2. I simulates R receiving four envelopes. The remainder of the simulation

depends on the values of v and r:
(a) If v = 1, I chooses a uniformly random bit t. The first envelope R opens

in the first pair will have the value t, and the first envelope opened in
the second pair will have the value 1 − t. The values revealed in the
remaining envelopes will always result in a valid pair.

(b) If v = 0, The first envelope R opens in each pair will have the value r,
and the remaining envelopes the value 1 − r.

3. I continues the simulation until R sends all four envelopes back to P . If R
opened exactly three envelopes, I sends Vote b to the ideal functionality,
where b is calculated as by the pollster in the protocol description. If R did
not open exactly three envelopes, I sends the Halt command to the ideal
functionality.

Note that throughout the simulation, all simulated parties behave in a manner
that is feasible in the real world as well. Furthermore, the outputs of the ideal
and simulated P are always identical. Thus, the only possible difference between
the views of Z in the ideal and real worlds is the contents of the envelopes
opened by R. In the real world, the envelope contents are random. In the ideal
world, v and r are i.i.d. uniform bits. Therefore the order in which the envelopes
are opened does not matter; any envelope in the first pair is independent of any
envelope in the second. Hence, the distributions in the ideal and real worlds are
identical.

QUAD: A Practical Stream Cipher with
Provable Security�

Côme Berbain1, Henri Gilbert1, and Jacques Patarin2

1 France Telecom Research and Development,
38-40 rue du Général Leclerc, F-92794 Issy-les-Moulineaux, France

2 Université de Versailles,
45 avenue des Etats-Unis, F-78035 Versailles cedex, France

Abstract. We introduce a practical stream cipher with provable secu-
rity named QUAD. The cipher relies on the iteration of a multivariate
quadratic system of m equations in n < m unknowns over a finite field.
The security of the keystream generation of QUAD is provably reducible
to the conjectured intractability of the MQ problem, namely solving a
multivariate system of quadratic equations. Our recommended version
of QUAD uses a 80-bit key, 80-bit IV and an internal state of n = 160
bits. It outputs 160 keystream bits (m = 320) at each iteration until 240

bits of keystream have been produced.

1 Introduction

Stream ciphers represent, together with block ciphers, one of the two main classes
of symmetric encryption algorithms. Generally speaking stream ciphers seem to
allow faster encryption and to require lower computing resources than block
ciphers, and the fastest known stream ciphers (e.g. SEAL, RC4, SNOW 2.0, the
Shrinking Generator) are indeed significantly faster in software than an efficient
block cipher such as AES [27]. However, the design of secure stream ciphers is
not currently as well understood as the design of secure block ciphers. The state
of the art of the cryptanalysis of stream ciphers, e.g. LFSR based stream ciphers,
has evolved significantly over the last ten years and many recent proposals still
suffer from security weaknesses. This is illustrated by the fact that none of the
candidate stream ciphers submitted to the call for cryptographic primitives of
the European project NESSIE were retained since attacks more efficient than
exhaustive search were found for all candidates during the evaluation period.
This is also illustrated by the ongoing eSTREAM [11] call for stream ciphers
proposals of the European project ECRYPT. Stream ciphers complying with two
main profiles have been called for, namely stream ciphers allowing much faster
software encryption than existing block ciphers (profile 1) and stream ciphers
requiring much lower resources for hardware implementation than existing block

� The work described in this paper has been supported by the French Ministry of
Research RNRT X-CRYPT project and by the European Commission through the
IST Program under Contract IST-2002-507932 ECRYPT.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 109–128, 2006.
c© International Association for Cryptologic Research 2006

110 C. Berbain, H. Gilbert, and J. Patarin

ciphers (profile 2). However, more than one third of the 34 submitted stream
ciphers, which cover these two profiles, have already been shown to be insecure.

Our aim is to propose a practical cipher with unusually strong security ar-
guments. The novel stream cipher we propose was designed with another trade-
off between security, speed and computing resources than reflected by the eS-
TREAM profiles 1 and 2. We slightly relax the requirements on speed and com-
puting resources, i.e. we only require a stream cipher that is sufficiently fast for
most practical purposes. But we introduce an unusually strong security require-
ment for symmetric cryptography (which is out of reach of the current state of
the art for block ciphers), namely that the security of the cipher be provably
reducible to the conjectured intractability of a well-known and studied mathe-
matical problem. The security of the novel stream cipher is provably reducible to
the intractability of the MQ problem [15], which consists of finding a solution (if
any) to a multivariate quadratic system of m quadratic equations in n variables
over a finite field GF (q), typically GF (2). The MQ problem is conjectured to be
difficult for suitably chosen values of n and m. In general the associated decision
problem is known to be NP-complete even in the case where the considered field
is GF (2), and moreover no efficient algorithm to solve MQ with a significant suc-
cess probability is known to exist for sufficiently large values of n (say n > 100)
when the quadratic equations are randomly chosen. The implementation com-
plexity of our stream cipher is reasonable and the encryption speed (4.6 Mbit/s
for a software implementation in C on a standard PC), though lower than AES,
is more than sufficient for many practical purposes.

Constructing a provably secure stream cipher is not a novel topic. However,
designing a practical provably secure stream cipher is an open problem. Following
seminal work by Shamir, Blum and Micali [4], Yao [31], Levin and Goldreich [25]
in the 80’s, considerable research effort has been dedicated to the construction of
provably secure pseudo-random number generators (PRNG) that expand a short
seed (e.g. a key) into a larger bit string. This can be used as the keystream for
encryption purposes. Available security results typically state that if the iterated
function underlying the construction of a number generator satisfies suitable one-
wayness properties, then the generator is a secure PRNG, i.e. its L-bit output
is computationally indistinguishable from the uniform distribution over {0, 1}L.
This research effort has led to remarkable generic results, e.g. the proof by Im-
pagliazzo, Levin, Luby and H̊astad [21] that a secure PRNG can be constructed
based upon any one way function (OWF). It has also led to provably secure
PRNG constructions based on the conjectured intractability of specific prob-
lems. The first provably secure PRNG was introduced by Blum and Micali [4]
and relates the security of the PRNG to the one-wayness of exponentiation mod-
ulo a prime number. The provably secure PRNG proposed by L. Blum, M. Blum
and M. Shub [3] exploits the conjectured intractability of quadratic residuosity
modulo Blum integers. Alexi, Chor, Goldreich and Schnorr proposed a PRNG
construction with security that relies upon the RSA assumption. Impagliazzo
and Naor [24] and Fisher and Stern [13] proposed PRNG constructions respec-
tively relying on the difficulty of the subset sum problem and of the syndrome

QUAD: A Practical Stream Cipher with Provable Security 111

decoding problem. Even in the case of specific constructions, current provably
secure PRNGs are too inefficient to provide a practical stream cipher. This is
due to the fact that the function iterated by the PRNG is usually too computa-
tionally expensive, and that only a restricted number of bits can be produced at
each iteration (this number is generally at most proportional to the logarithm
of the input length n of the iterated function). However some efforts have been
made to improve the constructions. A first idea is to extract more than log n bits
at each round. Constructions based on the discrete logarithm problem makes it
possible to extract n− log(n) bits at each iteration instead of log n. Despite this
fact, the fastest generator based on discrete logarithm proposed by Gennaro [16]
is still impractical: it requires 350 multiplications of 3000-bit numbers to extract
2775 bits. Another problem for which it is possible to extract more than log n
bits is the syndrome decoding problem. A PRNG has been proposed by Fisher
and Stern in [13] but the number of extracted bits, although higher than logn, is
still small for practical values of n. Another recently proposed idea is to replace
a slow iterated function by some primitive which is much faster to compute.
H̊astad and Näslund proposed BMGL [30], a stream cipher with security that
relies on the difficulty of extracting the key from one plaintext ciphertext couple
in AES. Their practical construction consists of iterating AES and extracting
log n bits at each round. This cipher is fast, especially compared to other prov-
ably secure ciphers, but its security relies only on the security of the AES and
not on a simple and well-studied mathematical problem.

On the contrary, MQ is a simple and well-studied mathematical problem and
the values of n for which the problem is difficult are small (around 100 bits),
particularly when compared to discrete logarithm or factorisation, where at least
1024 bits are required. Furthermore a large number of bits (e.g. n

2) bits or even
more can be produced at each iteration.

This paper is organized as follows. We first give some preliminary background
on the status of the MQ problem and basic security definitions in a concrete
(non asymptotic) security model. Then we describe the new construction and
give a formal proof of security for the associated keystream generator. Finally
we give the encryption speed of software implementations of our stream cipher.

2 Preliminaries

2.1 Multivariate Quadratic Systems

We consider a finite field GF (q). A multivariate quadratic equation (or equiva-
lently a multivariate quadratic form) in n variables over GF (q) is a polynomial
of degree at most 2 in GF (q)[x1, . . . , xn] which can be written as

Q(x) =
∑

1≤i≤j≤n

αi,jxixj +
∑

1≤i≤n

βixi + γ

with all the coefficients αi,j , βi, and γ in GF (q). In the particular case q = 2,
which will be considered in the sequel, the monomial forms xixi and xi are equal.

112 C. Berbain, H. Gilbert, and J. Patarin

It is easy to see that the set Q of multivariate quadratic forms in n variables
is an N -dimensional vector space over GF (q), where N = n(n+3)

2 + 1 if q �= 2
and N = n(n+1)

2 + 1 if q = 2. A basis of this vector space is given by the
N − 1 distinct monomial functions of degree 1 or 2 and the constant form 1.
Any element of Q can be represented by the N -tuple of its GF (q) coefficients
in this basis. Throughout the rest of this paper, we mean by a randomly chosen
quadratic form in n unknowns the quadratic form represented in the above basis
by a uniformly and independently drawn N -tuple of GF (q) coefficients.

A multivariate quadratic system S of m quadratic equations in n variables
over GF (q) is a set (Q1, . . .Qm) of m quadratic equations in n variables over
GF (q). In the sequel, we mean by a randomly chosen system of m quadratic
form in n unknowns, n independently and randomly chosen quadratic forms.
Such a system is represented by mN uniformly and independently drawn GF (q)
coefficients.

A quadratic form Q over n unknowns over GF (2) is called non degenerate iff Q
is not equivalent to a quadratic form in strictly fewer than n linear combinations
of the n input variables. There exists a polynomial time algorithm to check
whether a given quadratic form is non degenerate and more generally to compute
the so-called rank of a quadratic form [26]. The number of solutions of the
quadratic equation Q = 0 associated with a non degenerate quadratic form Q

over n unknowns is either 2n−1 or 2n−1 +2
n−2

2 or 2n−1 −2
n−2

2 depending on the
parity of n and the value of γ. Thus for sufficient large values of n, say n > 100,
non degenerate quadratic forms are either perfectly balanced (odd n values) or
have an undetectable bias (even n values).

2.2 Status of the MQ Problem

We define the problem of solving simultaneous multivariate quadratic equa-
tions (MQ problem) as follows: given a multivariate quadratic system of m
quadratic equations over GF (q) S = (Q1, . . . , Qm), find a value x ∈ GF (q)n,
if any, such that Qi(x) = 0 for all 1 ≤ i ≤ m.

Depending on the respective values of n and m, instances of MQ can be either
easy or very difficult to solve. For m = 1 the number of solutions is known [26]
and it is quite easy to find one solution. When m is significantly smaller than n,
that is for an underdefined quadratic system, finding a solution is easy [6]. In the
opposite situation of an overdefined system (m > n) providing N = n(n+1)

2 + 1
(q = 2 case) or n(n+3)

2 +1 (q �= 2 case) linearly independent quadratic equations,
or more generally when nearly N linearly independent quadratic equations are
available, solving an MQ problem is easy by linearization. The total complexity
is then only O(n6). However for general values of m and n the MQ problem is
known to be NP-hard, even when restricted to quadratic equations over GF (2)
[15] [14] or over any finite field [28].

Moreover, what seems to make the MQ problem particularly well suited to
cryptographic applications is that it is conjectured to be very difficult not only
asymptotically and in worst case, but already for small suitably selected values

QUAD: A Practical Stream Cipher with Provable Security 113

of m and n and in terms of the average complexity of solving a random instance.
The problem seems to be most difficult when m is close to n. For m = n and
q = 2 the complexity of the best known solving algorithms is 2n−O(

√
(n)) and

thus rather close to the 2n complexity of exhaustive search, and totally out of
reach of existing computers for a random instance and n values larger than 100.
Even when q = 2, m = kn and k > 1 is small enough compared with n

2 , the best
known computer algebra algorithms such as XL [10] and improved variants of
Buchbergers’s Groebner basis computation algorithm such as Faugère’s F4 and
F5 algorithms [12] are exponential in n for a randomly chosen quadratic system.
Much research has been dedicated in the past years to the above problem [9], [7].
Magali Bardet’s PHD thesis [1] provides an accurate analysis of the complexity
of the most efficient known Groebner basis computation algorithm for solving a
random system of m = kn equations in n unknowns. We will use some complexity
estimates of [1] when discussing practical recommendations of the parameter
values of our cipher.

Though we expect degenerate instances of the systems used in our construc-
tion leading to a weak stream cipher to be extremely unlikely, we suggest the
following extra precaution when drawing these systems at random to provide
some extra guaranties that some of the weakest instances are avoided: check
that each quadratic equation is non degenerate or at least has a high rank value
close to the one of a non degenerate form, and discard any quadratic equation
which would not satisfy this condition. In order to discard a slightly larger subset
of weak instance, one can also check that low weight linear combinations of the
selected quadratic equations satisfy the above rank conditions. Also check that
the obtained quadratic equations are linearly independent in Q.

2.3 Basic Security Notions

All the security definitions used throughout this paper relate to the concrete (non
asymptotic) security model. We are using the following basic security notions
that we state here informally. Two probability distributions D1 and D2 over a
finite set Ω are said to be computationally distinguishable with computing
resources R and advantage ε if there exits a probabilistic testing algorithm A
which on any input value x ∈ Ω outputs a binary answer “1” (accept) or “0”
(reject) using computing resources at most R and satisfies

|Prx∈D1 (A(x) = 1) − Prx∈D2 (A(x) = 1)| ≥ ε.

Though this is not explicitly reflected in our notation, the above probabilities
are not only taken over x values distributed according to D1 or D2, but also
over the random choices of algorithm A. Algorithm A is called a distinguisher
with advantage ε. If no such algorithm exists, then we say that D1 and D2
are computationally indistinguishable with advantage better than ε. When the
computing resources R is not specified, we implicitly mean feasible computing
resources (i.e. say less than 280 simple operations).

Let n and L denote integers such that L > n. A n-bit to L-bit function G is
said to be a Pseudo Random Number Generator (PRNG) if for a ran-

114 C. Berbain, H. Gilbert, and J. Patarin

dom n-bit input variable x selected according to the uniform law on {0, 1}n the
probability distribution of the random variable G(x) is computationally indis-
tinguishable from the uniform law over {0, 1}L.

3 QUAD: A New Stream Cipher

We now introduce the proposed stream cipher, named QUAD.
S = (Q1, . . . , Qkn) denotes a multivariate quadratic system of kn randomly

chosen equations in n variables over GF (q), and S0 and S1 denote two (k times
smaller) additional multivariate systems of n randomly chosen equations in n
variables over GF (q). S, S0 and S1 are fixed and publicly known. During the
key and IV loading and the keystream generation, the internal register state is
a x = (x1, . . . , xn) n-tuple of GF (q) values.

3.1 Keystream Generation and Encryption

The keystream generation process simply consists in iterating the three following
steps in order to produce (k − 1)n GF (q) keystream values at each iteration.

– Compute the kn-tuple of GF (q) values S(x) = (Q1(x), . . . , Qkn(x)) where x
is the current value of the internal state;

– Output the sequence Sout(x) = (Qn+1(x), . . . , Qkn(x)) of (k − 1)n GF (q)
keystream values

– Update the internal state x with the sequence of n GF (q) first generated
values Sit(x) = (Q1(x), . . . , Qn(x))

The maximal keystream sequence that may be generated with a single (key,iv)
pair is L GF (q) values. In order to encrypt a plaintext of length l ≤ L GF (q)
symbols, each of the first l GF (q) values of the keystream sequence is added
(using the GF (q) addition) with the corresponding plaintext value.

x

Sit(x) Sout(x)

3.2 Key and IV Setup

Before generating any keystream we need to initialize the internal state x, with
the key K and the initialization vector IV , which are respectively represented by
a sequence of GF (q) elements of length |K| and a binary sequence of {0, 1} values

QUAD: A Practical Stream Cipher with Provable Security 115

of length |IV |. We assume for the time being, for simplicity of the subsequent
proofs 1 that |K| is chosen exactly equal to n.

The initialization is done as follows : we use two carefully randomly chosen
multivariate quadratic systems S0 and S1 of n equations over n unknowns. We
initially set the internal state value x to the n bit value K. Then for each of the
|IV | bits IV1 to IV|IV | of the IV value the internal state x is updated as follows: if
IVi = 0, x is replaced by the GF (q)n value S0(x) ; if IVi = 1, x is replaced by the
GF (q)n value S1(x). These |IV | steps provide a key and IV dependent internal
state value x. We then clock the cipher |IV | additional times as described in
section 3.1, but without outputting the keystream in order to further transform
the internal state value x, and then enter the keystream generation mode to
produce the keystream.

4 Security

We now give a proof that for a randomly chosen multivariate quadratic system
our PRNG is secure. For simplicity of the proof we will work over GF (2). The
proof can be divided in three parts, which can be informally outlined as follows.

In the first part (Theorem 1), we prove that if the L-bit keystream sequence
associated with a known fixed or randomly chosen system S of m = kn quadratic
equations and an unknown randomly chosen initial internal state x ∈ {0, 1}n is
distinguishable from the L-bit output of a perfectly uniform generator, then for
a known random quadratic system S of m = kn equations and an unknown
randomly chosen input value x ∈ {0, 1}n, S(x) is distinguishable from a random
kn bit word.

In the second part (Theorem 2), we prove that if for a known randomly chosen
quadratic system S and an unknown randomly chosen x, S(x) is distinguishable
from a random kn bit word then, for any n-bit to 1-bit quadratic form R (in
particular any linear form R), one has the property that for a randomly chosen
n bit value x, R(x) can be predicted better than at random given S(x).

In the third part (Theorem 3), we prove that, for a known fixed or randomly
chosen S and a randomly chosen linear form R, R(x) can be predicted better
than at random given S(x), then with non negligible probability a preimage of
S(x) can be efficiently computed given S(x). Thus S is not strongly one way.
This part is essentially a proof of Goldreich-Levin’s theorem [25], in which a fast
Walsh transform computation is used to get a tighter reduction.

4.1 Distinguishing the Keystream Allows to Distinguish the Output
of a Random Quadratic System

Theorem 1 states that if one can distinguish the keystream of the generator based
on the iteration of a quadratic system S from a random L-bit sequence, then one
1 Note however that we will consider later on, in section 4.5, an extended key loading

method allowing to set the key length to values strictly lower than n, for instance
to |K| = n

2 if one wishes the key length to reflect the complexity of the best known
attack.

116 C. Berbain, H. Gilbert, and J. Patarin

can distinguish the output of S from a random m-bit sequence. Though we
consider a randomly chosen system S because we need distinguishing properties
related to a random system for the sequel, the property we prove would also
hold if we considered a fixed system S. Our proof is inspired by the proof given
in [20] that a similar result holds for the generator based on iteration of any
fixed n-bit to m-bit function, where m > n, but provides a tighter bound for the
advantage.

Theorem 1. Let L = λ(k − 1)n be the number of keystream bits produced in
time λTS using λ iterations of our construction. Suppose there is an algorithm
A that distinguishes the L-bit keystream sequence associated with a known ran-
domly chosen system S and an unknown randomly chosen initial internal state
x ∈ {0, 1}n from a random L-bit sequence in time T with advantage ε. Then
there exists an algorithm B that for a randomly chosen S distinguishes S(x)
corresponding to an unknown random input x, from a random value of size kn
in time T ′ = T + λTS with advantage ε

λ .

Proof. We introduce the hybrid probability distributions Di(S) over {0, 1}Lxi.
For 0 ≤ i ≤ λ respectively associated with the random variables

ti(S, x) = (r1, r2, . . . , ri, Sout(x), Sout(Sit(x)), . . . , Sout(Sλ−i−1
it (x)))

where the rj and x are random independent uniformly distributed values of
{0, 1}n and the notational conventions that (r1, r2, . . . , ri) is the null string if
i = 0 and that (Sout(x), . . . , Sout(S

λ−i−1)
it (x))) is the null string if i = λ. Con-

sequently D0(S) is the distribution of the L-bit keystream and Dλ(S) is the
uniform distribution over {0, 1}L. We denote by pi(S) the probability that A
accepts a random L-bit sequence distributed according to Di(S), and denote by
pi the average value of pi(S) over the (k − 1)n(n (n+1)

2 + 1)-dimensional vector
space of quadratic systems S. We have supposed that algorithm A distinguishes
between D0(S) and Dλ(S) with advantage ε, in other words that |p0 − pλ| ≥ ε.
Algorithm B works as follows : on input (x1, x2) ∈ {0, 1}kn with x1 ∈ {0, 1}n

and x2 ∈ {0, 1}(k−1)n, it selects randomly an i such that 0 ≤ i ≤ λ − 1 and
constructs the L-bit vector

t(S, x1, x2) = (r1, r2, . . . , ri, x2, Sout(x1), Sout(Sit(x1)), . . . , Sout(Sλ−i−2
it (x1))).

If (x1, x2) is distributed accordingly to the output distribution of S, i.e. (x1, x2) =
S(x) = (Sit(x), Sout(x)) for a uniformly distributed value of x, then

t(S, x1, x2) = (r1, r2, . . . , ri, Sout(x), Sout(Sit(x)), . . . , Sout(Sλ−i−1
it (x)))

is distributed according to Di(S). Now if (x1, x2) is distributed according to the
uniform distribution, then

t(S, x1, x2) = (r1, r2, . . . , ri, x2, Sout(x1), Sout(Sit(x1)), . . . , Sout(Sλ−i−2
it (x1))).

QUAD: A Practical Stream Cipher with Provable Security 117

Thus t(S, x1, x2) is distributed according to Di+1(S). In order to distinguish the
output distribution of S from the uniform law, algorithm B calls algorithm A
with inputs (S, t(S, x1, x2)) and returns the value returned by A. Thus

|PrS,x(B(S, S(x)) = 1) − PrS,x1,x2(B(S, (x1, x2)) = 1)|

= | 1
λ

λ−1∑
i=0

pi − 1
λ

λ∑
i=1

pi| =
1
λ
|p0 − pλ| ≥ ε

λ
.

Thus B distinguishes the output distribution of S from the uniform distribution
with probability at least ε

λ in time T + λTS .

4.2 Distinguishing the Output of a Random Quadratic System
Allows to Predict Any Quadratic Equation

Now we prove that if there exists a distinguisher between S(x) and a kn-bit ran-
dom value such as the one considered in the above theorem, it can be converted
into an algorithm that predicts the result of any quadratic polynomial (and in
particular any linear polynomial).

Theorem 2. Suppose there is an algorithm A that, given a randomly chosen
known multivariate quadratic system S of kn equations in n unknowns, distin-
guishes S(x), where x is an unknown random input value, from a random string
of length kn with advantage at least ε and in time T . Then there is an algorithm
B that, given a randomly chosen quadratic system S of kn equations in n un-
knowns, any n-bit to 1-bit quadratic form R, and y = S(x) where x is a random
input value, predicts R(x) with success probability at least 1

2 + ε
4 using at most

T ′ = T + 2TS operations.

Proof. We first show that there exists an algorithm A′ which returns 1 on input
(S, S(x)) with probability at least 1

2 + ε
2 and returns 1 on input (S, u) for some

random u with probability 1
2 : if the acceptance probability of A is larger (by at

least ε) on an input (S, S(x)) than on a random input. Then it suffices to consider
A′ which on input (S, r) either returns A(S, r) or draws a random value u and
returns 1−A(S, u) with probability 1

2 for each case. In the opposite situation, it
suffices to consider A′ which on input (S, r) either returns 1 − A(S, r) or draws
a random value and returns A(S, u) with probability 1

2 for each case.
Algorithm B works as follows. On input S = (Q1, . . .Qkn),R and a kn-bit

value y, B selects a random kn-bit vector a = (a1, . . . , akn) and a random bit
b, which represents an hypothesis for R(x). Then it computes for all i from 1
to kn the quadratic equation Pi = Qi + (ai · R). All the equations Pi form
the quadratic system S′. Then B invokes the algorithm A′ with input the new
quadratic system S′ and the value y +(b ·a). Finally B returns what A′ returns.

Now assume that y = S(x) where x is an unknown random value. We have
∀i, x, Pi(x) = Qi(x) + (ai · R(x)) = yi + (ai · R(x)).

Suppose b is really equal to R(x), then S′(x) = y + (b · a) so the distinguisher
A’ has been fed with the random quadratic system S′ = (P1, · · · , Pkn) and S′(x):

118 C. Berbain, H. Gilbert, and J. Patarin

PrS,x∈Un(B(S, S(x), R) = R(x)) = PrS′,x∈Un(A′(S′, S′(x)) = 1) ≥ 1
2

+
ε

2
.

On the contrary, suppose b is not equal to R(x), then S′(x) = y + ((1 + b) · a) =
(y + (b · a)) + a. Thus there is an error of a on the value furnished to A′ as
compared with S′(x). Because a is randomly chosen, we have:

PrS,x∈Un(B(S, S(x), R) = R(x)) = PrS′,x∈Un(A′(S′, S′(x) + a) = 0)

= PrS′,t∈Ukn
(A′(S′, t) = 0) =

1
2

Thus we have:

PrS,x∈Un(B(S, S(x), R) = R(x)) ≥ 1
2

((
1
2

+
ε

2

)
+

1
2

)
=

1
2

+
ε

4

The total running time of B is at most T + 2TS, since computing the kn Pi

requires for each i to compute all the n(n−1)
2 monomials of Qi and R, which does

not cost more than two evaluations of the system for some entry.

4.3 A Linear Form Is a Hard Core Bit for Any One Way Function

Now we show that if for a fixed or random quadratic system S and more generally
any fixed or random n-bit to m-bit function f there exists a predictor such as
the one considered in the former theorem, i.e. a predictor allowing, given an
n-bit to 1-bit linear form R, to predict R(x) with a success probability (over
all S and x values) strictly larger than 1

2 , then a preimage of S(x) (resp. f(x))
can be efficiently computed, so that S (resp f) is not one way. This result is
the Goldreich-Levin theorem [25] that we prove as to get a tight reduction.
Before proving the theorem, which relates to the computation, given the image
S(x) or f(x) for a random unknown value x and a random system S, of a list
containing x, we first establish a lemma representing the technical core of the
proof in which a fixed (unknown) value of x is considered. Our proofs are inspired
by the simplified treatment of the original Goldreich-Levin proofs developed by
Rackoff, Goldreich[18] and Bellare [2], and also by the proofs provided by H̊astad
and Näslund in their BMGL paper [30].

Lemma 1. Let us denote by x a fixed unknown n-bit value and denote by f
a fixed n-bit to m-bit function. Suppose there exists an algorithm B that given
the value of f(x) allows to predict the value of any linear equation R over n
unknowns with probability 1

2 + ε over R, using at most T operations. Then there
exists an algorithm C, which given f(x) produces in time at most T ′ a list of
at most 4n2ε−2 values such that the probability that x appears in this list is at
least 1/2.

T ′ =
2n2

ε2

(
T + log

(
2n

ε2

)
+ 2

)
+

2n

ε2
Tf

QUAD: A Practical Stream Cipher with Provable Security 119

The proof of lemma 1 is given in the Appendix. Lemma 1 applies to a fixed
x and a fixed system S (or a fixed n-bit to m-bit function f). However, the
success probability of the predictor of Theorem 2 is taken over all (x, S) pairs
for any linear form R. Consequently, we need a theorem allowing us to exploit
the existence of such a predictor to show the applicability of the lemma to a
non-negligible fraction of (x, S) pairs.

Theorem 3. Suppose there is an algorithm B, that given a randomly chosen
quadratic system S of m quadratic equations, a randomly chosen n-bit to 1-
bit quadratic form R and the image S(x) of a randomly chosen (unknown) n-
bit value x, predicts the value of R(x) with probability at least 1

2 + ε over all
possible (x, S, R) triplets using T operations. Then there is an algorithm C, which
given the image S(x) of a randomly chosen (unknown) n-bit value x produces a
preimage of S(x) with probability at least ε/2 (over all possible values of x and
S) in time T ′ .

T ′ =
8n2

ε2

(
T + log

(
8n

ε2

)
+ 2

)
+

8n

ε2
Tf

Proof. The assumption about algorithm B can be written as

Pr(x,S,R)∈{0,1}n+mN+n {B(S, S(x), R) = R(x)} ≥ 1
2

+ ε.

It results that for a fraction at least ε of all the (x, S) pairs one has

PrR∈{0,1}n {B(S, S(x), R) = R(x)} ≥ 1
2

+
ε

2
.

Otherwise, there would exist a fraction at least 1 − ε of the (x, S) pairs which
associated prediction probability over the R values would be strictly less than
1
2 + ε

2 , and therefore Pr(x,S,R)∈{0,1}n+mN+n {B(S, S(x), R) = R(x)} would be up-
per bounded by (1− ε)(1

2 + ε
2)+ ε = 1

2 + ε− ε2, which contradicts the assumption
about Algorithm B.

Thus for a fraction at least ε of all the (x, S) pairs the conditions of lemma 1 are
met and algorithm C of the lemma provides a preimage of S(x) with probability
at least 1/2.

4.4 A Security Proof for the Proposed PRNG

Now it is easy to see that if we sequentially apply theorems 1, 2, and 3, we
obtain the following reduction theorem, which states that if, for a random system
and a random initial value, the L-bit keystream sequence was distinguishable
from a random L-bit sequence then there would exist an efficient algorithm
allowing to find a preimage of the image of a random n-bit input value by
a random quadratic n-bit to m-bit system, which for suitably chosen values
of n would contradict the assumptions made in Section 2 on the difficulty of
solving MQ.

120 C. Berbain, H. Gilbert, and J. Patarin

Keystream

Distinguisher

Random Quadratic

System Output

Distinguisher

Linear Bit

Prediction
Inversion

Thm. 1

Thm. 3

Thm. 2Thm. 4

Theorem 4. Let L = λ(k − 1)n be the number of keystream bits produced by in
time λTS using λ iterations of our construction. Suppose there exists an algo-
rithm A that distinguishes the L-bit keystream sequence associated with a known
randomly chosen system S and an unknown randomly chosen initial internal
state x ∈ {0, 1}n from a random L-bit sequence in time T with advantage ε.
Then there exists an algorithm C, which given the image S(x) of a randomly
chosen (unknown) n-bit value x by a randomly chosen n-bit to m-bit quadratic
system S produces a preimage of S(x) with probability at least ε

23λ over all pos-
sible values of x and S in time upper bounded by T ′.

T ′ =
27n2λ2

ε2

(
T + (λ + 2)TS + log

(
27nλ2

ε2

)
+ 2

)
+

27nλ2

ε2
TS

Proof. Theorems 1 to 3 state that if an algorithm X exists, then another al-
gorithm Y exists. In the case of Theorem 1, the resulting algorithm Y can be
directly play the role of algorithm X in Theorem 2. In the case of Theorem 2,
the resulting algorithm Y , named algorithm B, has the property

∀R ∈ {0, 1}NPr(x,S)∈{0,1}n+mN {B(S, S(x), R) = R(x)} ≥ 1
2

+
ε

4

which implies

Pr(x,S,R)∈{0,1}n+mN+N {B(S, S(x), R) = R(x)} ≥ 1
2

+
ε

4

Thus algorithm Y can play the role of algorithm X in Theorem 3, and if we
compose the distinguishing probability and complexity expressions of the three
concatenated theorems, we obtain the claimed distinguishing probability and
complexity bounds.

Discussion. Theorem 4 above relates to the keystream generation part of QUAD,
i.e. to the expansion of a randomly chosen initial state into the keystream and
does not include the key and IV loading for deriving the initial state. Moreover
it does not guarantee the strength of a particular instance of QUAD associated
with a fixed system S but (informally) it shows that if MQ is intractable then
most instances of QUAD are secure.

QUAD: A Practical Stream Cipher with Provable Security 121

4.5 Specifying the Parameter Values for QUAD

We now propose concrete parameters n, k, L, |K| and |IV | for our construction.
We restrict ourselves to the GF (2) case. We want to ensure a security level of at
least 280. More precisely we want Theorem 4 to ensure that if for a random sys-
tem and a random initial internal state value at the beginning of the keystream
generation there exists a testing algorithm that allows us to distinguish an L-bit
keystream produced by QUAD from a uniformly drawn keystream sequence with
an advantage of more than ε = 1

100 in time less than T = 280 this would im-
ply the existence of an inversion algorithm of non negligible success probability
ε′ = ε

23λ allowing, given a random n-bit to kn-bit system of quadratic equations
and the S(x) image by S of a random input value x, to find a preimage by S of
S(x) in time T ′ lower by a factor of more than ε′ than the best known inversion
algorithms for the MQ problem, and thus result in the existence of a large set
of weak instances of MQ.

Depending on the intended application of the stream cipher, the maximum
keystream length L can vary from a few hundreds bits for a mobile phone appli-
cation to up to 240 bits. Consequently the allowed parameter values for n and k
will also vary, since it is much more demanding to get a security argument for
L = 240 bits than for L = 1000 bits. We will however retain the latter value
L = 240 for a first estimate of the corresponding required value of n.

In her thesis, Magali Bardet [1] shows that the best Groebner basis algo-
rithm to solve a system of kn equations in k unknowns has (in the case of
a regular system) a complexity of T (k, n) =

((
n+1
D

))2.37
, where D is close to(

−k + 1
2 + 1

2

√
2k2 − 10k − 1 + 2(k + 2)

√
k(k + 2)

)
n. To obtain a contradic-

tion, we need to have T ′ lower than ε′T (k, n). For k = 2 and with the previous
values of L = 240, T = 280 and ε = 1

100 , we get ε′ = 2−42 and we need to have
n greater than 350. For n = 256 and k = 2, we only get a contradiction if we
produce less than L = 222 = 4 Mbits of keystream for each key and IV pair.

Practical Values. For practical use of QUAD we recommend an internal state
length of n = 160 bits and an expansion factor k of 2 and a maximum
keystream length L = 240. We further recommend an IV length |IV | of 80
bits. For such n, k and L values, we do not get a contradiction as for the for-
mer parameter values. However our proof reduction is not optimal, and we ex-
pect that these parameter values suffice to provide the desired security level of
about 280.

If instead of the n-bit key length assumed (for simplicity of the security ar-
guments) in sections 2 and 3, a keylength |K| strictly lower than n is preferred
in order for |K| to better reflect the expected security level, we suggest the fol-
lowing extension of the key loading method described in section 3: periodically
repeat the |K| bits of K to get an expanded key of length n, and apply the key
and IV procedure of section 3 to this expanded key. We suggest, if this extended
key loading method option is retained, to select a key length |K| = 80. Though
the shorter key option weakens the security arguments of section 4 and can thus

122 C. Berbain, H. Gilbert, and J. Patarin

be considered less conservative than the full length n = 160-bit key, we are not
aware of any major security weakness resulting from this option.

An indication of the advantages of the use of the MQ problem for construct-
ing a provably secure stream cipher, in terms of the required internal state size,
is given by a comparison with the fastest known provably secure stream ci-
pher, namely a discrete log based construction proposed by Gennaro in [16]
with internal state length n = 3000 bits (to be compared with the n = 350
and 256 internal state lengths derived above) and which produces 2775 bits per
iteration and applies 335 modular multiplications of 3000-bit numbers at each
iteration. Moreover the security argument of [16] does not assume the existence
of a keystream sequence distinguishing algorithm in time T = 280 to get a con-
tradiction, but only a distinguishing algorithm in time T = 3.5 · 1010 % 235.
Another advantage of MQ is that MQ is NP-hard, whereas the Discrete Loga-
rithm Problem is only in NP ∩ co-NP. Moreover the best known algorithm to
solve the Discrete Logarithm problem are subexponential, while for MQ, those
algorithm are exponential.

5 Cryptanalysis

In this section, we consider various attacks and verify whether they are applica-
ble to our construction. We focus on security aspects not covered by the proof
of security of the former section, e.g. the protection against resynchronization
attacks provided by the key and IV loading mechanism.

Resistance Against Algebraic Attacks. QUAD was designed to resist al-
gebraic attack techniques. As a matter of fact, the key and IV loading and
keystream generation mechanisms of QUAD are based upon the iteration of
quadratic systems whose associated equations are conjectured to be computa-
tionally impossible to solve 2. In more details, recovering the initial state x of the
keystream generator from the whole keystream is more difficult than recovering
x from S(x), i.e. solving an intractable quadratic system of kn equations. As for
the key and IV loading mechanism, it is possible to express any keystream block,
as a set of (k − 1)n algebraic equations on the |K| ≥ 80 key bits. However since
the key and IV setup consists of 2|K| rounds of a quadratic function, this set
consists of (k − 1)n equations of degree |K| or nearly |K| on the |K| key bits. It
is quite natural to conjecture that such a system is highly intractable.

Correlation Attacks and Distinguishing Attacks. We expect QUAD to
be immune to such attacks except for extremely unlikely degenerate instances
of the quadratic system S, for example if one of the n-bit to 1-bit quadratic
forms of Sout or a linear combination of these (k − 1)n quadratic forms has an
exceptionally low rank and therefore (for even values of n) a detectable bias.

2 except for a small fraction of degenerate instances of S, S0 and S1 whose occurrence
is extremely unlikely if these systems are selected as described in section 4.5.

QUAD: A Practical Stream Cipher with Provable Security 123

Time-Memory-Data Tradeoffs and other Generic Attacks. The internal
state of our construction has a size n of at least 160 bits in order to resist against
generic time-data tradeoff, which have a complexity of 2

n
2 .

Since QUAD is based upon the iteration of the quadratic system Sit, the
keystream sequences it produces are ultimately periodic. Moreover, since Sit is
not one to one, the order of magnitude of the period can be expected to be 2

n
2

(k − 1)n-bit keystream blocks. One of the consequences of specifying a maximal
keystream length L << 2

n
2 (a typical order of magnitude is L = 240) is that the

detection of short cycles is extremely unlikely.

Guess and Determine Attacks. The analysis of attacks of this type allows us
to fix an upper bound on k. Let us assume that an adversary is able to guess p
bits of the internal state. Then this adversary gets a system of (k−1)n equations
in the (n − p) remaining internal state variables. If the number of monomials
generated by these n − p variables np = 1

2 (n − p)(n − p + 1) is close to (k − 1)n,
the adversary can linearize the system and recover the internal state. Solving

np = (k − 1)n gives us a number p0 = n + 1−
√

1+8n(k−1)
2 such that for p ≥ p0

the linearization is possible. The complexity C of the resulting “attack” is about
2p0((k − 1)n)ω, where ω is between 2 and 3. If C is lower than 2|K|, then the
attack is better than exhaustive search. Consequently, k has to be chosen such
that C be larger than 2|K|. For instance for n = 160 and |K| = 80, k < 21
implies that p0 > 80, and therefore C >> 280. More conservative (i.e. lower)
values of k than the one given by this simple bound are of course recommended.

Unsurprisingly, the attack would become more efficient for unlikely degenerate
instances of S, for instance if several quadratic forms of S could be all expressed
as quadratic functions of substantially less than n linear combinations of the n
state variables.

Resistance to Resynchronization Attacks with Chosen IVs. Our proof
does not cover the Key and IV setup but only the keystream generation. They
provide a strong argument towards the conjecture that the keystream sequence
resulting from any single known or chosen IV value cannot be distinguished
from a random sequence, but do not provide guarantees regarding the indepen-
dence of the sequences resulting from several chosen IVs and the resistance of
QUAD against resynchronization attacks. However the following informal ar-
gument indicates that the key and IV setup construction of QUAD prevents
such resynchronization attacks, or more generally any detectable statistical bias
on the joint distribution of the keystream sequences resulting from the same
key and several chosen IVs. Let us consider any t-tuple (IV 1, · · · , IV t) of t
distinct IV values and one randomly chosen n-bit initial state value before IV
loading x. By applying the security proofs of section 4 to the S = (S0, S1) sys-
tem of 2n quadratic equations, the n-bit to 2n-bit mapping S0, S1 is a strong
pseudorandom generator. However, the key and IV loading consists of applying
a tree-based construction proposed by Goldreich, Goldwasser and Micali [19] to
this generator, so that we can expect the distribution of the (x1, · · · , xt) t-tuple
of internal state values resulting from the loading of x and IV 1 to IV t to be

124 C. Berbain, H. Gilbert, and J. Patarin

indistinguishable from a t-tuple of random independent values. Moreover, the
subsequent runnup rounds during which the keystream generator is run with-
out outputting keystream bits provide an extra security margin, since only high
degree functions of x1 to xt are available to an adversary instead of quadratic
functions. If instead of the proposed key and IV setup the key and IV values the
IV had been loaded into the initial state and an insufficient number of quadratic
mappings had been applied to the initial state before activating the keystream
generation, then chosen-IV attacks exploiting the higher degree differential prop-
erties of low degree functions could have been mounted.

Dual Ciphers. Because of the structure of the QUAD equations, it is easy to
find dual ciphers of QUAD, i.e. simple (e.g. linear) transformations f and g of
the key K and the keystream as to ensure that for each triplet of quadratic
systems (S, S0, S1) there exist quadratic systems (S′, S′

0, S
′
1) such that for any

key K and any IV value IV , the keystream associated with (f(K), IV, S′, S′
0, S

′
1)

is the image by g of the keystream associated with (f(K), IV, S, S0, S1). We do
not expect this property to represent a security threat for QUAD.

6 Performance

In this Section we give performance results for our recommended version of
QUAD, which has 160 bits of internal state, an expansion factor of 2 and a 80-
bit key and IV length. On a Pentium IV clocked at 2.5GHz with 512 kByte of
cache and using the Intel compiler, our recommended version of QUAD reaches
a speed of 4347 cycles/byte (4.6 Mbit/s). On a Pentium 4 with 1MByte of
cache, the same version reaches a speed of 2915 cycles/byte (5.7 Mbit/s). This
cache effect is due to the fact that the quadratic system used contains more
than 4 millions of binary coefficients, which requires around 1MByte to store.
A version of QUAD running on an Opteron clocked at 2.1 GHz with a 64-bit
architecture reaches the speed of 2176 cycles/byte (quite close from 1MByte/s).
An optimised version of Blum Blum Shub’s generator with an internal state of
1024 bits, which is far from the number of bits of the internal state required for
proven security, reaches 30374 cycles/byte. In his paper[16], Gennaro claimed
his discrete logarithm based generator to be twice faster for these parameters.
We can therefore assume that this generator runs at about 15000 cycles/byte.
Though QUAD is significantly slower than AES, which runs at 25 cycles/byte,
it is much more efficient than other provably secure pseudo random generator.
Moreover, implementations of QUAD with quadratic system over larger fields
(e.g. GF (16) or GF (256)) are much faster and even reach 106 cycles/byte.

7 Conclusion

In this paper we introduced QUAD, a novel synchronous stream cipher based
on MQ with a security proof in the concrete security model. Eventhough this
construction relies on a mathematical problem and has a proof of security, its

QUAD: A Practical Stream Cipher with Provable Security 125

internal state is of small size n and it extracts a small multiple of n bits at
each round. A software implementation of our recommended version of QUAD
reaches a speed of 4.6 Mb/s on a standard PC. This makes QUAD of great
interest for applications where security is the main concern. We do not preclude
that it might be possible to derive tighter bounds in some parts of the proof,
which would allow us to further reduce the internal state size and increase the
number of extracted bits.

We would like to thank Matt Robshaw and Olivier Billet for helpful comments.

References

1. Magali Bardet. Étude des systèmes algébriques surdéterminés. Applications aux
codes correcteurs et à la cryptographie. PhD thesis, Université Paris VI, 2004.

2. Mihir Bellare. The Goldreich-Levin Theorem.
http://www-cse.ucsd.edu/users/mihir/courses.html, 1999.

3. Lenore Blum, Manuel Blum, and Mike Shub. A simple unpredictable pseudo-
random number generator. SIAM J. Comput., 15(2):364–383, 1986.

4. Manuel Blum and Silvio Micali. How to generate cryptographically strong se-
quences of pseudo-random bits. SIAM J. Comput., 13(4):850–864, 1984.

5. Don Coppersmith, Shai Halevi, and Charanjit S. Jutla. Cryptanalysis of stream
ciphers with linear masking. In Moti Yung, editor, Advances in Cryptology –
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 515–532.
Springer-Verlag, 2002.

6. Nicolas Courtois, Louis Goubin, Willi Meier, and Jean-Daniel Tacier. Solving
underdefined systems of multivariate quadratic equations. In Public Key Cryptog-
raphy, pages 211–227, 2002.

7. Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient
algorithms for solving overdefined systems of multivariate polynomial equations. In
Bart Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, volume 1807
of Lecture Notes in Computer Science, pages 392–407. Springer-Verlag, 2000.

8. Nicolas Courtois and Willi Meier. Algebraic attacks on stream ciphers with linear
feedback. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, vol-
ume 2656 of Lecture Notes in Computer Science, pages 345–359. Springer-Verlag,
2003.

9. Nicolas Courtois and Jacques Patarin. About the XL Algorithm over GF (2). In
Marc Joye, editor, Topics in Cryptology – CT-RSA 2003, volume 2612 of Lecture
Notes in Computer Science, pages 141–157. Springer-Verlag, 2003.

10. Claus Diem. The XL-Algorithm and a Conjecture from Commutative Algebra. In
Pil Joong Lee, editor, Advances in Cryptology – ASIACRYPT 2004, volume 3329
of Lecture Notes in Computer Science, pages 323–337. Springer-Verlag, 2004.

11. ECRYPT. eSTREAM: ECRYPT Stream Cipher Project, IST-2002-507932. Avail-
able at http://www.ecrypt.eu.org/stream/, Accessed September 29, 2005, 2005.

12. Jean-Charles Faugère, Hideki Imai, Mitsuru Kawazoe, Makoto Sugita, and Gwénolé
Ars. Comparison Between XL and Grbner Basis Algorithms. In Pil Joong Lee,
editor, Advances in Cryptology – ASIACRYPT 2004, volume 3329 of Lecture Notes
in Computer Science, pages 338–353. Springer-Verlag, 2004.

13. Jean-Bernard Fischer and Jacques Stern. An efficient pseudo-random generator
provably as secure as syndrome decoding. In EUROCRYPT, pages 245–255, 1996.

126 C. Berbain, H. Gilbert, and J. Patarin

14. Aviezri S. Fraenkel and Yaacov Yesha. Complexity of solving algebraic equations.
Inf. Process. Lett., 10(4/5):178–179, 1980.

15. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness, chapter 7.2 Algebraic Equations over GF (2).
W H Freeman & Co, 1979.

16. Rosario Gennaro. An improved pseudo-random generator based on discrete log.
In CRYPTO, pages 469–481, 2000.

17. Oded Goldreich. Three xor-lemmas an exposition. Technical report, Weizmann
Instritute of Science, Revohot, Israel, 1995.

18. Oded Goldreich. Fondationsof Cryptography, volume 1. Cambridge University
Press, 2001.

19. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

20. Shafi Goldwasser and Mihir Bellare. Lecture notes on cryptography. Available at
http://www-cse.ucsd.edu/users/mihir/courses.html, 2001.

21. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,
1999.

22. Russel Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random gener-
ation from one-way functions. In D.S.Johnson, editor, 21th ACM Symposium on
Theory of Computing – STOC ’89, pages 12–24. ACM Press, 1989.

23. Russel Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as
secure as subset sum. Journal of Cryptology, 9(4):199–216, 1996.

24. Russell Impagliazzo and Moni Naor. Efficient cryptographic schemes provably as
secure as subset sum. J. Cryptology, 9(4):199–216, 1996.

25. Leonid A. Levin and Oded Goldreich. A hard-core predicate for all one-way func-
tions. In D. S. Johnson, editor, 21th ACM Symposium on Theory of Computing –
STOC ’89, pages 25–32. ACM Press, 1989.

26. Rudolf Lidl and Haradl Niederreiter. Finite Fields. Cambride University Press,
1997.

27. National Institute of Standards and Technology. FIPS-197: Advanced Encryption
Standard, November 2001. Available at http://csrc.nist.gov/publications/
fips/.

28. Jacques Patarin and Louis Goubin. Asymmetric cryptography with s-boxes. In
ICICS, pages 369–380, 1997.

29. Jacques Patarin and Louis Goubin. Asymmetric cryptography with s-boxes. In
ICICS, pages 369–380, 1997.

30. Johan H̊astad and Mats Näslund. Bmgl: Synchronous key-stream henerator with
provable security. submitted to Nessie Project, 2000.

31. Andrew Yao. Theory and applications of trapdoor function. In Foundations of
Cryptography FOCS 1982, 1982.

Appendix. Proof of Lemma 1

We denote by Li, 1 ≤ i ≤ n the n-bit to 1-bit linear forms defined by Li(x)=xi,
where x is represented by the binary string x1x2 · · ·xn. The idea of the proof is
to call algorithm B sufficiently many times to recover all the xi = Li(x) one by
one. To do so, we introduce a parameter t, whose order of magnitude is log n
which will be specified later. We use t randomly chosen n-bit to 1-bit linear forms

QUAD: A Practical Stream Cipher with Provable Security 127

R1, . . . , Rt to randomize our requests to algorithm B. For each Li(x) we want to
retrieve, we call algorithm B 2t times, using the 2t linear combinations

⊕
j αjRj

of the Rk forms in order to randomize Li. Suppose we know the t values for
Rj(x), then for any α we can also compute the value of

⊕
j αjRj(x) and add

this value to B(
⊕

j αjRj ⊕ Li, f(x)). We denote

C(i, α) = B(
⊕

j

αjRj ⊕ Li, f(x)) ⊕
⊕

j

αjRj(x)

If we make a correct assumption on the t values R1(x) to Rt(x) and if B returned
the right value of (

⊕
j αjRj ⊕ Lj)(x) , then we have

C(i, α) = (
⊕

j

αjRj ⊕ Li)(x) ⊕
⊕

j

αjRj(x)

= Li(x) ⊕
⊕

j

αjRj(x) ⊕
⊕

j

αjRj(x) = Li(x).

For all the possible α values, we collect the vote C(i, α) for the value of Li(x).
Since algorithm B is supposed to answer correctly most of the time, taking the
majority of the votes C(i, α) will provide us with the value of Li(x) with a high
probability if we assume that 2t requests are enough. The counterpart of this
technique is that we have to guess the real values of Rj(x) for all j but since t
is of logarithmic size this is achievable.

We now give a more formal proof with a small difference: we use fast Walsh
transform computations to simultaneously compute the 2t results of the votes on
the C(i, α) values for all the 2t possible t-tuples of assumptions Rj(x), 1 ≤ j ≤ t,
instead of computing them independently.

Before we give the proof, we need to recall some results on the Walsh trans-
form. Given a real function of t binary variables g(x1, . . . , xt), the Walsh trans-
form of g is the real function of t binary variables G = W (g) defined by

G(u1, . . . , ut) =
∑

x1,...,xt∈{0,1}t

f(x1, . . . , xt)(−1)u1x1+...+utxt

It is known that the time needed to compute the Walsh transform of a function
of t binary variables is t · 2t.

Proof. The algorithm C works as follows : first it randomly selects t elements
R1, . . . , Rt of the n-dimensional vector space over GF (2) of the n-bit to 1-bit
linear forms.

Then for each i = 1, . . . , n it executes the following process: for all the 2t pos-
sible α = (α1, . . . αt) t-tuples ∈ {0, 1}t store (−1)B(j αjrj⊕Li,f(x)) in a table of
size 2t, say (c0, . . . c2t−1) (thus the coefficient associated with α is c t−1

j=0 αj ·2j−1).
Then it applies the Walsh transform to this table (which represents a function
of α. This gives 2t numbers (βi

0, . . . , β
i
2t−1) such that

βi
k =

∑
α

(−1)B(j αjRj⊕Li,f(x))(−1)<k,α>

= |{α|C(i, α) = 0}| − |{α|C(i, α) = 1}|

128 C. Berbain, H. Gilbert, and J. Patarin

βi
k is the difference of the number of 0 votes and 1 for Li(x) corresponding to the

assumption that Rj(x) = kj for all j comprised between 1 and t. Consequently
if βi

k is positive, then C sets bit i of the n-bit candidate value Ck associated with
the assumption k to Ci

k = 0, otherwise this bit is set to Ci
k = 1.

After this process has been completed for all the n values of i, one is left
with a list of 2t n-bit candidate values for x corresponding to each of the 2t

assumptions for R1(x) to Rt(x). For each candidate value Ck, algorithm C then
computes f(Ck) and compares it to f(x). If a match occurs, C keeps Ck in the
list of at most 2t candidate values for x it outputs, otherwise Ck is discarded
from the list.

The total running time of algorithm C is n2t(T + t + 2) + 2tTf where Tf is
the time needed to compute f(y) for an n-bit value y.

Let us now upper bound the probability that algorithm C fails to select x in
the list of pre-images of f(x) it produces. Over the 2t assumptions for R1(x) to
Rt(x), only the correct one is to be considered. The failure probability of C is
upper bounded by the sum of the n probabilities pi that the vote for Li(x) is
incorrect and we have:

pi = Pr

{
|{α|C(i, α) = Li(x)}| <

2t

2

}
|{α|C(i, α) = Li(x)}| is the sum of the 2t pairwise independent 0-1 variables
C(i, α)⊕Li(x)⊕ 1 of average value μα ≥ 1

2 + ε
2 and variance vα = 1

4 − ε2

4 . Thus

pi has average value μ = 2t
(1

2 + ε
2

)
and variance σ2 = 2t

(
1
4 − ε2

4

)
. By applying

Chebyshev’s inequality, we have

pi = Pr

{∑
α

C(i, α) ⊕ Li(x) ⊕ 1 <
2t

2

}

= Pr

{∑
α

C(i, α) ⊕ Li(x) ⊕ 1 − μ < −2tε

2

}

≤ Pr

{∣∣∣∣∣∑
α

C(i, α) ⊕ Li(x) ⊕ 1 − μ

∣∣∣∣∣ >
2tε

2

}
≤ σ2

(2t ε
2)2

≤ 1
2tε2

Thus the failure probability of C is upper bounded by n
2tε2 . If we want to have

a probability of success for algorithm C higher than 1
2 , then we have to choose

t such that 2t = n
ε2 . Finally the total complexity of algorithm C is given by

2n2

ε2

(
T + log(

2n

ε2
) + 2

)
+

2n

ε2
Tf

How to Strengthen Pseudo-random Generators
by Using Compression�

Aline Gouget�� and Hervé Sibert

France Telecom Research and Development,
42 rue des Coutures, BP6243, F-14066 Caen Cedex 4, France

{aline.gouget, herve.sibert}@francetelecom.com

Abstract. Sequence compression is one of the most promising tools for
strengthening pseudo-random generators used in stream ciphers. Indeed,
adding compression components can thwart algebraic attacks aimed at
LFSR-based stream ciphers. Among such components are the Shrink-
ing Generator and the Self-Shrinking Generator, as well as recent vari-
ations on Bit-Search-based decimation. We propose a general model
for compression used to strengthen pseudo-random sequences. We show
that there is a unique (up to length-preserving permutations) construc-
tion that reaches an optimal trade-off between output rate and security
against several attacks.

1 Introduction

The huge amount of work impulsed by the ECRYPT call for stream ciphers [5]
shows how much progress has been made in stream ciphers analysis in the recent
years. While researchers in the area are still willing to design new proposals with
innovative, yet not always secure, ideas. If cryptanalysis seems to put the fate
of stream ciphers at stake, this is also the consequence of a lack of theoretical
security results for stream ciphers and pseudo-random generators.

Compression of sequences can strengthen pseudo-random generators used in
stream ciphers. In particular, adding compression components can thwart al-
gebraic attacks aimed at LFSR-based stream ciphers [1, 4]. Such components
include decimation components such as the Shrinking Generator [3] and the
Self-Shrinking Generator [15]. Decimation has come back in focus recently with
the Bit-Search Generator [9] and subsequent variations on it [10].

Compression mechanisms may suffer from timing attacks [12] since the speed
of the output is variable in a manner that depends on the generator’s state. Thus,
LFSR-based ciphers involving a decimation mechanism may be easily breakable
in case of leakage of the number of times LFSRs are clocked for each output.
However, such side channel attacks are usually alleviated by buffering the output,
as described for instance in [14]; these issues are not discussed in this paper.
� Work partially supported by the French Ministry of Research RNRT X-CRYPT

Project and by the European Commission under contract IST-2002-507932 via the
ECRYPT Network of Excellence.

�� Current e-mail address: aline.gouget@gemplus.com

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 129–146, 2006.
c© International Association for Cryptologic Research 2006

130 A. Gouget and H. Sibert

Our main purpose is to propose a general model for compression used in the
generation of pseudo-random sequences, in order to build compression compo-
nents upon theoretical results. In Section 2, we detail related work on the subject
including the Shrinking Generator and the Bit-Search generator variation used
in the DECIM proposal to the ECRYPT stream cipher project. In Section 3, we
construct our framework for compression components using prefix codes dedi-
cated to pseudo-random generation. In Section 4, we focus on the case when the
compression output is 0 or 1. We show that there is then a unique (up to length-
preserving permutations) construction that reaches an optimal trade-off between
output rate and security against several attacks, including entropy-based recon-
struction, linear equations retrieval, and FBDD attacks. In Section 5, we apply
our results to the Self-Shrinking Generator and Bit-Search based decimation.

2 Related Work

Generation of pseudo-random sequences using compression techniques relies on
the use of a compression function. A compression function is a function that com-
presses m-bit inputs (m is not necessarily a fixed value) to n-bit outputs, where
m ≥ n. The properties required for such functions depend on the application
context. For instance, one-wayness is required for cryptographic hash functions,
whereas compression functions for data compression must not be one-way. The
properties of a compression function to be used to shrink pseudo-random se-
quences are yet to be defined.

Decimation components are a particular case of compression components. The
Shrinking Generator (SG) [3] compresses two sources of pseudo-random bits to
create a third source of potentially better quality than the original sources; the
term quality stands for the difficulty of predicting the pseudo-random sequence.
Similarly, the Self-Shrinking Generator (SSG) [15], the Bit-Search Generator
(BSG) [9] and its variants such as the ABSG [10] all compress a single source
of pseudo-random bits in order to produce a second source of potentially bet-
ter quality. The ABSG is used in the DECIM stream cipher proposed to the
ECRYPT stream cipher project. The general running of DECIM is to produce a
pseudo-random bit sequence from an LFSR filtered by a Boolean function which
is next compressed by the ABSG.

The output rate is usually considered to compare the efficiency of compression
components. The BSG and the ABSG have the advantage over the SG and the
SSG that they operate at a rate 1/3 instead of 1/4 (i.e. producing n bits in the
output requires on average 3n bits of the input sequence instead of 4n bits).

Security criteria are crucial for cryptographic compression components. Since
many stream ciphers are LFSR-based, most theoretical results on compression
components concern the period or the linear complexity of the sequences ob-
tained by applying these components on the output of a maximal length LFSR.
First, algebraic results show that regular decimation is not suitable [16]. Then,
several attacks on stream cipher based on a compression component are known.
The first type of attack focuses on the properties of the compression function

How to Strengthen Pseudo-random Generators by Using Compression 131

when assuming that the input sequence is uniformly chosen. For instance, FBDD-
attacks, proposed by Krause [13], rely on properties of the compression function
in the context of LFSR-based generators. The attacks given in [10, 11] use the
most probable case (when it exists) in order to reconstruct the input sequence
in the context of LFSR-based generators. A second type of attack exploits more
information on LFSR-based generators. For instance, the attack on the SG given
in [3] exploits the knowledge of the feedback polynomials, and the attack on the
SSG given in [6, 7] applies only for particular feedback polynomials.

3 A Compression Model for Pseudo-random Generation

One usually expects data compression techniques to transform an input sequence
into a very short output sequence while keeping the ability to recover the input
from the output, which means no information on the input shall be lost.

In the context of pseudo-random generation, the purpose is different. We focus
on the use of the compressed output as the keystream used to cipher a message
in a stream cipher. The input sequence s is supposed to be the pseudo-random
output of a public mechanism with secret parameters (e.g., the output of an
LFSR initialized with a secret key and an initialization vector). This mechanism
may have weaknesses with respect to attacks aiming at correlation or algebraic
properties of its output. Our aim is to delete from s enough information to
prevent such attacks that may apply to s, by hiding algebraic properties of the
input sequence. At the same time, our output should not be too short compared
with its input, so that it can be used for the same applications as s.

Thus, our aim is opposite to usual data compression: we expect the compres-
sion algorithm to process the input into an output sequence which delivers as
little information on the input as possible, while remaining as long as possible.

In the sequel, we call random input sequences those sequences that follow the
uniform distribution of binary words: each word w is a prefix of a random input
sequence with probability 1/2|w|, and all words are assumed to be independent.

3.1 Prefix Codes and Binary Trees

A binary code is a subset of words of {0, 1}+. The language C∗ of a binary code
C is the set of all binary words that are concatenation of words in C. A code C
is a prefix code if no codeword has a strict prefix in C. Notice that, in this case,
the words of C∗ parse into codewords in a unique manner. A code is maximal
prefix when no other prefix code properly contains it. A code C is right complete
if every word w can be completed into a word v = ww′ that belongs to C∗ or,
equivalently, if every word w with no prefix in C has a multiple v = ww′ in C.

Proposition 1. A code is maximal prefix if, and only if, it is prefix and right
complete.

Proof. Suppose C is maximal prefix. Let w be a non-empty word which has no
prefix in C. As C is maximal prefix, C ∪{w} is not a prefix code, so w has a right
multiple in C. Hence, C is right complete.

132 A. Gouget and H. Sibert

Conversely, let C be prefix and right complete, and C′ be a prefix code that
contains C. Let w ∈ C′. As C is right complete, w has a right multiple w′ in C∗.
Let then m be the smallest prefix of w′ in C. As C′ is prefix, this implies m = w,
so we have w ∈ C, and consequently C′ = C. Therefore, C is maximal prefix. ��
Throughout the paper, we will see that all suitable codes for our constructions
are maximal prefix codes. There is a natural bijection between binary prefix
codes and binary trees called coding trees, in which a node either is a leaf, or it
has two children. This bijection links the words of the code and the leaves of the
tree. Thus, we often use the equivalence between binary prefix codes and binary
trees in the sequel. An example of a coding tree is given in Figure 1.

10

0

0

0 0

0

0

1

1

1

1

1

1

10

Fig. 1. ABSG code tree

3.2 General Framework

We consider an infinite input sequence of bits s = (si)i≥0, a binary prefix code C
and a mapping f : C → {0, 1}∗, called the compression function. We call f(C) the
output set. The sequence s parses into a sequence of codewords w = (wi)i≥0, each
wi being the unique codeword such that w0 . . . wi is a prefix of s that belongs to
C∗. Each wi is then mapped by f to its image in f(C). The output sequence is
(f(wi))i≥0, seen as a bit sequence. We denote this output sequence by

y = EncC,f(s).

The framework extends to finite input sequences, by parsing the input se-
quence in the same way, until the remainder has no prefix in C.

Definition 1. The output rate of the pair (C, f), denoted by Rate(C, f), is the
average number of output bits generated by one bit of a random input sequence.

Obviously, not all binary codes and functions are suitable for this framework. For
instance, choosing C = {00} does not enable to process a sequence containing
ones. As for the function, choosing the projection onto the empty word ε produces
an empty output sequence. In order to apply the framework to every possible
input sequence, it is then necessary to determine what the requirements on the
following components are:

How to Strengthen Pseudo-random Generators by Using Compression 133

1. the choice of C must enable the parsing of every random input sequence,
2. the choice of f must be such that, for uniformly distributed input sequences,

the corresponding output sequences also follow the uniform distribution.

3.3 Requirements on C
First, there are some straight requirements on C. In our framework, we consider
prefix codes only. Indeed, if C contained two distinct words w and w′ with w a
prefix of w′, then w′ would never appear in the decomposition w of s. Therefore,
we may delete from C all the codewords that already have a prefix in C with
no loss of generality, thus transforming C into a binary prefix code. Next, we
want every random input sequence to be processable. This implies that C is
right complete. Overall, in order to effectively process any random input, we
introduce the following definition:

Definition 2. A binary code C is suitable if it is prefix and if the expected
length E(C) of an element of C in the decomposition of a random input sequence
is finite.

Proposition 2. For a suitable code C, the following equality holds:∑
w∈C

1
2|w| = 1.

Proof. Let us consider the binary tree corresponding to C. We denote by Ln

and Nn respectively the number of leaves and nodes of depth n. Then, we have
L0 = 0, N0 = 1, and for every n ≥ 1, the relation Ln + Nn = 2Nn−1 holds. Let
Sn =

∑
0≤k≤n

Ln

2n . Then, we have Ln

2n = Nn−1
2n−1 − Nn

2n , which gives Sn = N0− Nn

2n =
1 − Nn

2n , so we only have to prove Nn = o(2n).
Now, Nn is the number of nodes of depth n, and a random input sequence

begins with n bits corresponding to such a node with probability Nn

2n . For each
one of these nodes, the first word of the input sequence recognized as a word of
C has length at least n. Thus, these nodes contribute at least nNn

2n to E(C). As
E(C) is finite, this implies that Nn

2n tends to 0 when n tends to ∞. ��
Therefore, in the case of a suitable code, E(C) is equal to the mean length of
the words of C for the uniform distribution on the alphabet {0, 1}, so we have:

Proposition 3. Let C be a suitable code. Then, we have the equality

E(C) =
∑
w∈C

|w|
2|w| .

Remark 1. If a prefix code C satisfies the equality in Proposition 2 (for binary
codes, otherwise 2 is replaced by the size of the alphabet), then it is maximal
prefix, and the equivalence holds when C is finite (see for instance [2]). Thus,
suitable codes are maximal prefix, and the converse is true for finite codes, with
E(C) then being given in Proposition 3. However, being maximal prefix may not
be sufficient for E(C) to converge when C is infinite, as Example 1 will show.

134 A. Gouget and H. Sibert

Example 1. Let us consider the code C defined iteratively as follows: for every n
starting from n = 0, C contains all the words w12n

, where w is a word of length
2n with no prefix already in C. The defined code is prefix, and every word w
with no prefix in C with 2n−1 < |w| ≤ 2n can be completed into a word of C by
concatenating enough 1’s to reach length 2n+1, so C is right complete. Therefore,
C is maximal prefix. However, the number of words of length 2n+1 in C being at
most 2n, we get ∑

w∈C

1
2|w| ≤

∑
n≥0

1
22n ,

this last sum being strictly less than 1. Thus, a random binary sequence may
never fall into C with non-zero probability. Hence, E(C) is infinite, and it is no
longer equal to the mean length of code words, which, here, is finite. The code
C is an example of maximal prefix code which is not suitable.

3.4 Requirements on f

As for C, there are also several immediate requirements on f(C). However, they
are more practical than theoretical: at first glance, f(C) may be any set of binary
words, including ε. Now, it must obviously contain at least two non-empty words,
one beginning with 0, and the other with 1, in order to make it possible for the
output to look random for random inputs. Moreover, it must be possible to
construct every binary sequence with the elements of f(C).

In order to be able to process every random input sequence, we introduce the
following definition, which corresponds to the requirement of Definition 2:

Definition 3. Suppose C is a suitable code. Let f be a compression function
f : C → {0, 1}∗. We say that the pair (C, f) is a proper encoder if the expected
length E(f(C)) of the image by f of an element of C in the decomposition of a
randomly chosen input sequence is finite and nonzero.

As we review the properties of the output sequences with respect to uniformly
distributed input sequences, we have:

Proposition 4. For a proper encoder (C, f), the expected length of the image by
f of an element of C in the decomposition of a randomly chosen input sequence,
denoted by E(f(C)), is given by

E(f(C)) =
∑
w∈C

|f(w)|
2|w| .

Definitions 2 and 3 ensure the finiteness of E(C) and E(f(C)), so we get:

Proposition 5. The output rate of a proper encoder (C, f) is given by

Rate(C, f) =
E(f(C))

E(C)
.

How to Strengthen Pseudo-random Generators by Using Compression 135

Now, we are going to determine an optimal choice for the output set f(C) against
reconstruction of the input. To every word in the output corresponds a set of
preimages in C. Knowing an output word thus reduces the possible choices of
preimages to one particular set. We will show that, in order to minimize the
information rate, the set f(C) should be as small as possible.

In order to ensure that the distribution of the output sequences satisfies ran-
domness properties such as those described in [8], each bit of the output sequence
must have equal probability to be 0 or 1. Therefore, we need, for every n ≥ 1:∑

w∈C,|f(w)|≥n,f(w)n=0

1
2|w| =

∑
w∈C,|f(w)|≥n,f(w)n=1

1
2|w| ,

where f(w)n is the n-th bit of the word f(w).

The prefix code output case. First, we consider the case where f(C) is a
prefix code. If it contains two elements, the only possible choice such that the
probability distribution of the output for random inputs is that of a random
sequence is f(C) = {0, 1}. In this case, 0 and 1 must have probability 1

2 to
appear in the output sequence for a random input sequence.

Suppose now that f(C) has more than 2 elements. We want to prove that,
given a random input sequence, knowing the output sequence, we can retrieve
more information on the first element of C than in the case f(C) = {0, 1}.
Proposition 6. Let (C, f) be a proper encoder, and, for x ∈ f(C), let P (x) =∑

w∈f−1(x)
1

2|w| . Then, for a random input sequence s, each word of the decompo-
sition of s over C has average length E(C), and it is known with an average entropy

E(C) +
∑

x∈f(C)

P (x) log P (x).

Proof. For x ∈ f(C), let us denote by Cx the preimage of x in C. Then, the
probability that the first element of C recognized in a random input sequence is
mapped by f to x is P (x) =

∑
w∈Cx

1
2|w| . Similarly, the expected length of an

element in the preimage of x is E(Cx) = 1
P (x)

∑
w∈Cx

|w|
2|w| . At last, we compute

the entropy on the elements in Cx:

H(Cx) = −
∑

w∈Cx

1
P (x)2|w| log

1
P (x)2|w| =

∑
w∈Cx

1
P (x)2|w| (log P (x) + |w|)

=
1

P (x)

∑
w∈Cx

|w|
2|w| +

log P (x)
P (x)

∑
w∈Cx

1
2|w| = E(Cx) + log P (x).

The average number of bits retrieved is therefore
∑

x∈f(C) P (x)E(Cx) = E(C) for
a random input sequence, so it does not depend on f(C). The average entropy is∑

x∈f(C)

P (x)(E(Cx) + log P (x)) = E(C) +
∑

x∈f(C)

P (x) log P (x),

with
∑

x∈f(C) P (x) = 1. ��

136 A. Gouget and H. Sibert

It is always possible, given a suitable code C, to divide C into two equiprobable
subsets (the probabilities of leaves in the tree being of the form 1

2n with n ≥ 1,
and their sum being 1). Thus, for every suitable code, there exists a mapping
f : C → {0, 1} such that 0 and 1 are output with probability 1

2 .
Therefore, in order to maximize the entropy for a given suitable code C, the

value of |∑x∈f(C) P (x) log P (x)| should be as small as possible, which implies
#(f(C)) = 2. Therefore, the optimal choice of the output set is f(C) = {0, 1},
with 0 and 1 having probability 1

2 to be output for a random input sequence.

The non-prefix output case. We now consider the case where f(C) does not
contain the empty word ε, but f(C) is not a prefix code. Let C(y) be the set of
words of C such that, for every w ∈ C(y), the sequence y begins with w. Then,
the probability that s begins with w depends on y.

Example 2. Suppose f(C) = {0, 01, 10, 11} with P0 = P11 = 1
3 and P01 = P10 =

1
6 . Then, the first word of the finite output sequence 010 corresponds to a pair
of words (w, w′) of C, with either f(w) = 0 and f(w′) = 10, or f(w) = 01 and
f(w′) = 0. As we have P0P10 = P01P0, the probabilities that f(w) = 0 and
f(w) = 01 are equal whereas P0 > P01.

Thus, it is no longer possible to determine with certainty each word (f(wi)) in
the image of the input sequence. However, a path similar to that of Section 3.4
can be followed. The corresponding Proposition 12 and its proof are provided
in Appendix A. They lead to the same conclusion as Section 3.4, namely that
the optimal choice of the output set is f(C) = {0, 1} (thus being prefix), with 0
and 1 having probability 1

2 to appear in the output sequence for a random input
sequence. This case is discussed in Section 4.

General case. We now suppose that ε can belong to the output set f(C).

Proposition 7. Let (C, f) be a proper encoder such that f(C) contains ε. Then,
there exists a proper encoder (C′, f ′) such that f ′(C′) does not contain ε and that,
for every infinite binary sequence s, we have

EncC,f(s) = EncC′,f ′(s).

Moreover, defining Pε =
∑

w∈f−1(ε)
1

2|w| , we have

E(C′) =
1

1 − Pε
E(C), and E(f ′(C′)) =

1
1 − Pε

E(f(C)).

Proof. Denote by Cε the set of preimages of ε, and by Cε̄ the complement of Cε in
C. Let C′ be the binary code defined by C′ = C∗

εCε̄, that is, the set of binary words
that parse into a sequence of words of Cε, followed by a word of Cε̄. Consider
the function f ′ that maps each element ww′ of C′, with w ∈ C∗

ε , and w′ ∈ Cε̄,
to f(w′). As the decomposition is unique, f ′ is well-defined. Moreover, for every
input sequence s, the equality EncC,f(s) = EncC′,f ′(s) is obviously satisfied. At
last, we have f(C′) = f(C)\{ε}, so the image of f ′ does not contain ε.

How to Strengthen Pseudo-random Generators by Using Compression 137

There remains to show that the new pair (C′, f ′) is also a proper encoder.
First, C′ is also a prefix code because of unicity of the decomposition over C.
Next, as the length of ε is 0, we have

E(f ′(C′)) =
∑

v∈C∗
ε ,w∈Cε̄

|f(w)|
2|v|+|w| =

∑
n≥0

(∑
v∈Cε

1
2|v|

)n

×
∑

w∈Cε̄

|f(w)|
2|w| =

E(f(C))
1 − Pε

.

As the two encoders (C, f) and (C′, f ′) are equivalent, they have the same output
rate, which yields the same relation between E(C′) and E(C). Hence, (C′, f ′) is
a proper encoder. ��
Proposition 7 shows that we can suppose without loss of generality that f(C)
does not contain ε. Therefore, the optimal choice for f(C) is

f(C) = {0, 1}.

4 The {0, 1}-Case

In this section, we focus on the optimal choice of the proper encoder (C, f) when
f(C) = {0, 1}, with 0 and 1 equiprobable relatively to the uniform distribution
over the input sequence. We first give the results that arise from Section 3 in this
case, and we study the security of the framework against well-known attacks:
exhaustive reconstruction, most probable case reconstruction, equations retrieval
and FBDD attacks. Then, using these security results, we deduce the optimal
choice for (C, f) against these attacks.

4.1 Parameters of the {0, 1}-Case

Firstly, we give some general properties of the framework in the {0, 1} case. We
denote by C0 and C1 the two sets of preimages of respectively 0 and 1 by f . We
also define Cn

b = {w ∈ Cb, |w| = n} and Dn
b = #(Cn

b).

Proposition 8. Let (C, f) be a proper encoder with f(C) = {0, 1}. Then, for
a random input sequence s, the average length and entropy of each word of the
decomposition of s over C are respectively E(C) and E(C) − 1.

This result comes from Proposition 6 when applied to the case f(C) = {0, 1},
with 0 and 1 being equiprobable. This equiprobability also implies:

Proposition 9. Given a bit b of the output sequence, a word w ∈ Cb is the
preimage of b with probability 1

2|w|−1 .

Proof. Each word w of C appears in the input sequence with probability 1
2|w| ,

and the probability that w belongs to Cb is 1
2 , which gives the result. ��

4.2 Security Analysis

This section is dedicated to the general analysis of the security provided by the
compression component. We also focus on the case when the input sequence is
the output of a maximal length LFSR.

138 A. Gouget and H. Sibert

Exhaustive reconstruction. Exhaustive reconstruction consists in reconst-
ructing consecutive bits of the input sequence from the output sequence starting
from a fixed point in the output sequence. When a bit b appears in the output,
the expected length and the entropy on the preimage of b in the input sequence
are respectively equal to

Eb =
∑

w∈Cb

|w|
2|w|−1 and Hb = −

∑
w∈Cb

1
2|w|−1 log2(

1
2|w|−1).

Developing Hb gives

Hb =
∑

w∈Cb

|w| − 1
2|w|−1 = Eb − 1.

Therefore, for a bit b in the output, one can deduce Eb bits in the input, with
entropy Eb − 1.

Suppose that the input sequence is given by a LFSR of length L with a public
feedback polynomial and with the secret key as its initial state. Let E = E0+E1

2 .
It is therefore possible to retrieve the complete state of the LFSR with an attack
of average complexity O(2

E−1
E L), requiring O(L

E) consecutive output bits.
Moreover, when E0 �= E1 holds, the complexity of the attack can be reduced

by seeking for a sequence where mostly bits b appear, with b such that Eb < Eb̄.
This yields an attack with better complexity, but requiring the knowledge of more
output bits. The general running of this attack consists in taking a window of
consecutive bits in the keystream sequence where most bits are b. The difficulty
when mounting this attack is to determine the better trade-off between the
length of the window and the required number of bits b in this window in order
to retrieve L equations involving consecutive bits of the input sequence. Such an
attack is described in [10] in the case of the BSG decimation algorithm.

Reconstruction based on the most probable case. Another reconstruction
attack consists in betting each time that the preimage of a bit b is (one of) the
most probable. Consequently, for each bit b, we set 	b = min{|w|, w ∈ Cb}, and
Cshort

b = {w ∈ Cb, |w| = 	b}. Contrary to the previous attack, we cannot choose
the point from which consecutive input bits will be effectively reconstructed.

For a bit b in the output, the preimage of b is w ∈ Cshort
b with probability

1/2�b−1. Thus, we recover 	b bits of the input with probability 1/2�b−1.
Suppose now that the input sequence is given by a LFSR of length L. Let

	 = �0+�1
2 . It is then possible to retrieve the complete state of the LFSR with an

attack of average complexity O(2
�−1

� L), requiring O(2
�−1

� L) output bits (namely,
enough for the bet to succeed). In the case where not all the preimages of b have
the same length, we have 	b < Eb, so the complexity of this attack is less than
that of exhaustive reconstruction.

Like in exhaustive reconstruction, when 	0 �= 	1 holds, the attack complexity
can be reduced by seeking sequences where most bits are b, such that 	b < 	b̄.

How to Strengthen Pseudo-random Generators by Using Compression 139

Equations retrieval. In some cases, and in particular when the input sequence
is given by a maximum-length LFSR, it is sufficient to retrieve linear equations
on bits that are not consecutive in the input sequence.

However, it is not necessarily easier to retrieve bits that are apart in the
input sequence, because the compression process creates entropy on the length
of the preimages of words in the output sequence. Thus, retrieving bits that are
apart means that we are able to control the length of the gaps between the bits
retrieved in the input sequence.

For a bit b in the output, the preimage of b has length n with probability Dn
b

2n−1 ,
where Dn

b is the number of preimages of b of length n. Now, if the preimage of b
has length n, then we can derive a number φn

b of linear equations on the input
bits satisfying

max (0, n − (Dn
b − 1)) ≤ φn

b ≤ n − �log(Dn
b) .

Therefore, we can retrieve at least n + 1 − Dn
b equations with probability Dn

b

2n−1 .
For a bit b in the output, the average number of retrieved linear equations is
thus

φ̄b =
∑
n≥1

Dn
b φn

b

2n−1 ,

the entropy on the length of the preimage of b being

H length
b = −

∑
n≥1

Dn
b

2n−1 log(
Dn

b

2n−1).

In the best case (which can always be achieved by properly choosing C and f),
where φn

b is the least possible, we obtain:

Proposition 10. Consider a proper encoder (C, f) such that f(C) = {0, 1},
with 0 and 1 having the same probability for random input sequences. Let φ̄b and
H length

b be the average number of retrieved linear equations for a bit b and the
associated entropy on the length of the preimage of b. Then, we have

φ̄b = Eb − δφ
b , with δφ

b =
∑
n≥1

Dn
b

2n−1 min(n, Dn
b − 1),

and
H length

b = Eb − 1 − δH
b , with δH

b =
∑
n≥1

Dn
b

2n−1 log Dn
b .

Moreover, δφ
b and δφ

b are both positive, and they satisfy δφ
b ≥ δH

b .

Proof. The formulas for δφ
b and δH

b both follow from straight computation. Now,
we always have Dn

b ≤ 2n, so log Dn
b is always at most n. Moreover, for every

integer x > 1, we have x − 1 ≥ log x. So, for every n such that Dn
b �= 0, we have

min(n, Dn
b − 1) ≥ log Dn

b . ��

140 A. Gouget and H. Sibert

These results link the complexity of equations retrieval attacks with exhaustive
reconstruction by way of Eb. As a consequence of this proposition, when 0 and 1
have the same number of preimages of each given length, retrieving L equations

has complexity at least O(2
E−1−δφ

E−δφ L), while exhaustive reconstruction of L bits
has complexity O(2

E−1
E L). Thus, for δφ = 0, equations retrieval is not more

effective than exhaustive reconstruction. This happens only when each bit has
at most one preimage of each length.

Suppose now the input sequence is given by a LFSR of length L. It is therefore
possible to retrieve L linear equations on the input bits of the LFSR with an
attack of average complexity

O(2(
H

length
0
φ̄0

+
H

length
1
φ̄1

) L
2),

requiring O(L) consecutive output bits.
Like in the previous attacks, when φ̄0

Hlength
0

�= φ̄1

Hlength
1

holds, the complexity of
the attack can be reduced by seeking for a sequence where mostly bits 0 or 1
appear (depending on the inequality direction). The attack thus obtained has
better complexity, but requires the knowledge of more output bits.

Example 3. We consider the ABSG code tree. For every length n ≥ 2, there is
exactly one preimage of 0 and one preimage of 1 of length n. We obtain

φ̄b =
∑
n≥2

n

2n−1 = 3 = Eb, and H length
b =

∑
n≥2

n − 1
2n−1 = φ̄b = Hb.

The equations retrieval attack is thus as difficult as exhaustive reconstruction
for the ABSG.

FBDD attacks. Krause [13] introduced the FBDD-attack (standing for Free
Binary Decision Diagram) which is a cryptanalysis method for LFSR-based gen-
erators, i.e., a generator LG that, for each initial state x ∈ {0, 1}n, outputs a
linear bitstream LG(x), and a compression function which compresses the linear
bitstream. The cryptanalysis method relies on two assumptions called the FBDD
Assumption and the Pseudo-randomness Assumption (see [13] for details).

The cost of the cryptanalysis depends on two properties of the compression
function that are a parameter γ linked to the maximal length of the sequence
output by the compression function when applied on all sequences of length m,
and some parameter α (see [13] and some details in [10]); the two parameters
α and γ are reals between 0 and 1. Then, the time and space complexity of
the FBDD-attack is LO(1)2

1−α
1+α L and it requires �γα−1L consecutive bits of the

keystream in order to compute L consecutive bits of the input sequence.
When the probability that the image of a randomly chosen finite input se-

quence is a prefix of a given output sequence varies according to the output
sequence, it is not clear whether the original FBDD-attack may be improved to
be more efficient.

How to Strengthen Pseudo-random Generators by Using Compression 141

4.3 Optimal Choices

In this part, we construct an optimal proper encoder in light of the attacks
considered previously.

Requirements based on security analysis. In order to thwart attacks based
on asymmetry between the preimage of 0 and that of 1, each output bit must
have the same number of preimages of a given length.

Next, in order to maximize the complexity of most probable case attacks while
keeping a good output rate, the length of the shortest word in C should be as
close as possible to the average length of the words in C.

Example 3 shows that the ABSG compression mechanism is optimal regarding
equations retrieval attacks, meaning that it is not easier to retrieve equations
than to reconstruct consecutive bits of the input sequence.

In the general case, equations retrieval attacks can have a better complexity
than exhaustive reconstruction. However, as shown in Proposition 10, in order to
lessen their efficiency, each bit should have at most one preimage of each length.

Construction of an optimal framework. For an output rate at least 1
2 ,

the number of choices for the proper encoder are finite, because of symmetry
requirements, and the output rate is either equal to 1 or 1

2 exactly. For Rate = 1,
there are two proper encoders, with C = {0, 1}, which is insecure. For Rate = 1

2 ,
one can construct 6 proper encoders. The suitable code is C = {00, 01, 10, 11},
and the function f is such that 0 and 1 have two preimages each. For each choice,
as the length of the preimages is constant, we can apply the equations retrieval
attack and solve the corresponding system. The complexity is then O(L).

Let then h be the minimal depth of leaves in the tree. As each output bit must
have the same number of preimages of a given length, the number of preimages
of 0 and 1 of depth h in C is the same. Then, the complexity of reconstruction
using the most probable case is O(h−1

h L). In order to maximize the output rate,
we have to choose h = 2, and no level in the tree should have only internal
nodes. This implies that, at every depth more than 2, the tree must have exactly
2 leaves, until the last level with depth d, where it has 4 leaves. We denote by
T d

2 the set of code trees of depth d, and exactly 2 leaves of depth 2, 3, . . . , d − 1
(hence 4 leaves of depth d for d < ∞). The ABSG code tree belongs to T∞

2 . In
order to obtain proper encoders using these codes, one only has to use functions
f such that the number of preimages of 0 and 1 of each depth in C is the same.

This optimal code can be adapted for smaller output rates, beginning at
depth h > 2. This makes most probable case attacks more complex, though
another way of complexifying them is to act on the input sequence using, for
instance, a longer LFSR. The tree considered then has exactly 2h−1 leaves of
depth h, . . . , d − 1 and maximal depth d (reached by exactly 2h leaves when d
is finite). Notice that the trees T d

h can be constructed by putting 2h−2 trees of
T d+2−h

2 at depth h − 2 in a tree with all internal nodes until depth h − 2.
However, equations retrieval attacks are more efficient for h > 2:

Proposition 11. Consider a proper encoder (C, f) such that the code tree of C
is a T d

h tree, and that 0 and 1 have the same number of preimages of each given

142 A. Gouget and H. Sibert

length. Suppose also that C is such that the number of equations linking the
preimages of b of length n is the least possible, namely φn

b = max(0, n+1−Dn
b).

Then, we have:

1. for every h ≥ 2, the entropy on the length of the preimage of a given output
bit b is H length = 2 − 2h+1−d,

2. for 2 ≤ h ≤ 4, we have φ̄b = h + 2 − 2h−2 − 2h−d − 22h−d−2, which is equal
to 3 for h = 3 and d = ∞.

Proof. These are the results of straight, yet tedious computations. ��
As a consequence of these results, and namely of the entropy remaining less than
2, the complexity of equations retrieval attacks does not grow fast when the
output rate decreases. Therefore, the optimal framework against these attacks
is reached when the code tree belongs to T∞

2 . However, the attack complexity
remains at least O(2

L
2) for trees in T d

2 with d > 2.

Definition 4. We say that a proper encoder (C, f) is an optimal encoder if the
associated code tree belongs to T∞

2 , and if 0 and 1 have exactly one preimage by
f of length 	, for 	 ≥ 2.

In Table 1, we provide the characteristics of proper encoders constructed on
the basis of general T d

h trees as defined in Proposition 11. We also provide a
comparison with the SSG. We left aside polynomial terms in the computational
complexity. One should also note than most probable case attacks require much
known keystream, whereas the other attacks considered require only a number
of bits linear in L, where L is the number of bits we want to retrieve. The results
for FBDD attacks are taken from [13, 10] for the SSG and ABSG. Moreover,
the complexity of FBDD attacks is the same for all optimal encoders, including
the ABSG. We see that equations retrieval attacks are more powerful against
T d

2 trees than exhaustive reconstruction, which is why we did not consider them
as optimal. However, they may be easier to protect against timing attacks than
optimal encoders, because the length of their codewords is bounded.

5 Applications

5.1 Bit-Search-Based Generators

In [9], the BSG algorithm was proposed, and was presented together with the
ABSG, which was then described in [10]. Both share the same code tree pre-
sented in Figure 1, which belongs to T∞

2 , and thus fits in our framework. The
corresponding code is C = {01k0, 10k1, k ≥ 0}.

In the case of the BSG, the compression function fBSG maps codewords of
length 2 to 0, and the other codewords to 1. Therefore, it is not an optimal en-
coder. This asymmetry resulted in several attacks [10, 11]. For instance, the equa-
tions retrieval attack takes advantage of it and it is especially efficient against
the BSG, with complexity O(2

1
3 L).

How to Strengthen Pseudo-random Generators by Using Compression 143

Table 1. Characteristics and attack exponent against T d
h trees filtering LFSRs

Output Exhaustive Most probable Equations FBDD

rate reconstruction case retrieval attacks

T d
h

1
h+1−2h−d

h−2h−d

h+1−2h−d L h−1
h

L see Prop.11 n/a

T ∞
h

1
h+1

h
h+1L h−1

h
L see Prop.11 n/a

T d
2

1
3−22−d

2−22−d

3−22−d L 1
2L 2−23−d

3−23−d L n/a

T ∞
2 (ABSG) 1

3
2
3L 1

2L 2
3L � 0.532L

T ∞
3

1
4

3
4L 2

3L 2
3L � 0.615L

SSG 1
4

3
4L 1

2L 2
3L(see Section 5.2) � 0.656L

In the case of the ABSG, the compression function fABSG maps codewords
to their second bit, so it is an optimal encoder. Therefore, the ABSG is optimal
against the attacks we described. Their complexity is given in table 1.

5.2 Self-shrinking Generator

Let us set C = {00, 01, 10, 11}, and define f : C → {0, 1, ε} by : f(00) = f(01) =
ε, f(10) = 0 and f(11) = 1. The Self-Shrinking Generator is exactly the scheme
corresponding to the pair (C, f) in our framework.

The pair (C, f) is a proper encoder, but it contains ε. Following the trans-
formation described in Proposition 7, we set C′ = {(0{0, 1})∗1{0, 1}}, and we
define f ′ : C′ → {0, 1} by f(w) = b for w ∈ {(0{0, 1})∗1b}.

The pair (C′, f ′) is a proper encoder that has an optimal output set and
satisfies the symmetry requirement: at every level of the corresponding tree,
described in Figure 2, there are exactly as many preimages of 0 and 1.

The SSG is neither an optimal encoder, nor is it optimal among proper en-
coders having the same output rate. This comes from the fact that one out of
two levels in the tree is empty. Let us compare the corresponding scheme to the
optimal choice for the same output rate (1

4 for the SSG), whose code tree is a T∞
3

tree. For both schemes, the complexity of the exhaustive reconstruction attack
is the same, namely O(2

3
4 L). However, the complexity of the most probable case

1

0 1

0 1

1

0 1

0 1

10

00

Fig. 2. SSG code tree

144 A. Gouget and H. Sibert

attack against the SSG is O(2
L
2), requiring O(2

L
2) bits of the output. For the

T∞
3 choice, this attack has complexity O(2

2
3 L), and requires O(2

2
3 L) output bits.

Therefore, the SSG is not optimal against most probable case attacks.
Moreover, for each output bit, the input has length 2n with probability 1

2n ,
in which case one can recover n + 1 equations. This yields that 3 equations are
known on average, with an entropy of 2. Therefore, the equations retrieval attack
has complexity O(2

2
3 L), which is the same as T∞

3 , but also as T∞
2 (ABSG). As

this attack requires a number of bits linear in L, it is as practical as exhaus-
tive reconstruction. Notice that the equations retrieval attack against the SSG
has almost the same complexity as the FBDD attack of Krause [13], while not
requiring a large amount of memory.

Therefore, an optimal encoder such as the ABSG is as secure against the
attacks considered in this paper as the Self-Shrinking Generator (apart from
FBDD-attacks), while providing a better output rate (1

3 instead of 1
4).

6 Conclusion and Further Work

In this paper, we have extensively studied how to compress efficiently and se-
curely the output of pseudo-random generators. It turns out that the ABSG,
which was introduced in [9, 10], and is part of the DECIM proposal to the
ECRYPT stream cipher project [5], has the optimal properties against several
well-known attacks. But it is also possible to design several other optimal en-
coders with the same properties, using code trees taken from the T∞

2 infinite
family. At last, we have also shown compression components based on these
trees are almost as secure as the Self-Shrinking Generator [15], while providing
an output rate of 1

3 instead of 1
4 . We consider two main directions for research

in this area. First, one could use another generator to choose the compression
function at each iteration, while keeping the same code tree. The idea is thus to
generalize this framework by using other pseudo-random generators to control
compression. This should provide us with comparisons with the Shrinking Gen-
erator [3]. Second, if the compression function and the code are chosen properly,
a compression component may also erase the bias of a pseudo-random generator
that does not produce every bit sequence with equal probability. It then seems
possible to construct a general design for bias-erasing compression.

References

1. F. Armknecht, M. Krause, Algebraic Attacks on Combiners with Memory, Advances
in Cryptology – CRYPTO’03 Proceedings, LNCS 2729, Springer-Verlag, (2003),
162–176.

2. J. Berstel, D. Perrin, Theory of Codes, Academic Press, (1985).
3. D. Coppersmith, H. Krawczyk, Y. Mansour, The Shrinking Generator, Advances

in Cryptology – CRYPTO’93 Proceedings, LNCS 773, Springer-Verlag, (1993),
22–39.

How to Strengthen Pseudo-random Generators by Using Compression 145

4. N. Courtois, W. Meier, Algebraic Attacks on Stream Ciphers with Linear Feedback
Advances in Cryptology – EUROCRYPTO’03 Proceedings, LNCS 2656, Springer-
Verlag, (2003), 345–359.

5. eStream, Stream cipher project of the European Network of Excellence in Cryp-
tology ECRYPT, http://www.ecrypt.eu.org/stream/.

6. P. Ekdahl, T. Johansson, W. Meier, Predicting the Shrinking Generator with Fixed
Connections, Advances in Cryptology – EUROCRYPT 2003 Proceedings, LNCS
2656, Springer-Verlag, E. Biham, ed., (2003), 330–344.

7. P. Ekdahl, T. Johansson, W. Meier, A note on the Self-Shrinking Generator, In
Proc. of International Symposium on Information Theory, page 166, IEEE, (2003).

8. S. Golomb, Shift Register Sequences, Revised Edition, Aegean Park Press, (1982).
9. A. Gouget, H. Sibert, The Bit-Search Generator, In The State of the Art of Stream

Ciphers: Workshop Record, Brugge, Belgium, October 2004, pages 60–68, (2004).
10. A. Gouget, H. Sibert, C. Berbain, N. Courtois, N. Debraize and C. Mitchell, Analy-

sis of the Bit-Search Generator and sequence compression techniques, Proceedings
of FSE’05, LNCS 3557, Springer-Verlag, (2005).

11. M. Hell, T. Johansson, Some attacks on the Bit-Search Generator Proceedings of
FSE’05, LNCS 3557, Springer-Verlag, (2005).

12. P. Kocher, Timings attacks on implementations of Diffie–Hellman, RSA, DSS and
other systems, Proceedings of Crypto 1996, LNCS 1109, Springer-Verlag, (1996).

13. M. Krause. BDD-based Cryptanalysis of Keystream Generators, In EURO-
CRYPT 2002, pp. 222-237, LNCS 2332, Springer, (2002).

14. I. Kessler, H. Krawczyk, Minimum Buffer Length and Clock Rate for the Shrinking
Generator Cryptosystem, IBM Research Report, RC 19938 (88322), (1995).

15. W. Meier, O. Staffelbach, The Self-Shrinking Generator, Advances in Cryptology
– EUROCRYPT’94 Proceedings, LNCS 950, Springer-Verlag, (1994), 205–214.

16. R. A. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, (1986).

A Choice of the Output Set: Non-prefix Case

We consider the case where f(C) is not a prefix code and does not contain
the empty word ε. Thus, it is no longer possible to determine with certainty
each word (f(wi)) of the image of the input sequence. For statistical reasons,
f(C) contains at least one word beginning with 0, and one beginning with 1.
Moreover, as it is not prefix, it also contains two words beginning with the same
bit. Therefore, f(C) contains at least three elements.

Proposition 12. Let (C, f) be a proper encoder such that f(C) is a non-prefix
set that does not contain the empty word ε. Then, the average expected length of
the first word of the decomposition of the input sequence over C is E(C) when
the input sequence is chosen uniformly. This word is known with average entropy
E(C) + Δ(C), with Δ(C) < −1.

Proof. For x ∈ f(C), we denote by Cx the set of preimages of x in C, and we
define P (x) =

∑
w∈Cx

1
2|w| . Let y be the output sequence corresponding to a

randomly chosen input sequence s. Let C(y) be the set of words of C such that,
for every w ∈ C(y), the sequence y begins with w.

146 A. Gouget and H. Sibert

Let Py(x) denote the probability that the image by f of the first element of
C recognized in s is x, given y. Then, we have

∑
x∈C(y)

Py(x) = 1.

Now, each element in Cx has probability 1
P (x)2|w| to be the preimage of x.

Thus, the average length of the first element of C recognized in s, given y, is

Ey(C) =
∑

x∈C(y)

Py(x)
∑

w∈Cx

|w|
P (x)2|w| .

Output sequences are chosen following the uniform distribution on input se-
quences, so the average length of the first element of C recognized in a random
input sequence knowing the output is E(C) =

∑
w∈C

|w|
2|w| . Hence, the average

value of Ey for random input sequences is E(C), which is the first result.
Next, the entropy on the first element of C recognized in s, given y, is:

Hy(C) = −
∑

x∈C(y)

∑
w∈Cx

Py(x)
1

P (x)2|w| log
Py(x)

P (x)2|w|

=
∑

x∈C(y)

∑
w∈Cx

Py(x)
P (x)2|w| (|w| + log P (x) − log Py(x))

= Ey(C) +
∑

x∈C(y)

Py(x)(log P (x) − log Py(x)).

The average value of Hy for uniformly chosen input sequences is thus the sum
of E(C) and of the average value of Δy(C) =

∑
x∈C(y)

Py(x)(log P (x) − log Py(x)).

for random input sequences. Let b be the first bit of y. Then, C(y) is included in
the subset C(b∗) of C consisting of those words that are mapped by f to a word
whose first bit is b. For statistical reasons, we have

∑
x∈C(b∗)

1
2|x| = 1

2 , which
yields ∑

x∈C(y)

1
2|x|

≤ 1
2

. (1)

Moreover, as there are at least 3 elements in f(C), there are some output se-
quences y such that the inequality in Equation (1) is strict.

Using equality
∑

x∈C(y) Py(x) = 1 and inequality (1), we obtain Δy ≤ −1 for
every output y, the inequality being strict when that of (1) is. Therefore, the
average value of Δy for all random input sequences is strictly less than −1. ��
Hence, the optimal choice of the output set, even if non-prefix output sets are
considered, is still f(C) = {0, 1}, with 0 and 1 having probability 1

2 to appear in
the output sequence for a random input sequence.

Efficient Computation of Algebraic Immunity for
Algebraic and Fast Algebraic Attacks

Frederik Armknecht1, Claude Carlet2, Philippe Gaborit3, Simon Künzli4,
Willi Meier4, and Olivier Ruatta3

1 Universität Mannheim, 68131 Mannheim, Germany
armknecht@th.informatik.uni-mannheim.de

2 INRIA, Projet CODES, BP 105, 78153 Le Chesnay Cedex;
also with Univ. of Paris 8, France

claude.carlet@inria.fr
3 Université de Limoges, 87060 Limoges, France

{gaborit, olivier.ruatta}@unilim.fr
4 FH Nordwestschweiz, 5210 Windisch, Switzerland

{simon.kuenzli, willi.meier}@fhnw.ch

Abstract. In this paper we propose several efficient algorithms for as-
sessing the resistance of Boolean functions against algebraic and fast
algebraic attacks when implemented in LFSR-based stream ciphers. An
algorithm is described which permits to compute the algebraic immu-
nity d of a Boolean function with n variables in O(D2) operations, for
D ≈ n

d
, rather than in O(D3) operations necessary in all previous algo-

rithms. Our algorithm is based on multivariate polynomial interpolation.
For assessing the vulnerability of arbitrary Boolean functions with re-
spect to fast algebraic attacks, an efficient generic algorithm is presented
that is not based on interpolation. This algorithm is demonstrated to be
particularly efficient for symmetric Boolean functions. As an application
it is shown that large classes of symmetric functions are very vulnerable
to fast algebraic attacks despite their proven resistance against conven-
tional algebraic attacks.

Keywords: Algebraic Attacks, Algebraic Degree, Boolean Functions,
Fast Algebraic Attacks, Stream Ciphers, Symmetric Functions.

1 Introduction

Many keystream generators consist of combining several linear feedback shift
registers (LFSRs) and possibly some additional memory. One example is the E0

keystream generator which is part of the Bluetooth standard. LFSRs are very
efficient in hardware and can be designed such that the produced bitstream
has maximum period and good statistical properties. Various approaches to the
cryptanalysis of LFSR-based stream ciphers were discussed in literature (e.g.,
time-memory-tradeoff, fast correlation attacks or BDD-based attacks). For some
keystream generators, algebraic attacks and fast algebraic attacks outmatched
all previously known attacks [3, 12, 13].

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 147–164, 2006.
c© International Association for Cryptologic Research 2006

148 F. Armknecht et al.

For LFSR-based filter or combining generators, their security mainly relies
on a nonlinear Boolean output function f filtering the contents of one LFSR or
combining the outputs of several ones. The present paper studies the resistance
of this kind of stream ciphers to (fast) algebraic attacks.

In view of algebraic attacks, the notion of algebraic immunity (or annihila-
tor immunity) has been introduced (the algebraic immunity AI of a Boolean
function f is the minimum value of d such that f or f + 1 admits a function
g of degree d such that fg = 0). The construction of Boolean functions for
LFSR-based stream ciphers with large algebraic immunity achieved much atten-
tion recently, [5, 6, 7, 15, 17]. However, many of these functions do not allow for
other good cryptographic properties like large non-linearity or large orders of
resiliency, and as will be shown later, have undesirable properties with regard to
fast algebraic attacks. It seems therefore relevant to be able to efficiently deter-
mine the immunity of existing and newly constructed Boolean functions against
algebraic and fast algebraic attacks.

Until now, the best algorithms known for computing the algebraic immunity d
of a function with n variables work roughly in O(D3) operations, where D ≈ (

n
d

)
.

This is impractical for functions with 20 or more variables. In this paper, we give
an algorithm which computes the AI of a function in O(D2) operations. The
algorithm is based on multivariate polynomial interpolation, and it is applied
to two particular families of Boolean functions: the inverse functions and the
Kasami power functions. The quadratic nature of the algorithm is experimentally
verified, and for the first time, the AI of a function with 20 variables is computed
to be AI = 9.

Resistance against fast algebraic attacks is not fully covered by algebraic im-
munity, as has been demonstrated, e.g., by a fast algebraic attack on the eS-
TREAM candidate SFINKS, [11]. For determining immunity against fast alge-
braic attacks, we give a new algorithm that is based on methods different from
interpolation, and that for general Boolean functions allows to efficiently assess
immunity against fast algebraic attacks. The complexity of our second algorithm
is in O(DE2), where E ≈ (

n
e

)
and e in many cases of interest is much smaller than

d. This compares favorably with the known algorithms, which are in O(D3). The
algorithm is applied to several of the above mentioned classes of Boolean func-
tions with optimal algebraic immunity, including symmetric Boolean functions,
like the majority functions. Symmetric functions are attractive as the hardware
complexity grows only linearly with the number of input variables. However, it
is shown in this paper that the specific structure of these functions can be ex-
ploited in a much refined algorithm for determining resistance against algebraic
attacks that is particularly efficient. It is concluded that large classes of symmet-
ric functions are very vulnerable to fast algebraic attacks despite their optimal
algebraic immunity. A symmetric function would not be implemented by itself
but rather in combination with other nonlinear components in stream ciphers. It
seems nevertheless essential to know the basic cryptographic properties of each
component used.

Efficient Computation of Algebraic Immunity 149

The paper is organized as follows. In Section 2, the basics of algebraic and
fast algebraic attacks are described. Section 3 derives an algorithm for effi-
cient computation of the algebraic immunity as well as a modified algorithm
to determine all minimal degree annihilators. In Section 4, an algorithm for ef-
ficient computation of immunity against fast algebraic attacks is presented. In
Section 5, the algorithm is adapted and improved for symmetric functions, and
it is proven that the class of majority functions which have maximum AI is very
vulnerable to fast algebraic attacks. We finally conclude in Section 6.

2 Algebraic Attacks and Fast Algebraic Attacks

2.1 Algebraic Attacks

For an LFSR L with N entries filtered by a Boolean function f with n variables,
algebraic attacks consist of two steps [12]:

– First step. Finding functions g of low degree d such that fg = 0 or (f +
1)g = 0. Until this paper, the complexity of this step was roughly in D3, for
D :=

∑d
i=0

(
n
i

)
(which is about

(
n
d

)
for d < n/2) and where 3 is taken for

the exponent of the matrix inversion.
– Second step. Solving a nonlinear system of multivariate equations g(Li

(x1, . . . , xN)) = 0 for adequate i, induced by the functions g of the anni-
hilator sets Ann(f) and Ann(f + 1). Usually this system is solved by lin-
earization with a complexity of D3

N for DN :=
∑d

i=0

(
N
i

)
. The number of

required bits of keystream is proportional to DN , whereas this value can be
reduced if several annihilators of f and/or f ⊕ 1 with minimum degree are
known. Alternatively, this system can be solved by Gröbner basis, but then
the complexity of solving is difficult to evaluate, see [4, 19].

The lowest degree of the function g �= 0 for which fg = 0 or (f +1)g = 0 is called
the algebraic (or annihilator) immunity AI of f . In [12] it has been shown that
for any function f with n-bit input vector, functions g �= 0 and h exist, with
fg = h such that e and d are at most �n/2 . This implies that AI(f) ≤ �n/2 .

2.2 Fast Algebraic Attacks

Fast algebraic attacks were introduced by Courtois in [13]. They were confirmed
and improved later by Armknecht in [3] and Hawkes and Rose in [20]. A prior
aim of fast algebraic attacks is to find a relation fg = h with e := deg g small and
d := deg h larger. In classical algebraic attacks, the degree d of h would neces-
sarily lead to considering a number of unknowns of the order of DN . In fast alge-
braic attacks, one considers that the sequence of the functions h(Li(x1, · · · , xN))
can be obtained as an LFSR with linear complexity DN . One uses then the
Berlekamp-Massey algorithm to eliminate all monomials of degree superior to
e in the equations, such that eventually one only needs to solve a system in
EN :=

∑e
i=0

(
N
i

)
unknowns. The complexity of fast algebraic attacks can be

summarized in these four steps:

150 F. Armknecht et al.

– Relation search step. One searches for functions g and h of low degrees
such that fg = h. For g and h of degrees e and d respectively, with associated
values D :=

∑d
i=0

(
n
i

)
and E :=

∑e
i=0

(
n
i

)
, such g and h can be found

when they exist by solving a linear system with D + E equations, and with
complexity O((D + E)3). Usually one considers e < d.

– Pre-computation step. In this step, one searches for particular linear re-
lations which permit to eliminate monomials with degree greater than e in
the equations. This step needs a sequence of 2DN bits of stream and has a
complexity of O(DN log2(DN)), see [20].

– Substitution step. At this step, one eliminates the monomials of degrees
greater than e. This step has a natural complexity in O(E2

NDN) but using
discrete Fourier transform, it is claimed in [20] that a complexity O(ENDN

log(DN)) can be obtained.
– Solving step. One solves the system with EN linear equations in O(E3

N).

Notice that, for arbitrary non-zero functions f , g, h, the relation fg = h implies
fh = h, thus we have d ≥ AI(f) and we can restrict to values e with e ≤ d. Fast
algebraic attacks are always more efficient than conventional algebraic attacks
if d = AI(f) and e < d − 1. In case that e turns out to be large for this d, it is
of interest to determine the minimum e where d is slightly larger than AI(f).

3 Efficient Computation of the Algebraic Immunity

In this section, we present an algorithm which computes the algebraic immunity
AI of a Boolean function in O(D2) operations. In particular, the algorithm re-
turns a non-zero annihilator of minimum degree d, without necessitating a prior
guess of d. The algorithm is based on the notion of multivariate polynomial inter-
polation, it generalizes the classical incremental Newton interpolation algorithm
to the multivariate case. We also explain how to modify the algorithm to return
the set of all non-zero annihilators with minimum degree. Eventually we give
experimental results of our algorithm.

3.1 Multivariate Lagrange Interpolation

Before stating what is the multivariate Lagrange interpolation problem when
it is specified to binary polynomials, we need to introduce some notation. We
denote by F the finite field GF(2) and by Fk the vector space of dimension k over
F. Consider x := x1, . . . , xk a set of k binary variables, α := (α1, . . . , αk) ∈ Fk a
multi-index, z := (z1, . . . , zk) an element of Fk. We denote xα := xα1

1 · · ·xαk

k and
zα := zα1

1 · · · zαk

k . Let E := {α1, . . . , αD} ⊆ Fk be a set of multi-indices, then we
denote by xE := {xα1 , . . . , xαD} the set of associated monomials. We identify
the ring of boolean functions in n variables with F[x]/〈x2

i − xi, i = 1, . . . , n〉,
the quotient ring of the ring of polynomials with coefficients in F by the ideal
generated by the relations x2

i − xi, i ∈ {1, . . . , n}. We will use, explicitly or not,
several times this identification. In our framework, the multivariate Lagrange
problem can be stated as follows:

Efficient Computation of Algebraic Immunity 151

Problem 1. Let E := {α1, . . . , αD} ⊆ Fn, Z := {z1, . . . , zD} ⊆ Fn and v̄ :=
(v1, . . . , vD) ∈ FD. Does there exist a polynomial g ∈ F[x1, . . . , xn] whose mono-
mial support is included in xE and such that g(zi) = vi, ∀i ∈ {1, . . . , D}?
Remark 1. The general multivariate Lagrange interpolation problem has been
addressed in [23], but the proposed algorithm has cubic complexity (on the
number of monomials). We will present an algorithm with a quadratic complexity
over F instead.

An answer to Problem 1 in terms of existence and uniqueness is presented by
means of the following definition:

Definition 1. Let Z := {z1, . . . , zD} ⊆ Fn and E := {α1, . . . , αD} ⊆ Fn, we
define the Vandermonde matrix as

VZ,E :=

⎛⎜⎝zα1
1 · · · zαD

1
...

. . .
...

zα1
D · · · zαD

D

⎞⎟⎠ , (1)

and we define the Vandermonde determinant to be vZ,E := det(VZ,E).

Proposition 1. There exists an unique solution g ∈ F[x] to Problem 1 if vZ,E �=
0. Furthermore, the solution g is given by g(x) =

⊕D
j=1 gαj x

αj , where the vector
ḡ := (gα1 , . . . , gαD)t is the only solution of the system

VZ,E ḡ = v̄ . (2)

Remark 2. Given the set Z := {z1, . . . , zD} ⊆ Fn, the existence of a set E :=
{α1, . . . , αD} ⊆ Fn such that vZ,E �= 0 is ensured since it is enough to take for
E the set of monomials which are not in the monomial ideal generated by the
leading monomials of a Gröbner basis of the ideal of the polynomials vanishing
at each point of Z.

With the following proposition, the minimum annihilator problem can be re-
duced to a multivariate Lagrange interpolation problem:

Proposition 2. Let f be a Boolean function, Z := f−1(1) and E such that xE

is the complementary of the monomial ideal generated by the leading monomials
of a Gröbner basis for a graduated order of the ideal of the polynomials vanishing
at each point of Z. Then, if β �∈ E is of minimum weight, the function Rβ defined
below is a minimum-degree annihilator of f ,

Rβ := det

⎛⎜⎜⎜⎝
xβ xα1 . . . xαD

zβ
1 zα1

1 . . . zαD
1

...
...

. . .
...

zβ
D zα1

D . . . zαD

D

⎞⎟⎟⎟⎠ .

Furthermore, Rβ = xβ ⊕ g where g is the solution of Problem 1 with v̄ =
(zβ

1 , zβ
2 , . . . , zβ

D).

152 F. Armknecht et al.

Proof. The function Rβ(x) is an annihilator of f , as for an argument x ∈ Z the
above matrix becomes singular. In addition, Rβ has minimum degree because
E is the complementary of the monomial ideal generated by the leading terms
of a Gröbner basis for a graduated monomial order. The relation Rβ = xβ ⊕ g
is obtained by developing the determinant defining Rβ with respect to the first
row, and by considering g obtained with Cramer’s rule in Eq. 2. ��

3.2 General Description of the Algorithm

The general idea of the algorithm is to apply Prop. 2 incrementally with a
linear complexity at each step. Let us introduce some more notation: Ed is
the set of all α of weight equal to d. Then E≤d := E0 ∪ . . . ∪ Ed (ordered by
increasing weight) and Ei := {α1, . . . , αi}, which are the first i elements of E≤d.
Let Z := f−1(1) ⊆ Fn (with arbitrary ordering) and Zi := {z1, . . . , zi}. We
assume vZi,Ei �= 0 for all i ∈ {1, . . . , |Z|}, this condition1 is sufficient to apply
Prop. 2 on the sets Zi, Ei.

Then the algorithm works as follows: apply Prop. 2 for an intermediate set
of points Zi and an associated set of exponents Ei, with β = αi+1. A particular
solution gi = Rβ ⊕ xβ is an intermediate annihilator of f on the set Zi. If one
can verify that gi is also an annihilator of f on the global set Z, then a minimum
degree annihilator of f is found. Otherwise, one considers a new point zi+1 and
Zi+1 with associated set of exponents Ei+1, until an annihilator of f on Z is
found.

Remark 3. Notice that the original interpolation problem with v̄ = 0 is turned
into a sequence of interpolation problems with (in general) non-zero v̄, depending
on the exponent αi+1 used at each step. In particular, the fact v̄ = 0 on f−1(1)
is used implicitly in the computation of the ordered set E associated to f−1(1).

For each intermediate step, the updating procedure can be done in linear time,
resulting in an overall complexity of O(D2) rather than O(D3). In fact, this
is a multivariate generalization of the Newton interpolation scheme: recall that
a Newton basis for the polynomial interpolation problem allows to introduce
interpolation nodes one by one (without the requirement to recalculate previous
coefficients). In addition, the Newton basis leads to a triangular Vandermonde
matrix, which can be solved in quadratic time (on the number of interpolation
nodes).

3.3 Computing a Minimum Degree Annihilator

Define Vi := VZi,Ei , and consider an LU -decomposition of Vi, i.e. Vi = LiUi,
where Ui is triangular superior and Li is triangular inferior. Then, the system
Viḡi = v̄i with v̄i := (v1, . . . , vi) is equivalent to Uiḡi = L−1

i v̄i, and the solution
ḡi can be found by solving two triangular systems (i.e computing the inverses of
Ui and Li). If the polynomial associated to ḡi is not an annihilator of f , then we
1 Such kind of ordered sets of points and exponents always exists and can be computed

incrementally in quadratic time (see [23]), so we do not lose any generality.

Efficient Computation of Algebraic Immunity 153

solve the system for Vi+1 and v̄i+1 = (v̄i, vi+1,)t. However, instead of computing
a complete LU -decomposition of Vi+1, we write

Vi+1 =
(

Vi Ci+1
Ri z

αi+1
i+1

)
=
(

Li 0
0 1

)(
Ui L−1

i Ci+1
Ri z

αi+1
i+1

)
with Ci+1 := (zαi+1

1 , . . . , z
αi+1
i)t and Ri := (zα1

i+1, . . . , z
αi

i+1). Consequently, knowl-
edge of an LU -decomposition of Vi yields an almost LU -decomposition of Vi+1
(with the exception of Ri). This is a basic fact usually exploited to design efficient
LU -factorization algorithms.

In our framework, one can avoid a direct computation of Li as follows. Denote
Xi := (x1, . . . , xi)t, where the elements xj are considered as indeterminate, and
denote Pi(x1, . . . , xi) := L−1

i Xi. Then we have

Vi+1 =
(

Li 0
0 1

)(
Ui Pi(z

αi+1
1 , . . . , z

αi+1
i)

zα1
i+1 · · · zαi

i+1 z
αi+1
i+1

)
(3)

v̄i+1 =
(

Li 0
0 1

)(
Pi(v1, . . . , vi)

vi+1

)
. (4)

Consequently, the system of equations Vi+1ḡi+1 = v̄i+1 is equivalent to(
Ui Pi(z

αi+1
1 , . . . , z

αi+1
i)

zα1
i+1 · · · zαi

i+1 z
αi+1
i+1

)
ḡi+1 =

(
Pi(v1, . . . , vi)

vi+1

)
. (5)

Triangulation of the left matrix is an easy task since Ui is triangular (it is
achieved by elimination of the i first entries of the last row by row operations).
The same operations are carried out on the right matrix. This yields Ui+1 and
Pi+1(x1, . . . , xi+1), and the system Ui+1ḡi+1 = Pi+1(v1, . . . , vi+1) can be solved.
If the polynomial associated to ḡi+1 is not an annihilator of f (i.e. if ∃z ∈ Z
such that g(z) �= 0), the subsequent elements in E≤d and Z are added and so
on. Practically, the only points introducing new constraints on the annihilator
are those for which the input polynomial does not vanish already. The method
terminates because the degree of the annihilator is bounded. Denote by t be the
number of iterations of Alg. 1.

As an input of the algorithm, we do not take a monomial expansion of f , but
the vector of its evaluation at points zi. In the case t = |Z|, this vector can be
computed with asymptotically O(t log(t)) operations using a method based on
fast Fourier transform, and more easily in O(tNm) operations over the ground
field (where Nm is the number of monomials in the algebraic normal form of f) by
simply adding the evaluation of each monomial at the t points. The algorithm
incrementally computes the values of the annihilator at every point and lifts
them in the monomial basis in order to compute the power expansion. Let us
discuss the most costly operations at the ith step of the algorithm:

– The triangulation in step 4 requires i arithmetic operations. As Ui is already
a upper triangular matrix, we only need to eliminate the first i − 1 entries
in the last row, and update the entry in the bottom right corner. This is
done by replacing zα1

i , . . . , z
αi−1
i by 0 and zαi

i by zαi

i −∑i−1
j=1 zα1

i ·Pi,j where
(Pi,1, . . . , Pi,i−1) = P (zαi

1 , . . . , zαi

i−1).

154 F. Armknecht et al.

Algorithm 1. Computation of an annihilator of minimum degree
Input: f , Z := f−1(1), E��n/2�.
Output: An annihilator of f of minimum degree.
1: Initialization: U1 ← (zα1

1), v1 ← f(z1)⊕ 1, ḡ ← 1, P ← (x1), i ← 1.
2: while the polynomial associated to ḡ is not an annihilator of f do
3: i ← i + 1.

4:
Ui P (zαi

1 , . . . , zαi
i−1)

zα1
i . . . z

αi−1
i zαi

i

row op.�→ Ui

0 . . . 0 P (zαi
1 , . . . , zαi

i) =: Ui+1.

5: Use the same row operations from P (zαi
1 , . . . , zαi

i−1), z
αi
i �→ P (zαi

1 , . . . , zαi
i) to

perform the update (P (v1, . . . , vi−1), vi) �→ P (v1, . . . , vi).
6: Solve Uiḡi = P (v1, . . . , vi) with ḡi = (g1, . . . , gi).
7: end while
8: Output g(x) := i

j=1 gjx
αj .

– The updating process of P requires i arithmetic operations.
– Solving the system in step 6 basically requires i2 arithmetic operations. How-

ever, this is also feasible with i arithmetic operations by the following remark,
allowing to correct gi in order to compute gi+1:

Ui+1 gi+1 =
(

Ui Pi(z
αi+1
1 , . . . , z

αi+1
i)

0 ∗
)(

g′i
∗
)

=
(

Pi(v1, . . . , vi)
vi+1

)
.

We do not introduce any new complex computation to check whether g is an
annihilator of f . Namely, we compute the values of g at points which are not
introduced yet. This can be done by updating a vector storing the evaluations
of g at each point considered so far, where a new step leads to a linear number
of operations (corresponding to the number of coordinates). Again, the overal
cost of this computation is quadratic on the number of points.

The arithmetic complexity AC(N) of the proposed algorithm is given by
AC(N) = AC(N − 1) + const · i + O(D). An simple computation shows that
AC(N) = O(t2 + tD). Since t is the number of monomials occurring in a mini-
mum degree annihilator of f , t has the same order of magnitude as D. This is
summarized in the following proposition:

Proposition 3. The arithmetic complexity of Alg. 1 to compute the minimum
degree d of an annihilator of f is O(D2).

In order to obtain the quadratic behavior, it is necessary to handle memory
allocation with care (in particular, management of the extension operations on
the matrix are delicate, and a bad memory allocation leads to an implementation
cubic in space and time). We finally remark that the above method can also be
used to construct functions with high algebraic immunity.

3.4 Computing All Minimum Degree Annihilators

In this section, we explain how to modify Alg. 1 to compute all minimum-degree
annihilators g of a polynomial f . Notice that Ann(f, d) := {g ∈ 〈xE≤d〉 ⊆

Efficient Computation of Algebraic Immunity 155

F[x]|fg = 0} is a vector space. Consequently, we only have to compute a ba-
sis of Ann(f, d), and this for the minimum value of d. The idea of the method
proposed here is to run Alg. 1 until we find the first annihilator together with
d. Then, the algorithm searches for further annihilators, considering only expo-
nents in E≤d. In addition, if αi is the exponent lastly introduced and resulting
in an annihilator, we can execute a further search without αi (this can be im-
plemented by backtracking the last update). The reason is that if g and g′ �= g
are both annihilators which contain xαi , then one can construct another annihi-
lator g ⊕ g′ which is independent of xαi . Hence, the new algorithm can still be
run incrementally, and it terminates after introduction of αD. As the number of
steps required to find the first annihilator is of the same order of magnitude as
D, the asymptotic performance of the new algorithm does not increase. This is
resumed in the following proposition:

Proposition 4. The above modifications of Alg. 1 allow to compute the min-
imum degree d of an annihilator of f , and a basis of Ann(f, d), using O(D2)
arithmetic operations.

3.5 Experimental Results

In this section, we apply Alg. 1 to two particular families of Boolean power func-
tions: the inverse functions and the Kasami type functions (see [10]). We veri-
fied that an implementation of the algorithm in C code followed the announced
quadratic time complexity on the number of variables.

The inverse function is of particular interest, since this function is used with
n = 8 variables in the S-box of AES, and almost directly as a filtering function
in SFINKS [6]. For different values of n, Tab. 1 lists the power exponent of
the function f (which is equal to −1 here), its weight, its algebraic degree, its
nonlinearity and its algebraic immunity.

The Kasami functions in n variables have exponents of the form 22k − 2k + 1
with gcd(k, n) = 1 and k ≤ n/2. These functions are of interest since we can see

Table 1. Computation of the weight, degree, nonlinearity and algebraic immunity for
the inverse function and some Kasami power functions for 12 ≤ n ≤ 20

Inverse function Kasami power functions
n exp. weight deg. nonlin. AI exp. weight deg. nonlin. AI
12 −1 2048 11 1984 5 993 2048 11 1984 5
13 −1 4096 12 4006 6 993 4096 6 212 − 26 6
14 −1 8192 13 8064 6 4033 8192 6 213 − 27 6
15 −1 214 14 16204 6 4033 214 7 214 − 28 7
16 −1 215 15 215 − 28 6 214 − 27 + 1 215 15 215 − 27 7
17 −1 216 16 65174 7 214 − 27 + 1 216 8 216 − 28 8
18 −1 217 17 217 − 29 7 216 − 28 + 1 217 9 217 − 29 8
19 −1 218 18 261420 7 216 − 28 + 1 218 9 218 − 29 9
20 −1 219 19 219 − 210 7 218 − 29 + 1 219 19 219 − 29 9

156 F. Armknecht et al.

that, for the number n of variables which is currently usual in cryptography, they
have a high algebraic immunity.2 We consider several Kasami type exponents
(where gcd(k, n) may be different from 1), see Tab. 1. For n = 12, 16, 20, we
converted non-balanced functions to balanced ones by flipping the first entries
in the truth tables. For the first time, we accomplish computation of the AI of
a function with 20 variables, AI = 9 and good nonlinearity.

4 Efficient Computation of Immunity Against Fast
Algebraic Attacks

Let us first introduce some notation for this section. Any Boolean function f
with an n-bit input vector x := (x1, . . . , xn) can be characterized by its truth
table T (f) := (f(0), . . . , f(2n − 1)) ∈ F2n

or by its algebraic normal form
f(x) =

⊕
α fαxα, with coefficients fα ∈ F, multi-indices α ∈ Fn (which can

also be identified by their integers) and the abbreviation xα := xα1
1 · · ·xαn

n . Con-
sequently, we define the coefficient vector of f by C(f) := (f0, . . . , f2n−1) ∈ F2n

.
Given a Boolean function f with n input variables, the goal is to decide

whether g of degree e and h of degree d exist, such that fg = h. The known
function f is represented preferably by the truth table T (f), which allows to
efficiently access the required elements, and the unknown functions g and h are
represented by the coefficient vectors C(g) and C(h), which leads to the simple
side conditions gβ = 0 for |β| > e and hγ = 0 for |γ| > d. In order to decide
if g and h exist, one has to set up a number of linear equations in gβ and hγ .
Such equations are obtained, e.g., by evaluation of f(z) · ⊕β gβzβ =

⊕
γ hγzγ

for some values of z. There are D + E variables, so one requires at least the
same number of equations. The resulting system of equations can be solved by
Gaussian elimination with time complexity O((D+E)3) = O(D3). If any D+E
equations are linearly independent, then no nontrivial g and h of corresponding
degree exist. Otherwise, one may try to verify a nontrivial solution. Certainly,
there are more sophisticated algorithms, namely we are able to express a single
coefficient hγ as a linear combination of coefficients gβ . If these relations hold
for any value of γ, one may choose γ with |γ| > d such that hγ = 0, in order to
obtain relations in gβ only. Consequently, equations for coefficients of g can be
completely separated from equations for coefficients of h. As there are only E
variables gβ, one requires at least E equations, and the system of equations can
be solved in O(E3). Depending on the parameters n, d, e and on the structure
of f , there are different strategies how to efficiently set up equations.

4.1 Setting Up Equations

In this section, we consider the product fg = h where f , g and h are arbitrary
Boolean functions in n variables. Here are some additional notational conven-
tions: For α, β, γ ∈ Fn, let α ⊆ β be an abbreviation for supp(α) ⊆ supp(β),
2 However, it is shown in [24] that Kasami functions have bad algebraic immunity

when n is very large.

Efficient Computation of Algebraic Immunity 157

where supp(α) := {i|αi = 1}, and let α ∨ β := (α1 ∨ β1, . . . , αn ∨ βn). For
B, C ∈ F2n

, we define the scalar product B ·C :=
⊕2n−1

k=0 [B]k · [C]k. All expres-
sions are modulo 2 here. With the following theorem, we are able to express a
single coefficient hγ as a linear combination of coefficients gβ, where the linear
combination is computed either with T (f) or with C(f).

Theorem 1. Let f(x) =
⊕

α fαxα and g(x) =
⊕

β gβxβ. Set h(x) =
⊕

γ

hγxγ := f(x) · g(x). With Ai,j ∈ F and Bi,j ∈ F2n

, we have for each γ

hγ =
⊕

β

(
γ

β

)
Aγ,β · gβ (6)

Ai,j := Bi,j · T (f) = Bi,i−j · C(f) (7)

[Bi,j]k :=
(

i

k

)
·
(

k

j

)
. (8)

Proof. The binary Moebius transform relates the ANF of a Boolean function
with the corresponding truth table, namely considering Lucas’ theorem f(k) =⊕

α

(
k
α

)
fα =

⊕
α⊆k fα and fk =

⊕
α

(
k
α

)
f(α) =

⊕
α⊆k f(α). We obtain the

relation hγ =
⊕

α⊆γ f(α)g(α). With g(α) =
⊕

β⊆α gβ, this becomes hγ =⊕
α⊆γ

⊕
β⊆α gβf(α). Rearranging the coefficients, we finally have the prod-

uct hγ =
⊕

β⊆γ gβ

⊕
β⊆α⊆γ f(α) =

⊕
β

(
γ
β

)
gβBγ,β · T (f). In order to prove

the second relation, we multiply the ANF of both functions and obtain hγ =⊕
α∨β=γ fαgβ. This binary sum can then be partitioned according to hγ =⊕
β⊆γ gβ

⊕
α⊆γ;α∨β=γ fα. With Lucas’ theorem again, we have the relation hγ =⊕

β⊆γ gβ

⊕
γ−β⊆α⊆γ fα =

⊕
β

(
γ
β

)
gβBγ,γ−β · C(f). ��

4.2 Determining the Existence of Solutions

We propose an efficient algorithm to determine the existence of g and h with
corresponding degrees, see Alg. 2. The algorithm is based on the equation hγ =⊕

β⊆γ gβ

⊕
β⊆α⊆γ f(α), which is a variant of Th. 1.

Let us discuss the complexity of Alg. 2. Initialization of G takes at most O(E2)
time and memory, and I can be constructed in O(E) time. Iteration initiates by
choosing a fixed γ of weight d + 1, this step will be repeated E times to set up
the same number of equations. Notice that the set {γ : |γ| = d + 1} is sufficient
to choose E different values of γ, as E <

(
n

d+1

)
in the case of e (d and d ≈ n/2

(which is the typical scope of fast algebraic attacks). Thereafter, one chooses a
fixed β of weight b. This step will be repeated for all

(
d+1

b

)
elements of weight b,

and for all b = 0, . . . , e. Given this choice of γ and β, we find |A| = 2d+1−b, which
corresponds to the number of operations to compute A. Overall complexity of
the iteration becomes E

∑e
b=0

(
d+1

b

)
2d+1−b < E(e + 1)

(
d+1

e

)
2d+1 < DE2, where

the last inequality holds in the specified range of parameters. Time complexity
of the final step of Alg. 2 is O(E3). The dominating term, and hence complexity
of Alg. 2 corresponds to O(DE2). Compared to the complexity O(D3) of Alg. 2
in [21], Alg. 2 is very efficient for g of low degree.

158 F. Armknecht et al.

Algorithm 2. Determine the existence of g and h for any f

Input: A Boolean function f with n input variables and two integers 0 ≤ e ≤ AI(f)
and AI(f) ≤ d ≤ n.

Output: Determine if g of degree at most e and h of degree at most d exist such that
fg = h.

1: Initialize an E × E matrix G, and let each entry be zero.
2: Compute an ordered set I ← {β : |β| ≤ e}.
3: for i from 1 to E do
4: Choose a random γ with |γ| = d + 1.
5: Determine the set B ← {β : β ⊆ γ, |β| ≤ e}.
6: for all β in B do
7: Determine the set A ← {α : β ⊆ α ⊆ γ}.
8: Compute A ← A f(α).
9: Let the entry of G in row i and column β (in respect to I) be 1 if A = 1.

10: end for
11: end for
12: Solve the linear system of equations, and output no g and h of corresponding

degree if there is only a trivial solution.

4.3 Experimental Results

In [15], a class of (non-symmetric) Boolean functions f with maximum algebraic
immunity is presented; these functions will be referred here as DGM functions.
Application of Alg. 2 on their examples for n = 5, 6, 7, 8, 9, 10 reveals that h
and g exist with d = AI(f) = �n/2 and e = 1. We point out that this is
the most efficient situation for a fast algebraic attack. Explicit functions g with
corresponding degree are also obtained by Alg. 2, see Tab. 2 (where dim denotes
the dimension of the solution space for g of degree e). A formal expansion of
f(x) · g(x) was performed to verify the results. A reaction on this attack is
presented in [16].

Table 2. Degrees of the functions h and g for DGM functions f with n input variables

n deg f deg h deg g g dim
5 4 3 1 1 + x4 4
6 4 3 1 1 + x6 4
7 5 4 1 1 + x4 + x5 1
8 5 4 1 1 + x5 + x6 1
9 8 5 1 x4 + x5 + x6 + x7 1

10 8 6 1 x5 + x6 + x7 + x8 1

5 Efficient Computation of Immunity for Symmetric
Functions

Consider the case that f(x) is a symmetric Boolean function. This means that
f(x) = f(x1, . . . , xn) is invariant under changing the variables xi. Therefore,

Efficient Computation of Algebraic Immunity 159

we have f(y) = f(y′) if |y| = |y′| and we can identify f with its (abbreviated)
truth table T s(f) := (fs(0), . . . , fs(n)) ∈ Fn+1 where fs(i) := f(y) for a y with
|y| = i. Let σi(x) :=

⊕
|α|=i xα denote the elementary symmetric polynomial of

degree i. Then, each symmetric function f can be expressed by f(x) =
⊕

fs
i σi(x)

with fs
i ∈ F. Similarly to the non-symmetric case, f can be identified with its

(abbreviated) coefficient vector Cs(f) := (fs
0 , . . . , fs

n) ∈ Fn+1.
In this section, we present a general analysis of the resulting system of equa-

tions for symmetric functions and propose a generic and a specific algorithm in
order to determine the existence of g and h of low degrees.

5.1 Setting Up Equations

One can derive a much simpler relation for the coefficients hγ in the case of
symmetric functions f .

Corollary 1. Let f(x) =
⊕n

i=0 fs
i σi(x) be a symmetric function and g(x) =⊕

β gβxβ. Set h(x) =
⊕

γ hγxγ := f(x) · g(x). Then, with As
i,j ∈ F and Bs

i,j ∈
Fn+1, we have for each γ

hγ =
⊕

β

(
γ

β

)
As

|γ|,|β| · gβ (9)

As
i,j := Bs

i,j · T s(f) = Bs
i,i−j · Cs(f) (10)

[
Bs

i,j

]
k

:=
(

i − j

i − k

)
. (11)

Proof. Notice that Th. 1 holds for any function f , including symmetric functions.
Computation of Aγ,β = Bγ,β ·T (f) for symmetric functions may be simplified by
collecting all terms of the truth table with the same weight. Therefore, let i := |γ|
and j := |β| and define [Bs

i,j]k :=
⊕

|α|=k[Bγ,β]α, such that Aγ,β = As
i,j :=

Bs
i,j · T s(f). For j ≤ i we have

⊕
|α|=k

(
γ
α

)(
α
β

)
=

⊕
|α|=k;β⊆α⊆γ 1. Counting the

number of choices of the k elements of the support of α, we find that the above
sum equals

(
i−j
k−j

)
. The proof of As

i,j = Bs
i,i−j · Cs(f) is similar. ��

5.2 Determining the Existence of Solutions

Given a symmetric function f , the existence of g and h with corresponding
degrees can be determined by an adapted version of Alg. 2 (which will be referred
as Alg. 2s): step 7 is omitted, and step 8 is replaced by A ← As

i,j . The discussion
of this slightly modified algorithm is similar to Sect. 4.2. However, computation
of As

i,j requires only n + 1 evaluations of the function f , which can be neglected
in terms of complexity. Consequently, time complexity to set up equations is
only about O(E2), and overall complexity of Alg. 2s becomes O(E3).

Next, we will derive a method of very low (polynomial) complexity to deter-
mine the existence of g and h of low degree for a symmetric function f , but with

160 F. Armknecht et al.

the price that the method uses only sufficient conditions (i.e. some solutions
may be lost). More precisely, we constrict ourselves to homogeneous functions
g of degree e (i.e. g contains monomials of degree e only), and Eq. 9 becomes
hγ = As

|γ|,e
⊕

|β|=e

(
γ
β

)
gβ . Remember that hγ = 0 for |γ| > d, so the homoge-

neous function g is determined by the corresponding system of equations for all
γ with |γ| = d + 1, . . . , n. In this system, the coefficient As

|γ|,e is constant for(
n
|γ|
)

equations. If As
|γ|,e = 0, then all these equations are linearly dependent

(i.e. of type 0 = 0). On the other hand, if As
|γ|,e = 1, then a number of

(
n
|γ|
)

additional equations is possibly linearly independent. Consequently, if the sum
of all possibly linearly independent equations for |γ| = d + 1, . . . , n is smaller
than the number of variables

(
n
e

)
, then nontrivial homogeneous functions g exist.

This sufficient criterion is formalized by
n∑

i=d+1

As
i,e ·

(
n

i

)
<

(
n

e

)
. (12)

Given some degree e, the goal is to find the minimum value of d such that Eq. 12
holds. This can be done incrementally, starting from d = n. We formalized Alg. 3
of polynomial complexity O(n3). This algorithm turned out to be very powerful
(but not necessarily optimal) in practice, see Sect. 5.4 for some experimental
results.

Algorithm 3. Determine the degrees of g and h for symmetric f

Input: A symmetric Boolean function f with n input variables.
Output: Degrees of specific homogeneous functions g and h such that fg = h.
1: for e from 0 to �n/2� do
2: Let d ← n, number of equations ← 0, number of variables ← n

e
.

3: while number of equations < number of variables and d + 1 > 0 do
4: Compute A ← As

d,e.
5: Add A · n

d
to the number of equations.

6: d ← d − 1.
7: end while
8: Output deg g = e and deg h = d + 1.
9: end for

For a specified class of symmetric Boolean functions f , it is desirable to prove
some general statements concerning the degrees of g and h for any number of
input variables n. In the next section, we apply technique based on Alg. 3 in
order to prove a theorem for the class of majority functions.

5.3 Fast Algebraic Attacks on the Majority Function

We denote by f the symmetric Boolean majority function with n ≥ 2 input vari-
ables, defined by fs(i) := 0 if i ≤ �n/2� and fs(i) := 1 otherwise. For example,
T s(f) := (0, 0, 1) for n = 2, and T s(f) := (0, 0, 1, 1) for n = 3. The algebraic de-
gree of this function is 2�log2 n�. In [7] and [17], it could be proven independently

Efficient Computation of Algebraic Immunity 161

that f has maximum algebraic immunity3. However, in the following theorem, we
disclose the properties of f (and related functions) with respect to fast algebraic
attacks.

Theorem 2. Let f be the majority function with any n ≥ 2 input variables.
Then there exist Boolean functions g and h such that fg = h, where d := deg h =
�n/2�+ 1 and e := deg g = d− 2j, and where j ∈ N0 is maximum so that e > 0.

Proof. According to Eq. 9 for symmetric functions, we set up a system of equa-
tions in the coefficients of g only. The coefficients As

i,j of Eq. 10 have a sim-
ple form in the case of the majority function, namely As

i,j =
⊕

k≥d

(
i−j
k−j

)
=⊕

k≥d

(
i−j−1
k−j−1

)
+
⊕

k≥d

(
i−j−1
k−j

)
=

(
i−j−1
d−j−1

)
+2

⊕
k≥d

(
i−j−1
k−j

)
=

(
i−j−1
d−j−1

)
for i > d.

Additionally, we assume that g is homogeneous of degree e := d − 2j where j is
chosen maximum such that e ≥ 1. According to Lucas’ theorem, we find As

d+i,e =
0 for 1 ≤ i < d − e. Consequently, only equations with |γ| = 2d − e, . . . , n may
impose conditions on the coefficients gβ. As we can show that

∑e−1
i=0

(
n
i

)
<

(
n
e

)
,

the sufficient criterion (12) is satisfied, and nontrivial solutions exist. ��

Algebraic and fast algebraic attacks are invariant with regard to binary affine
transformations in the input variables. Consequently, Th. 2 is valid for all Boolean
functions which are derived from the majority function by means of affine trans-
formations. We notice that such a class of functions was proposed in a recent
paper, discussing design principles of stream ciphers [5, 6].

5.4 Experimental Results

Application of Alg. 2s reveals that Th. 2 is optimal for the majority function
where d = �n/2�+ 1 (verification for n = 5, 6, . . . , 16). An explicit homogeneous
function g can be constructed according to g(x) =

∏e
i=1(x2i−1+x2i). We verified

that Alg. 3 can discover the solutions of Th. 2.
In [7], a large pool of symmetric Boolean functions with maximum algebraic

immunity is presented (defined for n even). One of these functions is the ma-
jority function, whereas the other functions are nonlinear transformations of
the majority function. Application of Alg. 3 brings out that Th. 2 is valid for
all functions f (verification for n = 6, 8, . . . , 16). For some functions f , Alg. 3
finds better solutions than predicted by Th. 2 (e.g. for T s(f) := (0, 0, 0, 1, 1, 0, 1)
where d = 3 and e = 1), which means that Th. 2 is not optimal for all sym-
metric functions. All solutions found by Alg. 3 can be constructed according to
the above equation. Furthermore, Alg. 2s finds a few solutions which are (pos-
sibly) better than predicted by Alg. 3 (e.g. for T s(f) := (0, 0, 0, 1, 1, 1, 0) where
d = 3 and e = 2), which means that Alg. 3 is not optimal for all symmetric
functions.

3 Notice that for n odd, it is verified in [17] up to n = 11 that the majority function
is the only symmetric Boolean function with maximum AI.

162 F. Armknecht et al.

6 Conclusions

In this paper, several efficient algorithms have been derived for assessing resis-
tance of LFSR-based stream ciphers against conventional as well as fast algebraic
attacks. This resistance is directly linked to the Boolean output function used.
In many recent proposals, the number of inputs for this function is about 20
or larger. For such input sizes, verification of immunity against (fast) algebraic
attacks by existing algorithms is infeasible. Due to improved efficiency of our
algorithms, provable resistance of these stream ciphers against conventional and
fast algebraic attacks has become amenable. Our algorithms have been applied
to various classes of Boolean functions. In one direction the algebraic immunity
of two families of Boolean power functions, the inverse functions and Kasami
type functions, have been determined. For the first time, the algebraic immunity
AI of a highly nonlinear function with 20 variables is computed to be as large
as AI = 9. In another direction, our algorithms have been applied to demon-
strate that large classes of Boolean functions with optimal algebraic immunity
are very vulnerable to fast algebraic attacks. This applies in particular to classes
of symmetric functions including the majority functions.

Acknowledgments

The first author has been supported by grant Kr 1521/7-2 of the DFG (German
Research Foundation). The fourth and fifth author are supported in part by
grant 5005-67322 of NCCR-MICS (a center of the Swiss National Science Foun-
dation). The fifth author also receives partial funding through GEBERT RÜF
STIFTUNG. We would like to thank Subhamoy Maitra for valuable discussions.

References

1. F. Armknecht, and G. Ars. Introducing a New Variant of Fast Algebraic Attacks
and Minimizing Their Successive Data Complexity. In Progress in Cryptology -
Mycrypt 2005, LNCS 3715, pages 16–32. Springer Verlag, 2005.

2. F. Armknecht. Algebraic Attacks and Annihilators. In WEWoRC 2005, volume
P-74 of LNI, pages 13–21. Gesellschaft für Informatik, 2005.

3. F. Armknecht. Improving Fast Algebraic Attacks. In Fast Software Encryption
2004, LNCS 3017, pages 65–82. Springer Verlag, 2004.

4. G. Ars. Application des Bases de Gröbner à la Cryptographie. Thèse de l’Université
de Rennes, 2005.

5. A. Braeken, and J. Lano. On the (Im)Possibility of Practical and Secure Nonlinear
Filters and Combiners. In Selected Areas in Cryptography - SAC 2005, LNCS 3897,
pages 159–174. Springer Verlag, 2006.

6. A. Braeken, J. Lano, N. Mentens, B. Preneel, and I. Verbauwhede. SFINKS:
A Synchronous Stream Cipher for Restricted Hardware Environments. In eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/026. Available at http://
www.ecrypt.eu.org/stream.

Efficient Computation of Algebraic Immunity 163

7. A. Braeken, and B. Preneel. On the Algebraic Immunity of Symmetric Boolean
Functions. In Progress in Cryptology - INDOCRYPT 2005, LNCS 3797, pages
35–48. Springer Verlag, 2005.

8. P. Camion, C. Carlet, P. Charpin, and N. Sendrier. On Correlation-Immune Func-
tions. In Advances in Cryptology - CRYPTO 1991, LNCS 576, pages 86–100.
Springer Verlag, 1991.

9. A. Canteaut, and M. Videau. Symmetric Boolean Functions. In IEEE Transactions
on Information Theory, volume 51/8, pages 2791–2811, 2005.

10. C. Carlet, and P. Gaborit. On the Construction of Boolean Functions with a
Good Algebraic Immunity. In Boolean Functions: Cryptography and Applications
- BFCA, 2005.

11. N. Courtois. Cryptanalysis of SFINKS. To appear in Information Security and
Cryptology - ICISC, 2005.

12. N. Courtois, and W. Meier. Algebraic Attacks on Stream Ciphers with Linear
Feedback. In Advances in Cryptology - EUROCRYPT 2003, LNCS 2656, pages
345–359. Springer Verlag, 2003.

13. N. Courtois. Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In
Advances in Cryptology - CRYPTO 2003, LNCS 2729, pages 176–194. Springer
Verlag, 2003.

14. N. Courtois, and J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. In Advances in Cryptology - ASIACRYPT 2002, LNCS
2501, pages 267–287. Springer Verlag, 2002.

15. D. K. Dalai, K. C. Gupta, and S. Maitra. Cryptographically Significant Boolean
Functions: Construction and Analysis in Terms of Algebraic Immunity. In Fast
Software Encryption 2005, LNCS 3557, pages 98–111. Springer Verlag, 2005.

16. D. K. Dalai, K. C. Gupta, and S. Maitra. Notion of Algebraic Immunity and its
Evaluation related to Fast Algebraic Attacks. In Second International Workshop
on Boolean Function Cryptography and Applications, 2006.

17. D. K. Dalai, S. Maitra, and S. Sarkar. Basic Theory in Construction of Boolean
Functions with Maximum Possible Annihilator Immunity. To appear in Design,
Codes and Cryptography. Springer Verlag, 2006.

18. N. J. Fine. Binomial Coefficients Modulo a Prime. In The American Mathematical
Monthly, volume 54, pages 589–592, 1947.

19. J.-C. Faugère, and G. Ars. An Algebraic Cryptanalysis of Nonlinear Filter Gener-
ators using Gröbner bases. In Rapport de Recherche INRIA, volume 4739, 2003.

20. P. Hawkes, and G. G. Rose. Rewriting Variables: The Complexity of Fast Algebraic
Attacks on Stream Ciphers. In Advances in Cryptology - CRYPTO 2004, LNCS
3152, pages 390–406. Springer Verlag, 2004.

21. W. Meier, E. Pasalic, and C. Carlet. Algebraic Attacks and Decomposition of
Boolean Functions. In Advances in Cryptology - EUROCRYPT 2004, LNCS 3027,
pages 474–491. Springer Verlag, 2004.

22. W. Meier, and O. Staffelbach. Nonlinearity Criteria for Cryptographic Func-
tions. In Advances in Cryptology - EUROCRYPT 1989, LNCS 434, pages 549–562.
Springer Verlag, 1990.

23. B. Mourrain, and O. Ruatta. Relations Between Roots and Coefficients, Interpola-
tion and Application to System Solving. In J. Symb. Comput., volume 33/5, pages
679–699, 2002.

24. Y. Nawaz, G. Gong, and K. Gupta. Upper Bounds on Algebraic Immunity of
Power Functions. To appear in Fast Software Encryption 2006. Springer Verlag,
2006.

164 F. Armknecht et al.

25. P. J. Olver. On Multivariate Interpolation. In Stud. Appl. Math., volume 116,
pages 201–240, 2006.

26. T. Siegenthaler. Correlation-Immunity of Nonlinear Combining Functions for Cryp-
tographic Applications. In IEEE Transactions on Information Theory, volume
30/5, pages 776–780, 1984.

27. T. Siegenthaler. Decrypting a Class of Stream Ciphers Using Ciphertext Only. In
IEEE Transactions on Computer, volume 34/1, pages 81–85, 1985.

VSH, an Efficient and Provable
Collision-Resistant Hash Function

Scott Contini1, Arjen K. Lenstra2, and Ron Steinfeld1

1 Department of Computing, Macquarie University, NSW 2109, Australia
2 EPFL IC LACAL, INJ 330, Station 14, 1015-Lausanne, Switzerland

Abstract. We introduce VSH, very smooth hash, a new S-bit hash func-
tion that is provably collision-resistant assuming the hardness of finding
nontrivial modular square roots of very smooth numbers modulo an S-
bit composite. By very smooth, we mean that the smoothness bound is
some fixed polynomial function of S. We argue that finding collisions for
VSH has the same asymptotic complexity as factoring using the Number
Field Sieve factoring algorithm, i.e., subexponential in S.

VSH is theoretically pleasing because it requires just a single multi-
plication modulo the S-bit composite per Ω(S) message-bits (as opposed
to O(log S) message-bits for previous provably secure hashes). It is rel-
atively practical. A preliminary implementation on a 1GHz Pentium III
processor that achieves collision resistance at least equivalent to the dif-
ficulty of factoring a 1024-bit RSA modulus, runs at 1.1 MegaByte per
second, with a moderate slowdown to 0.7MB/s for 2048-bit RSA security.

VSH can be used to build a fast, provably secure randomised trapdoor
hash function, which can be applied to speed up provably secure signa-
ture schemes (such as Cramer-Shoup) and designated-verifier signatures.

Keywords: hashing, provable reducibility, integer factoring.

1 Introduction

Current collision-resistant hash algorithms that have provable security reduc-
tions are too inefficient to be used in practice. One example [17, 20] that is
provably reducible from integer factorisation is of the form xm mod n where m
is the message, n a supposedly hard to factor composite, and x is some pre-
specified base value. A collision xm ≡ xm′

mod n reveals a multiple m − m′ of
the order of x (which in itself divides φ(n)). Such information can be used to
factor n in polynomial time assuming certain properties of x.

The above algorithm is quite inefficient because it requires on average 1.5
multiplications modulo n per message-bit. Improved provable algorithms ex-
ist [7] which require a multiplication per O(log log n) message-bits, but beyond
that it seems that so far all attempts to gain efficiency came at the cost of losing
provability (see also [1]). We propose a hash algorithm that uses a single multi-
plication per Ω(log n) message-bits. It uses RSA-type arithmetic, obviating the
need for completely separate hash function code such as SHA-1. Our algorithm
may therefore be useful in embedded environments where code space is limited.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 165–182, 2006.
c© International Association for Cryptologic Research 2006

166 S. Contini, A.K. Lenstra, and R. Steinfeld

We say that an integer is very smooth if its prime factors are bounded by
(log n)c for a fixed constant c. We use VSH, for very smooth hash, to refer to
our new hash because finding a collision (i.e., strong collision resistance) for
VSH is provably as difficult as finding a nontrivial modular square root of a
very smooth number modulo n. We show that the latter problem, which we call
VSSR, is connected to integer factorisation, and that it is reasonable to believe
that VSSR is hard as well (until quantum computers are built). We emphasize
that VSH is ‘only’ collision-resistant and not suitable as a substitute for a random
oracle.

Given the factorisation of the VSH-modulus, collisions can be created (cf.
trapdoor hashes in [20]). Therefore, for wide-spread application of a single VSH-
modulus one has to rely on a trusted party to generate the modulus (and not to
create collisions). Or one could use [2] to generate a modulus with knowledge of
its factorisation shared among a group of authorities. For a one time computation
the overhead may be acceptable. If each party would have it own VSH-modulus,
the repudiation concerns are the same as those concerning regular RSA.

On the positive side, we show how VSH can be used to build a provably secure
randomised trapdoor hash function which requires only about 4 modular multi-
plications to evaluate on fixed-length messages of length k < log2 n bits (com-
pared to the fastest construction in [20], which requires about k multiplications).
Randomised trapdoor hash functions are used in signature schemes to achieve
provable security against adaptive chosen message attack [20], and in designated-
verifier signature schemes to achieve privacy [11, 21]. Our function can replace
the trapdoor function used in the Cramer-Shoup signature scheme [6], maintain-
ing its provable security while speeding up verification time by about 50%.

We also present a variant of VSH using a prime modulus p (with no trapdoor),
which has about the same efficiency and is provably collision-resistant assuming
the hardness of finding discrete logarithms of very smooth numbers modulo p.

Related Work. Previous hash functions with collision resistance provably related
to factoring have lower efficiency than VSH. The xm mod n function mentioned
above appeared in [17, 20]. A collision-resistant hash function based on a claw
free permutation pair (where claw finding is provably as hard as factoring an
RSA modulus) was proposed in [9]—this function requires 1 squaring per bit
processed. In [7] the construction is generalised to use families of r ≥ 2 claw free
permutations, such that log2(r) bits can be processed per permutation evalu-
ation. Two factoring based constructions are presented, which require 2 multi-
plications per permutation evaluation. In the first construction the modulus n
has 1 + log2(r) prime factors and thus becomes impractical already for small
log2(r). The second one uses a regular RSA modulus, but requires publishing r
random quadratic residues modulo n. This becomes prohibitive too for relatively
small log2(r); as a result the construction requires a multiplication modulo an
S-bit RSA modulus n per O(log S) message-bits while consuming polynomial
space (r = O(poly(S))). The constructions in [1] are more efficient but are only
provably collision-resistant assuming an underlying hash function is modeled as
a random oracle (we make no such assumption).

VSH, an Efficient and Provable Collision-Resistant Hash Function 167

Section 2 introduces VSSR. VSH and its variants are presented in Section 3.
Section 4 describes a VSH-based randomised trapdoor hash function which
speeds up the Cramer-Shoup signature scheme. Section 5 concludes with im-
plementation results.

2 Security Definitions

Notation. Throughout this paper, let c > 0 be a fixed constant and let n be
a hard to factor S-bit composite for an integer S > 0. The ring of integers
modulo n is denoted Zn, and its elements are represented by {0, 1, . . . , n− 1} or
{−n + 1,−n + 2, . . . , 0}. It will be clear from the context which representation
is being used. The ith prime is denoted pi: p1 = 2, p2 = 3, . . ., and p0 = −1. An
integer is pk-smooth if all its prime factors are ≤ pk. We use

L[n, α] = e(α+o(1))(log n)1/3(log log n)2/3

for constant α > 0 and n → ∞, and where the logarithms are natural.

Definition 1. An integer b is a very smooth quadratic residue modulo n if the
largest prime in b’s factorisation is at most (log n)c and there exists an integer
x such that b ≡ x2 mod n. The integer x is said to be a modular square root of b.

Definition 2. An integer x is said to be a trivial modular square root of an
integer b if b = x2, i.e. b is a perfect square and x is the integer square root of b.

Trivial modular square roots have no relation to the modulus n. Such identities
are easy to create, and therefore they are not allowed in the security reduction. A
sufficient condition for a very smooth integer b representing a quadratic residue
not to have a trivial modular square root is having some prime p such that p
divides b but p2 does not. Another sufficient condition is that b is negative.
Our new hardness assumption is that it is difficult to find a nontrivial modular
square root of a very smooth quadratic residue modulo n. Before formulating
our assumption, we give some relevant background on integer factorisation.

Background. General purpose integer factoring algorithms are used for the
security evaluation of RSA, since they do not take advantage of properties of
the factors. They all work by constructing nontrivial congruent squares modulo n
since such squares can be used to factor n: if x, y ∈ Z are such that x2 ≡ y2 mod n
and x �≡ ±y mod n, then gcd(x±y, n) are proper factors of n. To construct such
x, y a common strategy uses so-called relations. An example of a relation would
be an identity of the form

v2 ≡
∏

0≤i≤u

p
ei(v)
i mod n,

where u is some fixed integer, v ∈ Z, and (ei(v))u
i=0 is a (u + 1)-dimensional

integer vector. Given u + 1 + t relations, at least t linearly independent depen-
dencies modulo 2 among the u + 1 + t vectors (ei(v))u

i=0 can be found using

168 S. Contini, A.K. Lenstra, and R. Steinfeld

linear algebra. Each such dependency corresponds to a product of v2-values that
equals a product modulo n of pi’s with all even exponents, and thus a solution
to x2 ≡ y2 mod n. If x �≡ ±y mod n, then it leads to a proper factor of n. A
relation with all even exponents ei(v) leads to a pair x, y right away, which has,
in our experience with practical factoring algorithms, never happened unless n
is very small. It may safely be assumed that for each relation found at least one
of the ei(v)’s is odd—actually most that are non-zero will be equal to 1.

For any u, relations are easily computed if n’s factorisation is known, since
square roots modulo primes can be computed efficiently and the results can be
assembled via the Chinese Remainder Theorem. If the factorisation is unknown,
however, relations in practical factoring algorithms are found by a determinis-
tic process that depends on the factoring algorithm used. It is sufficiently un-
predictable that the resulting x, y may be assumed to be random solutions to
x2 ≡ y2 mod n, implying that the condition x �≡ ±y mod n holds for at least half
of the dependencies. Despite the lack of a rigorous proof, this heuristic argument
has not failed us yet. A few dependencies usually suffice to factor n.

The expected relation collection runtime is proportional to the product of u
(approximately the number of relations one needs) and the inverse of the smooth-
ness probability of the numbers that one hopes to be pu-smooth, since this prob-
ability is indicative for the efficiency of the collection process. For the fastest
factoring algorithms published so far, the Number Field Sieve (NFS, cf. [13, 5]),
the overall expected runtime (including the linear algebra) is minimised—based
on loose heuristic grounds—when, asymptotically for n → ∞, u behaves as
L[n, 0.96...]. For this u, the running time is L[n, 1.923...], i.e., the square of u.

With the current state of the art of integer factorisation, one cannot expect
that, for any value of u, a relation can be found faster than L[n, 1.923...]/u
on average, asymptotically for n → ∞. For u-values much smaller than the
optimum, the actual time to find a relation will be considerably larger (cf. remark
below and [14]). For u ≈ (log n)c, it is conservatively estimated that finding a
relation requires runtime at least

L[n, 1.923...]
(log n)c

= L[n, 1.923...],

asymptotically for n → ∞, because the denominator gets absorbed in the numer-
ator’s o(1). This observation that finding relations for very small u (i.e., u’s that
are bounded by a polynomial function of log n) can be expected to be asymp-
totically as hard as factoring n, is the basis for our new hardness assumption.

Before formulating it, we present two ways to use the hardness estimate
L[n, 1.923...]/u for small u in practice. One way is to use the asymptotics and
assume that finding a relation is as hard as factoring n. A more conservative
approach incorporates the division by u in the estimate. In theory this is a futile
exercise because, as argued, a polynomially bounded u disappears in the o(1) for
n → ∞. In practice, however, n does not go to infinity but actual values have
to be dealt with. If n′ is a hard to factor integer for which log n and log n′ are
relatively close, then it is widely accepted that the ratio of the NFS-factoring
runtimes for n and n′ approximates L[n, 1.923...]/L[n′, 1.923...] where the o(1)’s

VSH, an Efficient and Provable Collision-Resistant Hash Function 169

are dropped. To assess the hardness estimate L[n, 1.923...]/u for very small u,
one therefore finds the least integer S′ for which, after dropping the o(1)’s,

L[2S′
, 1.923...] ≥ L[n, 1.923...]

u
, (1)

and assumes that finding a relation for this n and u may be expected to be (at
least) as hard as NFS-factoring a hard to factor S′-bit integer. Note that S′ will
be less than S, the length of n. Examples of matching S, S′, u values are given
in Section 5.

This factoring background provides the proper context for our new problem
and its hardness assumption.

Definition 3. (VSSR: Very Smooth number nontrivial modular Square Root)
Let n be the product of two unknown primes of approximately the same size and
let k ≤ (log n)c. VSSR is the following problem: Given n, find x ∈ Z∗

n such that
x2 ≡ ∏k

i=0 pei

i mod n and at least one of e0, . . . , ek is odd.

VSSR Assumption. The VSSR assumption is that there is no probabilistic
polynomial (in log n) time algorithm which solves VSSR with non-negligible
probability (the probability is taken over the random choice of the factors of n
and the random coins of the algorithm).

One can contrive moduli where VSSR is not difficult, such as if n is very
close to a perfect square. However, such examples occur with exponentially small
probability assuming the factors of n are chosen randomly, as required. According
to proper security definitions [18], these examples do not even qualify as weak
keys since the time-to-first-solution is slower than factoring, and therefore are
not worthy of further consideration.

The VSSR Assumption is rather weak and useless in practice since it does
not tell us for what size moduli VSSR would be sufficiently hard. This is similar
to the situation in integer factorisation where the hardness assumption does not
suffice to select secure modulus sizes. We therefore make an additional, stronger
assumption that links the hardness of VSSR to the current state of the art in
factoring. It is based on the conservative estimate for the difficulty of finding a
relation for very small u given above.

Computational VSSR Assumption. The computational VSSR assumption
is that solving VSSR is as hard as factoring a hard to factor S′-bit modulus,
where S′ is the least positive integer for which equation (1) holds (where, as
in (1), the o(1)’s in the L[...]’s are dropped).

Remark. For existing factoring algorithms, the relation collection runtime in-
creases sharply for smoothness bounds that are too low, almost disastrously so if
the bound is taken as absurdly low as in VSSR (cf. [14]). Therefore, the Compu-
tational VSSR Assumption is certainly overly conservative. Just assuming—as
suggested above—that solving VSSR is as hard as factoring n may be more ac-
curate. Nevertheless, the runtime estimates for our new hash function will be
based on the overly conservative Computational VSSR Assumption.

170 S. Contini, A.K. Lenstra, and R. Steinfeld

Although our analysis is based on the average runtime to find a relation using
the NFS, it is very conservative (i.e., leads to a large n) compared to a more
direct analysis involving the relevant smoothness probability of squares mod-
ulo n. The latter would lead to a hardness estimate for finding even a single
very smooth relation that is more similar to the runtime of the Quadratic Sieve
integer factorisation algorithm, and thereby to much smaller ‘secure’ modulus
sizes (obviously, unless n’s factorisation is known or n has a special form which
it will not have when properly chosen). Thus, we feel more comfortable using
our NFS-based approach.

3 Very Smooth Hash Algorithm

The basic version of VSH follows below. More efficient variants of VSH are
discussed later in this section.

VSH Algorithm. Let k, the block length, be the largest integer such that∏k
i=1 pi < n. Let m be an 	-bit message to be hashed, consisting of bits m1, . . . ,

m�, and assume 	 < 2k. To compute the hash of m perform steps 1 through 5:

1. Let x0 = 1.
2. Let L = � �

k (the number of blocks). Let mi = 0 for 	 < i ≤ Lk (padding).
3. Let 	 =

∑k
i=1 	i2i−1 with 	i ∈ {0, 1} be the binary representation of the

message length 	 and define mLk+i = 	i for 1 ≤ i ≤ k.
4. For j = 0, 1, . . . ,L in succession compute

xj+1 = x2
j ×

k∏
i=1

p
mj·k+i

i mod n.

5. Return xL+1.

Message Length. The message length does not need to be known in advance,
which is useful for applications involving streaming data. In an earlier version
which appeared on eprint [4], the message length was prepended, which may
prove inconvenient and also required usage of pk+1. If one uses the common
method of appending a single 1 bit prior to zero-padding the final block, collisions
can easily be created for the above version of VSH.

Compression Function H. VSH applies the compression function H(x, m) :
Z∗

n × {0, 1}k → Z∗
n with H(x, m) = x2 ∏k

i=1 pmi

i mod n, and applies a variant
of the Merkle-Damg̊ard transformation [15, 8] to extend H to arbitrarily long
inputs. We comment on why this works in Section 3.1.

1024-Bit n. For 1024-bit n, the value for k would be 131. The requirement
	 < 2k is therefore not a problem in any real application, and most of the
bits 	i will be zero. The Computational VSSR Assumption with S = 1024 and
k = u = 131 leads to S′ = 840. The security level obtained by VSH using

VSH, an Efficient and Provable Collision-Resistant Hash Function 171

1024-bit n is therefore at least the security level obtained by 840-bit RSA and,
given recent hash developments, by SHA-1.

Efficiency. Because
∏

1≤i≤K pi is asymptotically proportional to e(1+o(1))K log K ,
for K → ∞, the k used in the basic version of VSH is proportional to log n

log log n . It

follows that the product
∏k

i=1 p
mj·k+i

i can be computed in time O((log n)2) using
straightforward multiplication without modular reduction. Therefore the cost of
each iteration is less than the cost of 3 modular multiplications. Since k bits
are processed per iteration, the basic version of VSH requires a single modular
multiplication per Ω(log n

log log n) message-bits, with a small constant in the Ω.

Creating Collisions. With ei =
∑L

j=0 mj·k+i2L−j for 1 ≤ i ≤ k, the value

calculated by the VSH algorithm equals the multi-exponentiation
∏k

i=1 pei

i mod
n. Given φ(n) and assuming large enough L, collisions can be generated by
replacing ei by ei+tiφ(n) for any set of i’s with 1 ≤ i ≤ k and positive integers ti
(see also VSH-DL below). Thus, parties that know n’s factorisation can create
collisions at will. But collisions of this sort immediately reveal φ(n) and thereby
n’s factorisation. Creating collisions that cannot immediately be used to factor n
is a harder problem, involving discrete logarithms of very smooth numbers.

To avoid repudiation concerns if VSH would be used ‘globally’ with the same
modulus it would be advisable to generate n using the method from [2]. On the
other hand, it is conceivable—and may be desirable—to expand PKIs to allow
one to choose one’s own hash function, rather than using a ‘fixed target’ for all.
In this setting, one cannot allow the owner of a VSH-modulus to claim he did
not sign something by displaying a collision. Especially taking into considera-
tion that the only easy way the user can create a collision would also reveal the
factorisation of n, this would be analogous to somebody using RSA who anony-
mously posts the factorisation of their modulus in order to fraudulently claim
that he did not sign something. Thus, in such a situation the VSH-modulus
should be considered compromised and the user’s certificate should be revoked.

Short Message Inversion. The VSH algorithm described above allows easy
inversion of short and some sparse messages since there may be no wrap-around
modulo n. The attacker first guesses the length, divides the hash modulo n by
the corresponding

∏k
i=1 p

mL·k+i

i , and checks if the resulting value is very smooth.
This type of invertibility may be undesirable for some applications, but others
require just collision resistance (cf. below). See [16] for a related application.

A solution to this invertibility problem that does not affect our proof of secu-
rity (cf. below) is to square the final output enough times to ensure wrap-around
(no more than log2 log2 n times). Other, more efficient solutions may be possible.
Note that for all hash functions, the hash of extremely sparse or short messages
can always be ‘inverted’ by trial and error.

Undesirable Properties. It is easy to find messages for which the hashes h and
h ′ satisfy h = 2h ′. Our solution to the invertibility problem addresses this issue as
well. Other similar possibly undesirable properties can be constructed. We again

172 S. Contini, A.K. Lenstra, and R. Steinfeld

emphasize that VSH is not intended to model a random oracle, and therefore
cannot be blindly substituted as is into constructions that depend upon them
(such as RSA signatures and some MAC constructions). We remind the reader
that random oracles do not exist in the real world, and therefore relying on them
too much is not recommended. On the other hand, entirely provable solutions
do exist which require only collision resistance: for example, see Section 4.

Having stressed upfront in the last three remarks the disadvantages of VSH,
we turn to its most attractive property, namely its provable collision resistance.

3.1 Security Proof for VSH

We prove that VSH is (strongly) collision-resistant. Using proper security notions
[19], (strong) collision resistance also implies second preimage resistance.

Theorem 1. Finding a collision in VSH is as hard as solving VSSR (i.e., VSH
is collision-resistant under the assumptions from Section 2).

Proof. We show that different colliding messages m and m′ lead to a solution of
VSSR. Let x′

... denote the x... values in the VSH algorithm applied to m′ and let
	,L and 	′,L′ be the bitlengths and number of blocks of m and m′, respectively.
Since m and m′ collide, m �= m′ and xL+1 = x′

L′+1.
First consider the case of 	 = 	′. Let m[j] denote m’s jth k-bit block, m[j] =

(mj·k+i)k
i=1, and let t ≤ L be the largest index such that (xt, m[t]) �= (x′

t, m
′[t])

but (xj , m[j]) = (x′
j , m

′[j]) for t < j ≤ L + 1. Then,

(xt)2 ×
k∏

i=1

p
mt·k+i

i ≡ (x′
t)

2 ×
k∏

i=1

p
m′

t·k+i

i mod n . (2)

Let Δ = {i : mt·k+i �= m′
t·k+i, 1 ≤ i ≤ k} and Δ10 = {i ∈ {1, . . . , k} : mt·k+i =

1 and m′
t·k+i = 0}. Because all factors in Equation (2) are invertible modulo n,

it is equivalent to [
(xt/x′

t) ×
∏

i∈Δ10

pi

]2

≡
∏
i∈Δ

pi mod n . (3)

If Δ �= ∅, Equation (3) solves VSSR. If Δ = ∅, then (xt)2 ≡ (x′
t)

2 mod n and
t ≥ 1 (since m �= m′ and using the definition of t). With xt �≡ ±x′

t mod n VSSR
can be solved by factoring n. If xt ≡ ±x′

t mod n then xt ≡ −x′
t mod n, since

Δ = ∅ implies (by definition of t) that xt �= x′
t. But xt ≡ −x′

t mod n leads to
(xt−1/x′

t−1)
2 being congruent to −1 times a very smooth number and thus solves

VSSR.
Now consider the case 	 �= 	′. Since xL+1 = x′

L′+1, we have (xL/x′
L′)2 ≡∏k

i=1 p
�′

i−�i

i mod n. Since |	′i − 	i| = 1 for at least one i, VSSR is solved using a
transformation as in Equation (3). ��
Why Merkle-Damg̊ard Works. VSH applies a variant of the Merkle-Damg̊ard
transformation [15, 8] to hash arbitrary length messages using the compression

VSH, an Efficient and Provable Collision-Resistant Hash Function 173

function H : Z∗
n×{0, 1}k → Z∗

n. The proof in [8] shows that a sufficient condition
for a hash function to be collision-resistant is that its compression function H
is collision-resistant, i.e. it is hard to find any (x, m) �= (x′, m′) with H(x, m) =
H(x′, m′). However, our compression function H(x, m) = x2 ∏k

i=1 pmi

i mod n is
not strictly collision-resistant (H(−x mod n, m) = H(x, m)), and yet we proved
that H is still sufficiently strong to make VSH collision-resistant. Therefore, one
may ask whether we can strengthen the result in [8] to state explicitly the se-
curity properties of a compression function (which are weaker than full collision
resistance) that our compression function satisfies and that are still sufficient
in general to make the resulting hash function collision-resistant. Indeed, these
conditions can be readily generalised from our proof of Theorem 1, so we only
state them here:

(1) Collision Resistance in Second input: It is hard to find (x, m), (x′, m′) ∈
Z∗

n × {0, 1}k with m �= m′ such that H(x, m) = H(x′, m′).
(2) Preimage Resistance for a collision in first input: It is hard to find (x, m) �=

(x′, m′) ∈ Z∗
n × {0, 1}k and m∗ ∈ {0, 1}k such that H(y, m∗) = H(y′, m∗),

where y = H(x, m), y′ = H(x′, m′) and y �= y′.

The VSH compression function H satisfies these properties, under the VSSR
Assumption.

3.2 Example: A Related Algorithm That Can Be Broken

To emphasize the importance of the nontrivialness, consider a hash function
that works similarly to VSH, except breaks the message into blocks r1, r2, . . .
of K > 1 bits and uses the compression function xj+1 = x2

j × 2rj+1 mod n.
Because K > 1 collisions can simply be created. For example, for any e with
0 < e < 2K−1 the message blocks r1 = e and r2 = 2e collide with r′1 = 2e and
r′2 = 0. The colliding values are (2e)222e and (22e)220, but this does not lead
to a solution of VSSR or a chance to factor n. Such trivial relations are useless,
and the security of this hash algorithm is not based on a hard problem. The fix
is to use the costlier compression function xj+1 = x2K

j × 2rj+1 , but that results
in the same function xm mod n from [17, 20].

3.3 Combining VSH and RSA

Since the output length of VSH is the length of a secure RSA modulus (thus
1024–2048 bits), VSH seems quite suitable in practice for constructing ‘hash-
then-sign’ RSA signatures for arbitrarily long messages. However, such a sig-
nature scheme must be designed carefully to ensure its security. To illustrate a
naive insecure scheme, let (n, e) be the signer’s public RSA key, where the modu-
lus n is used for both signing and hashing. The signing function σ : {0, 1}∗ → Zn

is σ(m) = V SHn(m)1/e mod n, where V SHn : {0, 1}∗ → Zn is VSH with mod-
ulus n. For a k-bit message m = (m1, . . . , mk) ∈ {0, 1}k, the signature is thus
σ(m) = (κ

∏k
i=1 p2mi

i)1/e mod n, for a κ that is the same for all k-bit messages.

174 S. Contini, A.K. Lenstra, and R. Steinfeld

This scheme is insecure under the following chosen message attack. After ob-
taining signatures on three k-bit messages: s0 = σ((0, 0, 0, . . . , 0)) = κ1/e mod
n, s1 = σ((1, 0, 0, . . . , 0)) = (κp2

1)1/e mod n, and s2 = σ((0, 1, 0, . . . , 0)) =
(κp2

2)
1/e mod n, the attacker easily computes the signature s1s2

s0
mod n on the

new k-bit forgery message (1, 1, 0, . . . , 0). It is easy to see that k + 1 signatures
on k + 1 properly chosen messages suffice to sign any k-bit message.

To avoid such attacks, we suggest a more theoretically sound design approach
for using VSH with ‘hash-then-sign’ RSA signatures that does not rely on any
property of VSH beyond the collision resistance which it was designed to achieve:

Step 1. Let n̄ be an (S + 1)-bit RSA modulus, with n̄ and the S-bit VSH
modulus n chosen independently at random. So, n̄ > 2S. Specify a one-to-one
one-way encoding function f : {0, 1}S → {0, 1}S, and define the short-message
(S-bit) RSA signature scheme with signing function σn̄(m) = (f(m))1/e mod
n̄. The function f is chosen such that the short-message scheme with signing
function σn̄ is existentially unforgeable under chosen message attack. In the
standard model no provable techniques are known to find f , but since f is one-
to-one, there are no collision resistance issues to consider when designing f .
Step 2. With (n̄, n, e) as the signer’s public key, the signature scheme for signing
arbitrary length messages is now constructed with signing function σn̄,n(m) =
σn̄(V SHn(m)). It is easy to prove that the scheme with signing function σn̄,n is
existentially unforgeable under chosen message attack, assuming that the scheme
with signing function σn̄ is and that V SHn is collision-resistant. We emphasize
that the proof no longer holds if n̄ = n: in order to make the proof work in
that case, one needs the stronger assumption that V SHn is collision-resistant
even given access to a signing oracle σn. However, it is worth remarking that if
the function f is modeled as a random oracle, then the proof of security works
(under the RSA and VSSR assumptions) even with a shared modulus (n̄ = n).

3.4 Variants of VSH

Cubing Instead of Squaring. Let H ′ : Z∗
n × {0, 1}k → Z∗

n with H ′(x, m) =
x3 ∏k

i=1 pmi

i mod n be a compression function that replaces the squaring in H
by a cubing. If gcd(3, φ(n)) = 1 then thanks to the injectivity of the RSA cubing
map modulo n, the function H ′ is collision-resistant, assuming the difficulty of
computing a modular cube root of a very smooth cube-free integer of the form∏k

i=1 pei

i �= 1, where ei ∈ {0, 1, 2} for all i. This problem is related to RSA
inversion, and is also conjectured to be hard. Although H ′ requires about 4
modular multiplications per k message-bits (compared to 3 for H), it has the
interesting property that H ′ itself is collision-resistant, while this is not quite
the case for H (because x2 ∏

i pi
mi ≡ (−x)2

∏
i pmi

i mod n).

Increasing the Number of Small Primes. A speed-up is obtained by al-
lowing the use of larger k than the largest one for which

∏k
i=1 pi < n. This

does not affect the proof of security and reduction to VSSR, as long as k is still
polynomially bounded in log n. The Computational VSSR Assumption implies
that a larger modulus n has to be used to maintain the same level of security.

VSH, an Efficient and Provable Collision-Resistant Hash Function 175

Furthermore, the intermediate products in Step 4 of the VSH algorithm may
get larger than n and may thus have to be reduced modulo n every so often.
Nevertheless, the resulting smaller L may outweigh these disadvantages.

Precomputing Products of Primes. An implementation speed-up may be
obtained by precomputing products of primes. Let b > 1 be a small integer,
and assume that k = k̄b for some integer k̄. For i = 1, 2, . . . , k̄ compute the
2b products over all subsets of the set of b primes {p(i−1)b+1, p(i−1)b+2, . . . , pib},
resulting per i in 2b moderately sized values vi,t for 0 ≤ t < 2b. The k message-
bits per iteration of VSH are now split into k̄ chunks m[0], m[1], . . . , m[k̄ − 1] of
b bits each, interpreted as non-negative integers < 2b. The usual product is then
calculated as

∏k̄
i=1 vi,m[i−1]. This has no effect on the number of iterations or

the modulus size to be used to achieve a certain level of security.

Fast VSH. Redefining the above vi,t as p(i−1)2b+t+1 and using i = 1, 2, . . . , k

instead of i = 1, 2, . . . , k̄, the block length increases from k to bk, the number of
iterations is reduced from � �

k to � �
bk , and the calculation in Step 4 of the VSH

algorithm becomes

xj+1 = x2
j ×

k∏
i=1

p(i−1)2b+m[jbk+i−1]+1 mod n,

where m[r] is the rth b-bit chunk of the message, with 0 ≤ m[r] < 2b. Because
the number of small primes increases from k to k2b, a larger modulus would,
conservatively, have to be used to maintain the same level of security. But this
change does not affect the proof of security and, as shown in the analysis below
and the runtime examples in the final section, it is clearly advantageous.

Analysis of Fast VSH. Since p(i−1)2b+m[jbk+i−1]+1 ≤ pi2b , each intermedi-
ate product in the compression function for Fast VSH will be less than n if∏k

i=1 pi2b < n. If k is maximal such that
∏(k+1)2b

i=1 pi ≤ (2n)2
b

, then

(k+1)2b∏
i=1

pi =
2b∏

t=1

k∏
i=0

pi2b+t ≤ (2n)2
b

,

so that
∏k

i=0 pi2b+1 ≤ 2n. With pi2b < pi2b+1 it follows that
∏k

i=1 pi2b < n.

Thus, for (k + 1)2b proportional to 2b log(2n)
log(2b log(2n)) and k to log(2n)

log(2b log(2n)) − 1, the
cost of Fast VSH is one modular multiplication per Ω(bk) message-bits, with
bk proportional to b log(2n)

log(2b log(2n)) − b. Selecting 2b as any fixed positive power of
log(2n), it follows that bk is proportional to log n and thus that Fast VSH requires
a single modular multiplication per Ω(log n) message-bits. It also follows that the
number of small primes k2b is polynomially bounded in log n so that, with S′ the
overly conservative RSA security level obtained according to the Computational

176 S. Contini, A.K. Lenstra, and R. Steinfeld

VSSR Assumption, Fast VSH requires a single modular multiplication per Ω(S′)
message-bits.

Zero Chunks in Fast VSH. A negligible speed-up and tiny saving in the
number of primes can be obtained in Fast VSH if for a particular b-bit pattern
(such as all zeros) no prime is multiplied in (as was the case in basic VSH).

Fast VSH with Increased Block Length. Fast VSH can be used in a straight-
forward fashion with a larger block length than suggested by the above analysis.
If, for instance, the number of small primes is taken almost w times larger, for
some integer w > 1, the small prime product can be split into w factors each less
than n. Per iteration this results in a single modular squaring, w − 1 modular
multiplications plus the time to build the w products. The best value for w is best
determined experimentally, and will depend on various processor characteristics
(such as cache size to hold a potentially rather large table of primes).

Generating Collisions. For all variants given above knowledge of φ(n) can be
used to generate collisions, though displaying such a collision is not in the user’s
interest since it would give out a break to the user’s hash function (i.e. it would
be similar to someone giving out the factorisation of their RSA modulus).

VSH-DL, a Discrete Logarithm Variant. We present a discrete logarithm
(DL) variant of VSH that has no trapdoor. Its security depends on the following
problem and its hardness assumption.

Definition 4. (VSDL: Very Smooth number Discrete Log) Let p, q be primes
with p = 2q + 1 and let k ≤ (log p)c. VSDL is the following problem: given p,
find integers e1, e2, . . . , ek such that 2e1 ≡ ∏k

i=2 pei

i mod p with |ei| < q for
i = 1, 2, . . . , k, and at least one of e1, e2, . . . , ek is non-zero.

VSDL Assumption. The VSDL assumption is that there is no probabilistic
polynomial (in log p) time algorithm which solves VSDL with non-negligible
probability (the probability is taken over the random choice of the prime p and
the random coins of the algorithm).

A solution to a VSDL instance produces the base 2 DL modulo p of a very
smooth number (the requirements on the exponents ei avoids trivial solutions
in which all exponents are zero modulo q). Given k random VSDL solutions,
the base 2 DL of nearly all primes p1, . . . , pk can be solved with high probabil-
ity by linear algebra modulo q. Although computing the DLs of a polynomial
number of small primes is an impressive feat, it does not help to solve arbitrary
DL problems. To solve the DL of an arbitrary group element with respect to
some generator one could include both generator and element among the pi, but
there is no guarantee that solutions to VSDL contain the appropriate elements.
Nevertheless, there is a strong connection between the hardness of VSDL and
the hardness of computing DLs modulo p, which is reminiscent of, but seems to
be somewhat weaker than, the connection between VSSR and factorisation. See
also [3]. As was the case for VSSR, moduli for which VSDL is not difficult are
easily constructed and not worthy of further consideration.

VSH, an Efficient and Provable Collision-Resistant Hash Function 177

Let p be an S-bit prime of the form 2q +1 for prime q, let k be a fixed integer
length (number of small primes, typically k ≈ S/ log S), and let L ≤ S − 2. We
define a VSH-DL compression function HDL : {0, 1}Lk → {0, 1}S, where m is
an Lk-bit message consisting of bits m1, m2 . . . , mLk:

– Set x0 = 1. For j = 0, 1, . . . ,L−1, compute xj+1 = x2
j ×

∏k
i=1 p

mj·k+i

i mod p.
– Return HDL(m) = xL interpreted as a value in {0, 1}S.

If ei =
∑L−1

j=0 mj·k+i2L−j−1 for 1 ≤ i ≤ k, then HDL(m) =
∏k

i=1 pei

i mod p.

A collision m, m′ ∈ {0, 1}Lk with m �= m′ therefore implies that
∏k

i=1 pei

i ≡∏k
i=1 p

e′
i

i mod p, where e′i =
∑L−1

j=0 m′
j·k+i2

L−j−1 and m′ consists of the bits

m′
1, . . . , m

′
Lk. Rearranging this congruence, a solution 2e1−e′

1 ≡ ∏k
i=2 p

e′
i−ei

i mod
p to VSDL follows, because |e′i − ei| < 2L ≤ 2S−2 ≤ q for all i and e′i − ei �= 0 for
some i since m �= m′. Hence the compression function HDL is collision-resistant
under the VSDL assumption. We remark that VSH-DL can be viewed as a (more
efficient) special case of the collision-resistant function in [3], which uses random
group elements in place of the small primes pi.

The compression function HDL uses the same iteration as the basic VSH
algorithm. Hence, for the same modulus length S and number of primes k it has
the same throughput efficiency of a single modular multiplication per about k

3
message-bits. By applying the Merkle-Damg̊ard transformation [15, 8], HDL can
be used to hash messages of arbitrary length in blocks of Lk−S message-bits per
evaluation of HDL. This leads to a reduction in throughput by a factor of Lk−S

Lk
(since only Lk − S of the Lk bits processed in each HDL evaluation are new
message-bits) relative to factoring based VSH. However, for long messages, this
throughput reduction factor can be made close to 1 by choosing a sufficiently
large block length Lk; indeed, the construction allows block lengths up to Lk =
k(S − 2), and for this choice the throughput reduction factor is 1 − S

k(S−2) ≈
1 − 1

k ≈ 1.

Reducing the Length. A possible drawback of VSH is its relatively large
output length. We are investigating length-reduction possibilities by combining
VSH-DL with elliptic curve, trace, or torus-based methods [10, 12, 22].

4 VSH Randomised Trapdoor Hash and Applications

Let M,R,H be a message, randomiser, and hash space, respectively. A ran-
domised trapdoor hash function [20] Fpk : M × R → H is a collision-resistant
function that can be efficiently evaluated using a public key pk, but for which
certain randomly behaving collisions can be found given a secret trapdoor key sk:

Collision Resistance in Message Input. Given pk, it is hard to find m, m′ ∈
M and r, r′ ∈ R for which m �= m′ and Fpk(m, r) = Fpk(m′, r′).

Random Trapdoor Collisions. There exists an efficient algorithm that given
trapdoor (sk, pk), m, m′ ∈ M with m �= m′, and r ∈ R, finds a randomiser

178 S. Contini, A.K. Lenstra, and R. Steinfeld

r′ ∈ R such that Fpk(m, r) = Fpk(m′, r′). Furthermore, if r is chosen uniformly
from R then r′ is uniformly distributed in R.
Randomised trapdoor hash functions have applications in provably strengthen-
ing the security of signature schemes [20], and constructing designated-verifier
proofs/signature schemes [11, 21]. The factorisation trapdoor of VSH suggests
that it can be used to build such a function. Here we describe a provably secure
randomised trapdoor hash family which preserves the efficiency of VSH.

Key Generation: Choose two S/2-bit random primes p, q with p ≡ q ≡ 3 mod 4
and S-bit product n. The public key is n with trapdoor key sk = (p, q). Let k

be as in the basic VSH algorithm, M = ∪2k−1
�=0 {0, 1}�, and R = Z∗

n.

Hash Function: Let m ∈ M of length 	 < 2k and r ∈ R. Calculate the basic VSH
of m with x0 replaced by r to compute xL+1 and output Fn(m, r) = x2

L+1 mod n.

Theorem 2. The above construction satisfies the security requirements for ran-
domised trapdoor hash functions, under the VSSR assumption.

Proof. Collision Resistance in Message Input: The proof follows the same lines
as the proof of Theorem 1 since the value of x0 and the squaring at the end do
not affect the security reduction.

Random Trapdoor Collisions: Let m, m′ ∈ M with m �= m′ and r ∈ R.
Because Fn(m, r) = (r2L+1 ∏k

i=1 pei

i)2 mod n, where mLk+i = 	i and ei =∑L
j=0 mj·k+i2L−j for 1 ≤ i ≤ k, finding r′ ∈ R with Fn(m, r) = Fn(m′, r′)

amounts to finding r′ such that

(r′)2
L′+2 ≡ r2L+2 · (

k∏
i=1

p
ei−e′

i

i)2 mod n

(where m′
L′k+i = 	′i and e′i =

∑L′

j=0 m′
j·k+i2

L′−j for 1 ≤ i ≤ k), i.e., finding an
(L′ + 2)nd square root modulo n of the right hand side g of the equation for
(r′)2

L′+2
. Given the trapdoor key (p, q) this is achieved as follows.

Let QRn = {y ∈ Z∗
n : (y

p) = (y
q) = 1} denote the subgroup of quadratic

residues of Z∗
n. The choice p ≡ q ≡ 3 mod 4 implies that −1 is a quadratic non-

residue in Z∗
p and Z∗

q , so for each element of QRn exactly one of its 4 square
roots in Z∗

n belongs to QRn. Hence the squaring map on QRn permutes QRn and
given (p, q) it can be efficiently inverted by computing the proper square roots
modulo p and q and combining them by Chinese remaindering. Since g ∈ QRn,
its (L′ + 1)st square root d ∈ QRn can thus be computed, and r′ is then chosen
uniformly at random among the 4 square roots in Z∗

n of d.
If r is uniformly distributed in Z∗

n, then (since each element of QRn has 4
square roots in Z∗

n) the value r2 mod n is uniformly distributed in QRn. The
squaring map on QRn permutes QRn, so that g and d are also uniformly dis-
tributed in QRn. It follows that r′ is uniformly distributed in Z∗

n. ��
Efficiency. For short fixed-length messages with 	 ≤ k (i.e., 1 block), the mes-
sage length can be omitted, so that Fn(m, r) = (r2 ∏k

i=1 pmi

i)2 mod n. Eval-

VSH, an Efficient and Provable Collision-Resistant Hash Function 179

uation requires only about 4 compared to at least k modular multiplications
required by the trapdoor functions in [20]. On the other hand, the trapdoor
collision-finding algorithm for Fn is not very fast, requiring a square root mod-
ulo n per message block. This is not a major issue because in many applications
of randomised hash functions, the collision-finding algorithm is only used in the
security proof of a signature scheme rather than in the scheme itself. However,
it reduces the efficiency of the reduction and thus requires slightly increased
security parameters.

‘Inversion’ Trapdoor Property. It follows from the proof of Theorem 2 that
Fn also satisfies the ‘inversion’ trapdoor property [20]. This is stronger than the
trapdoor collision property, and can be used to upgrade a signature scheme’s
resistance against random message attacks to chosen message attacks: Given the
trapdoor key, a random element d ∈ QRn in the range of Fn and an m ∈ M, it
is easy to find a randomiser r ∈ Z∗

n such that Fn(m, r) = d and r is uniformly
distributed in Z∗

n when d is uniformly distributed in QRn.

Application. As an example application, we mention the Cramer-Shoup (CS)
signature scheme [6], which to our knowledge is the most efficient factoring-based
signature scheme provably secure in the standard model (under the strong-RSA
assumption). The CS scheme makes use of an RSA-based randomised trapdoor
hash function to achieve security against adaptive message attacks. Using Fn

instead cuts the signing and verification costs by about a double exponentiation
each, while preserving the proven security. The modified CS scheme is as follows:
Key Generation: Choose two safe random ≈ S/2-bit primes p̄, q̄ and two random
≈ S/2 bit primes p, q with p ≡ q ≡ 3 mod 4 that result in S-bit moduli n̄ = p̄q̄
and n = pq, and choose x, z ∈ QRn̄ at random. Let h : {0, 1}S → {0, 1}� be
a collision-resistant hash function for a security parameter 	 for which an 	-bit
(traditional) hash and S-bit RSA offer comparable security (typically 	 = 160
when S = 1024). The public key is (x, z, n, n̄, h) and the secret key is (p̄, q̄).
Signing: To sign m ∈ {0, 1}∗, choose a random (+1)-bit prime e and a random
r ∈ Z∗

n and compute y = (x · zh(Fn(m,r)))1/e mod n̄. The signature is (e, y, r).
Verifying: To verify message/signature pair (m, (e, y, r)), check that e is an odd
(+ 1)-bit integer and that yez−h(Fn(m,r)) ≡ x mod n̄.

The cost of verification in the original CS scheme is about two double expo-
nentiations with 	-bit exponents. The modified scheme requires approximately
one such double exponentiation, so a saving in verification time of about 50%
can be expected. The relative saving in signing time is smaller. However, the
length of the public key is larger than in the original scheme by typically 25%.

Because VSH’s output length S is typically much larger than 	, VSH cannot
be used for the 	-bit collision-resistant hash function h above. To avoid the need
for an ad-hoc 	-bit hash function, h may be dropped and e chosen as an (S +1)-
bit prime, making the scheme much less efficient. The variant below eliminates
the need for h and maintains almost the computational efficiency of the scheme
above, but has a larger public key and requires some precomputation.

180 S. Contini, A.K. Lenstra, and R. Steinfeld

Key Generation: Let p̄, q̄, p, q, n̄, n be as above, let s = �S
� and randomly choose

x, z1, . . . , zs ∈ QRn̄. The public key is (x, z1, . . . , zs, n, n̄) with secret key (p̄, q̄).

Signing: To sign m ∈ {0, 1}∗, choose a random (+1)-bit prime e and a random
r ∈ Z∗

n, and compute Fn(m, r). Interpret Fn(m, r) as a value in {0, 1}s·� (possibly
after padding) consisting of s consecutive 	-bit blocks Fn,1(m, r), . . . , Fn,s(m, r)
and compute y = (x ·∏s

u=1 z
Fn,u(m,r)
u)1/e mod n̄. The signature is (e, y, r).

Verifying: To verify message/signature pair (m, (e, y, r)), check that e is an odd
(+ 1)-bit integer and that ye

∏s
u=1 z

−Fn,u(m,r)
u ≡ x mod n̄.

For typical parameter values such as S = 1024, 	 = 171, s = 6, the 2s =
64 subset products modulo n̄ of the zu’s may be precomputed. Using multi-
exponentiation, that would make the above scheme about as efficient as the
previous variant. It can be proved (cf. [4]) that the above CS signature variant
is secure assuming the strong-RSA and VSSR assumptions. Thus we have ob-
tained an efficient signature scheme proven secure without ad-hoc assumptions.
This is unlike the original CS scheme, which relied on a collision resistance or
universal one-wayness assumption regarding a 160-bit hash function—as far as
we are aware, the only practical provably secure design for such a function is an
inefficient discrete log based construction using an elliptic curve defined over a
160-bit order finite field. A disadvantage of our variant is that its public key is
typically 9 kbits, which is about 3 times more than in the original CS scheme.

5 Efficiency of VSH in Practice

Let the cost of a multiplication modulo n be O((log n)1+ε) operations, where
ε = 1 if ordinary multiplication is used, and where ε > 0 can be made arbitrarily
small if fast multiplication methods are used. Asymptotically the cost of the basic
VSH algorithm is O((log n)1+ε

k) = O((log n)ε log log n) operations per message-bit.
Given n’s factorisation one can do better for long messages by reducing the k
exponents of the pi’s modulo φ(n). Asymptotically, Fast VSH costs O((log n)ε)
operations per message-bit. It is faster in practice too, cf. below.

The table below lists VSH runtimes obtained using a gmp-based implementa-
tion on a 1GHz Pentium III. The two security levels conservatively correspond
to 1024-bit and 2048-bit RSA (based on the Computational VSSR Assumption,
where an S-bit VSH-modulus leads to a lower RSA security level S′ depending
on the number of small primes). In the 2nd and 6th rows basic VSH is used
with more small primes, in the 3rd and 7th rows extended with precomputed
prime products and message processing b = 8 bits at a time. Fast VSH also
processed b = 8 message-bits at a time. With S′ = 1024 and S = 1516 (i.e., at
least 1024-bit RSA security, at the cost of a 1516-bit VSH-modulus) Fast VSH is
about 25 times slower than Wei Dai’s SHA-1 benchmark [23]. Better throughput
will be obtained under the more aggressive assumption that VSH with an S-bit
modulus achieves S-bit RSA security. A similarly more favorable comparison
will be obtained when using VSH with parameters matching the actual SHA-1
security level; at the time of writing that is 63 bits, but as it is a moving target

VSH, an Efficient and Provable Collision-Resistant Hash Function 181

S′ Method # small primes S b # products Megabyte/second
1024 Basic VSH 152 1234 1 n/a 0.355

1024 1318 1 n/a 0.419
8 128 ∗ 256 0.486

Fast VSH 216 = 65536 1516 8 n/a 1.135
2048 Basic VSH 272 2398 1 n/a 0.216

1024 2486 1 n/a 0.270
8 128 ∗ 256 0.303

Fast VSH 218 = 262144 2874 8 n/a 0.705

we prefer not to specify matching VSH parameters. In any case, the slowdown
is a small price for avoiding heuristically collision-resistant hashes. Nevertheless,
except for its lack of other nice properties, VSH has been criticised for being
too slow. We consider the prospects of faster VSH software more realistic than
a proof that SHA-2 offers any security at all.

Acknowledgements. We gratefully acknowledge inspiring discussions with Igor
Shparlinski and Eran Tromer, and we thank Yvo Desmedt, Josef Pieprzyk, Benne
de Weger, and the anonymous Eurocrypt’06 reviewers for their insightful com-
ments. This article was written while the second author was employed by Lucent
Technologies’ Bell Laboratories and was affiliated to the Technische Universiteit
Eindhoven.

References

1. M. Bellare and D. Micciancio. A new paradigm for collision-free hashing: incremen-
tality at reduced cost. In EUROCRYPT 97, volume 1233 of LNCS, page 163–192,
Berlin, 1997, Springer-Verlag.

2. D. Boneh and M. Franklin. Efficient generation of shared RSA keys. In CRYPTO
97, volume 1294 of LNCS, page 425–439, Berlin, 1997, Springer-Verlag.

3. D. Chaum, E. van Heijst, and B. Pfitzmann. Cryptographically strong undeniable
signatures, unconditionally secure for the signer. In CRYPTO 91, volume 576 of
LNCS, page 470–484, Berlin, 1991, Springer-Verlag.

4. S. Contini, A.K. Lenstra, and R. Steinfeld. VSH, an efficient and provable colli-
sion resistant hash function. Report 2005/193, Cryptology ePrint Archive, 2005.
eprint.iacr.org/2005/193/.

5. R. Crandall and C. Pomerance. Prime Numbers: a Computational Perspective,
New York, 2001, Springer-Verlag.

6. R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption.
In volume 3 of ACM Transactions on Information and System Security (ACM
TISSEC), page 161–185, 2000.

7. I. Damg̊ard. Collision-free hash functions and public key signature schemes. In
EUROCRYPT 87, volume 304 of LNCS, page 203–216, Berlin, 1987, Springer-
Verlag.

8. I. Damg̊ard. A design principle for hash functions. In CRYPTO 89, volume 435 of
LNCS, page 416–427, Berlin, 1989, Springer-Verlag.

9. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptively chosen message attacks. SIAM J. on Comp., 17(2):281–308, 1988.

10. S. Hankerson, A. Menezes, S. Vanstone. Guide to Elliptic Curve Cryptography,
New York, 2004, Springer-Verlag.

182 S. Contini, A.K. Lenstra, and R. Steinfeld

11. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their
applications. In EUROCRYPT 96, volume 1070 of LNCS, page 143–154, Berlin,
1996, Springer-Verlag.

12. A.K. Lenstra and E.R. Verheul. The XTR public key system. In CRYPTO 2000,
volume 1880 of LNCS, page 1–19, Berlin, 2000, Springer-Verlag.

13. A.K. Lenstra and H.W. Lenstra Jr. The Development of the Number Field Sieve,
Berlin, 1993, Springer-Verlag.

14. A.K. Lenstra, E. Tromer, A. Shamir, W. Kortsmit, B. Dodson, J. Hughes, and P.
Leyland, Factoring estimates for a 1024-bit RSA modulus. In Chi Sung Laih, editor,
ASIACRYPT 2003, volume 2894 of LNCS, page 55–74, Berlin, 2003, Springer-
Verlag.

15. R. Merkle. One way hash functions and DES. In CRYPTO 89, volume 435 of
LNCS, page 428–446, Berlin, 1989, Springer-Verlag.

16. D. Naccache and J. Stern A new public-key cryptosystem. In Walter Fumy,
editor, EUROCRYPT 97, volume 1233 of LNCS, page 27–36, Berlin, 1997,
Springer-Verlag.

17. D. Pointcheval. The composite discrete logarithm and secure authentication. In
PKC 2000, volume 1751 of LNCS, page 113–128, Berlin, 2000, Springer-Verlag.

18. R.L. Rivest and R.D. Silverman. Are ‘strong’ primes needed for RSA. Report
2001/007, Cryptology ePrint Archive, 2001. eprint.iacr.org/2001/007/.

19. P. Rogaway and T. Shrimpton. Cryptographic hash-function basics: definitions,
implications, and separations for preimage resistance, second-preimage resistance,
and collision resistance. In B. Roy and W. Meier, editors, FSE 2004, volume 3017
of LNCS, page 371–388, Berlin, 2004, Springer-Verlag.

20. A. Shamir and Y. Tauman. Improved online/offline signature schemes. In
CRYPTO 2001, volume 2139 of LNCS, page 355–367, Berlin, 2001, Springer-Verlag.

21. R. Steinfeld, H. Wang, and J. Pieprzyk. Efficient extension of standard
Schnorr/RSA signatures into universal designated-verifier signatures. In PKC 2004,
volume 2947 of LNCS, page 86–100, Berlin, 2004, Springer-Verlag.

22. K. Rubin and A. Silverberg. Torus-based cryptography. In CRYPTO 2003, volume
2729 of LNCS, page 349–365, Berlin, 2003, Springer-Verlag.

23. Wei Dai. Crypto++ 5.2.1 Benchmarks. www.eskimo.com/~weidai/
benchmarks.html.

Herding Hash Functions and the Nostradamus
Attack

John Kelsey1 and Tadayoshi Kohno2

1 National Institute of Standards and Technology
john.kelsey@nist.gov

2 CSE Department, UC San Diego
tkohno@cs.ucsd.edu

Abstract. In this paper, we develop a new attack on Damg̊ard-Merkle
hash functions, called the herding attack, in which an attacker who can
find many collisions on the hash function by brute force can first pro-
vide the hash of a message, and later “herd” any given starting part
of a message to that hash value by the choice of an appropriate suffix.
We focus on a property which hash functions should have–Chosen Tar-
get Forced Prefix (CTFP) preimage resistance–and show the distinction
between Damg̊ard-Merkle construction hashes and random oracles with
respect to this property. We describe a number of ways that violation
of this property can be used in arguably practical attacks on real-world
applications of hash functions. An important lesson from these results
is that hash functions susceptible to collision-finding attacks, especially
brute-force collision-finding attacks, cannot in general be used to prove
knowledge of a secret value.

1 Introduction

Cryptographic hash functions are usually assumed to have three properties: Col-
lision resistance, preimage resistance, and second preimage resistance. And yet
many additional properties, related to the above in unclear ways, are also re-
quired of hash function in practical applications. For example, hash functions
are sometimes used in “commitment” schemes, to prove prior knowledge of some
information, priority on an invention, etc. When the information takes on more
than a small number of possible values, there does not appear to be an obvious
way to extend a collision finding attack to break the commitment scheme; there-
fore, collision resistance does not seem to be necessary to use the hash function in
this way. This appears fortunate in light of the many recent attacks on collision
resistance of existing hash functions[2, 3, 13, 19, 21, 22, 23, 24] and the widespread
use of hash functions short enough to fall to brute-force collision attacks[20].

We show that the natural intuition above is incorrect. Namely, we uncover
(what we believe to be) subtle ways of exploiting the iterative property of
Damg̊ard-Merkle[6, 16] hash functions to extend certain classes of collision-finding
attacks against the compression function to attack commitment schemes and
other uses of hash function that do not initially appear to be related to collision
resistance.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 183–200, 2006.
c© International Association for Cryptologic Research 2006

184 J. Kelsey and T. Kohno

1.1 Example: Proving Prior Knowledge with a Hash Function

Consider the following example. One day in early 2006, the following ad appears
in the New York Times :

I, Nostradamus, hereby provide the MD5 hash H of many important
predictions about the future, including most importantly, the closing
prices of all stocks in the S&P500 as of the last business day of 2006.

A few weeks after the close of business in 2006, Nostradamus publishes a message.
Its first few blocks contain the precise closing prices of the S&P500 stocks. It
then continues with many rambling and vague pronouncements and prophecies
which haven’t come true yet. The whole message hashes to H .

The main question we address in this paper is whether this should be taken as
evidence that Nostradamus really knew the closing prices of the S&P500 many
months in advance. MD5 has been the subject of collision attacks, and indeed
is susceptible to brute force collision attacks, but there are no known preimage
attacks. And yet, it seems that a preimage attack on MD5 would be necessary
to allow Nostradamus to first commit to a hash, and then produce a message
which so precisely describes the future after the fact.

1.2 Chosen Target Forced Prefix (CTFP) Preimage Resistance

The first question to address when considering the situation outlined above is
to ask exactly what property of a hash function would have to be violated by
Nostradamus in order to falsely “prove” prior knowledge of these closing prices.
The property is not directly one of the commonly discussed properties of hash
functions (collision resistance1, preimage resistance, and second preimage resis-
tance). Instead, we need an atypical property, which we will call “chosen target
forced prefix” (CTFP) preimage resistance2.

In order to falsely prove his knowledge of the closing prices of the S&P500,
Nostradamus would first have to choose a target hash value, H . He then would
have to wait until the closing values of the S&P500 stocks for 2006 were avail-
able. Finally, he would have to find some way to form a message that started
with a description of those closing values, P , and ended up with the originally
committed-to hash H .

Following this example, we can define CTFP preimage resistance as follows:
In the first phase of his attack Nostradamus performs some precomputation and
then outputs an n-bit hash value H ; H is his “chosen target”. The challenger
then selects some prefix P and supplies it to Nostradamus; P is the “forced

1 Collision resistance would preclude the attack, but does not appear to be necessary
for the attack to fail.

2 We are indebted to Dan Brown for pointing out a previous use of the same idea: In
one of three independent proofs of the security of Pinstov-Vanstone signatures, the
same property with a different name, “target value resistance,” was used. See [4], in
which it was conjectured that SHA1 had this property; our result shows that it does
not if one can find collisions starting from two arbitrary IVs.

Herding Hash Functions and the Nostradamus Attack 185

prefix.” In our informal security definition we place no restriction on how the
challenger picks P , but for simplicity we may assume that the challenger picks
P uniformly at random from some large but finite set of strings. In the second
phase of his attack, Nostradamus computes and outputs some string S. Nos-
tradamus compromises the CTFP preimage resistance of the hash function if
hash(P‖S) = H . If we model the hash function as a random oracle [1], then un-
less Nostradamus is lucky and guesses P in the first phase of his attack, we would
expect him to have to try O(2n) values for S in the second phase before finding
one such that hash(P‖S) = H . Consequently, it might seem reasonable to expect
that Nostradamus would have to perform O(2n) hash function computations to
compromise the CTFP preimage resistance of a real hash function. (While one
could consider a more formal definition of CTFP for hash function families, and
consider the relationship between CTFP-resistance and other security goals, we
do not do so here but instead focus on our attacks.)

As described in detail below, the ability to violate the CTFP preimage resis-
tance property allows an attacker to carry out a number of surprising attacks
on applications of a hash function. Almost any use of a hash function to prove
knowledge of some information can be attacked by someone who can violate
this property. Many applications of hashing for signatures or for fingerprinting
some information which are not vulnerable to attack by straightforward collision-
finding techniques are broken by an attacker who can violate CTFP preimage
resistance.

Further, when the CTFP definition is relaxed somewhat (for example, by
allowing Nostradamus some prior limited knowledge or control over the format
of P , giving him prior knowledge of the full (large) set of possible P strings that
might be presented, or allowing him to use any of a large number of encodings of
P with the same meaning), the attacks become still cheaper and more practical.

1.3 Herding Attacks

The major result of this paper is as follows: For Damg̊ard-Merkle[6, 16] con-
struction hash functions, CTFP preimage resistance can always be violated
by repeated application of brute-force collision-finding attacks. More efficient
collision-finding algorithms for the hash function being attacked may be used to
make the attack more efficient, if the details of the collision-finding algorithms
support this. An attack that violates this property effectively “herds” a given
prefix to the desired hash value; we thus call any such attack violating the CTFP
preimage resistance property a “herding attack.”

The herding attack shows that the CTFP preimage resistance of a hash func-
tion like MD5 or SHA1 is ultimately limited by the collision resistance of the
hash function. At a high level, and in its basic variant, the attack is parameter-
ized by some positive integer k, e.g., k = 50, and by the output size n of the
hash function. In the first phase of a herding attack, the attacker, Alice, repeat-
edly applies a collision-finding attack against a hash function to build a diamond
structure, which is a data structure reminiscent of a binary tree. With high prob-
ability it takes at most 2k/2+n/2+2 applications of the hash compression function

186 J. Kelsey and T. Kohno

Table 1. Herding with Short Suffixes

output example diamond suffix length work
size width(k) (blocks)
128 MD5 41 48 287

160 SHA1 52 59 2108

192 Tiger 63 70 2129

256 SHA256 84 92 2172

512 Whirlpool 169 178 2343

n (n− 5)/3 k + lg(k) + 1 2n−k

(and possibly fewer, depending on details of more efficient collision-finding at-
tacks3) to create a diamond structure with 2k+1 − 2 intermediate hash states,
of which 2k are used in the basic form of the attack. In the second phase of
the attack, Alice exhaustively searches for a string S′ such that P‖S′ collides
with one of the diamond structure’s intermediate states; this step requires trying
O(2n−k) possibilities for S′. Having found such a string S′, Alice can construct
a sequence of message blocks Q from the diamond structure, and thus build a
suffix S = S′‖Q such that hash(P‖S) = H ; this step requires a negligible amount
of work, and the resulting suffix S will be k+1-blocks long. We stress that Alice
can have significant control over the contents of S, which means that S may not
be “random looking” but may instead contain structured data suitable for the
application that Alice is trying to attack. Table 1 present some parameters for
a version of our attack.

1.4 Practical Impact

Our techniques for carrying out herding attacks have much in common with the
long message second preimage attacks of [12]. However, those attacks required
implausibly long messages, and so probably could never be applied in practice.
By contrast, our herding attacks require quite short suffixes, and appear to be
practical in many situations. Similarly, many recent cryptanalytic results on
hash functions, such as [22, 23], require very careful control over the format of
the messages to be attacked. This is not generally true of our herding attacks,
though more efficient variants that make use of cryptanalytic results on the
underlying hash functions will naturally have to follow the same restrictions as
those attacks.

Near the end of this paper, we describe a number of ways in which our herding
attacks and variations on them can be exploited. In developing the herding

3 The collision finding attacks needed for constructing the diamond structure are some-
what different than those in recent results on MD5, SHA0, and SHA1[22, 23]. We are
uncertain whether these attacks can be adapted to the requirements of construct-
ing the diamond structure, though it seems plausible that it might work. For the
diamond structure we need collisions between two messages starting with different
IVs.

Herding Hash Functions and the Nostradamus Attack 187

attack, we also describe a new method of building multicollisions for Damg̊ard-
Merkle hash functions which we believe to be of independent interest, and which
may be useful in many other hash function attacks.

1.5 Related Work

The herding attack is closely related to the long message second preimage attacks
in [8] and [12], and is ultimately built upon the multicollision-finding technique
of [10]. Our technique for herding is related to the result of Lai and Massey [14]
showing a meet-in-the-middle second preimage attack when pseudopreimages
can be found cheaper than exhaustive search; in our attack, instead of finding
pseudopreimages, we construct a message by repeated collision searches, and
then do a meet-in-the-middle type attack to find a large set of possible second
preimages on our own chosen message. Our results complement Coron, Dodis,
Malinaud, and Puniya’s work[5], which does not present attacks like the ones
we present, but which shows that iterative hash functions like MD5 and SHA1
are not random oracles, even when their compression functions are. Variants of
our attacks works against Coron, et al’s fixes but do not violate their provable
security bounds.

More broadly, our result re-enforces the lessons that might sensibly be taken
from [7, 10, 11, 12, 15] on the many ways in which seemingly impractical hash func-
tion collisions may be applied in practice. The security properties of Damg̊ard-
Merkle hash functions against attackers who can find collisions are currently not
well understood.

2 The Diamond Structure: A Building Block for Herding

In this section we introduce the diamond structure. This is a structure of mes-
sages constructed to produce a large multicollision of a quite different format
than that of Joux[10]. Our multicollision is more expensive, and the same length.
For example, a 2k diamond-structure multicollision costs about 2n/2+k/2+2 work,
relative to Joux’ k×2n/2 work. There are two reasons why the diamond structure
lets an attacker do things which are not possible with only a Joux multicollision:

1. The diamond structure allows 2k choices for the first block of a 2k multicol-
lision, whereas Joux multicollisions involve a sequence of pairs of choices for
each part of the message.

2. The diamond structure contains 2k+1 − 2 intermediate hash values, making
the herding attack possible with short suffixes.

A diamond structure is essentially a Merkle tree built by brute force.
Figure 1 describes the basic idea, where edges represent messages and values

like h[i, j] represent intermediate hash states. In the diagram, the attacker starts
with eight different first message blocks, each leading to a different hash value;
he then searches for collisions between pairs of these hash values, yielding four
resulting intermediate hash values (at the cost of about 8 × 2n/2 work using a

188 J. Kelsey and T. Kohno

Fig. 1. The Basic Diamond Structure

naive algorithm). He repeats the process with the four remaining values, then
the two remaining ones. The result is a diamond structure which is 2k states
wide, and contains 2k+1 − 1 states total.

Producing a Suffix from an Intermediate Hash Value. Consider any of
the starting hash values. A suffix which maps that hash value to the final hash H
is constructed by walking down the tree from the leaves to the root, appending
the message blocks from each edge in the tree to produce a suffix.

Consider any intermediate hash value. Similarly, walking from that node down
to the root of the tree yields a suffix which maps the intermediate hash value to
the final hash H . Subsequently we discuss how to augment the suffix if the hash
function includes the length of the message in its last block.

Building the Structure. Building the structure is more efficient than a naive
approach suggests. Instead of fixing the position of each node within the tree and
then searching for collisions, the attacker dynamically builds the tree structure
during the collision search. To map 2k hash values down to 2k−1, she generates
about 2n/2+1/2−k/2 candidate message blocks from each starting hash value in
a single level of the structure, and then finds collisions between the different
starting values dynamically. The total work done to reduce 2k hash values to
2k−1 is about 2n/2+k/2+1/2, and thus the work done to construct a full diamond
structure with 2k hash values at its widest point is about 2n/2+k/2+2.

The work done to build the diamond structure is based on how many messages
must be tried from each of 2k starting values, before each has collided with at
least one other value. Intuitively, we can make the following argument, which
matches experimental data for small parameters: When we try 2n/2+k/2+1/2

messages spread out from 2k starting hash values (lines), we get 2n/2+k/2+1/2−k

messages per line, and thus between any pair of these starting hash values, we
expect about (2n/2+k/2+1/2−k)2 × 2−n = 2n+k+1−2k−n = 2−k+1 collisions. We
thus expect about 2−k+k+1 = 21 = 2 other hash values to collide with any given
starting hash value.

If this search is done on a single processor, then each time a pair of lines
collide, no further searching is done from those lines. There may be cases where
two pairs of lines collide on the same hash value. This very slightly decreases the
number of reachable hash values, but the expected number of these is extremely

Herding Hash Functions and the Nostradamus Attack 189

small. For example, in a 255 diamond structure, there are about 256 intermediate
hashes which are the results of these collision searches. For a 160-bit hash, we
thus expect roughly 2−49 such collisions, so we can ignore the effect of them on
our result.

Parallelizeability. It is easy to adapt the parallel collision search algorithm of
[20] to the construction of a diamond structure. The result of each iteration of
the search algorithm yields both a seed for the next message block to try, and
also a choice of which of the 2k starting chaining values will be used.

Employing Cryptanalytic Attacks. The above discussion has focused on
brute-force search as a way to build the diamond structure. An alternative is
to use some cryptanalytic results on the hash function. Whether this will work
depends on details of the cryptanalysis:

1. A collision-finding algorithm which produces a pair of messages from the
same initial value is not useful in constructing the diamond structure. Simi-
larly, an algorithm that can find collisions only from initial chaining values
with a single difference is not useful.

2. An algorithm which works for any known IV difference can be directly ap-
plied to build the diamond structure, though one must fix the positions of
the nodes within the diamond structure in advance. If the work to find a
collision pair is 2w, then this algorithm should be used to reduce 2k lines of
hash values to 2k−1 lines so long as w + k − 1 < n/2 + k/2 + 1/2.

3. An algorithm which works for a subset 2−p of all pairs of IVs can be used
to construct the diamond structure if the pairs can be recognized efficiently.
This is done by inserting one extra message block at each layer of the dia-
mond structure, and using this to force selected pairs of lines to initial values
from which the collision-search algorithm will work. The work necessary to
find one collision between lines is now 2p/2+1 + 2w. This algorithm should
be used to reduce 2k lines to 2k+1 so long as lg(2p/2+1 + 2w) + k − 1 <
n/2 + k/2 + 1/2.

Expandable Messages. Using the notation from [12], an (a, b)-expandable
message is a set of messages of varying lengths, between a and b inclusive, all
of which yield the same intermediate hash. Expandable messages may be found
from any initial hash value using the techniques found in [12], and more efficiently
found for some hash functions, including MD5 an SHA1, using techniques from
[8]; in the latter case, the cost is around twice that of a brute-force collision
finding attack.

If all 2k+1−2 intermediate hash values from the diamond structure are used in
the later steps of herding, then a (1, k+1)-expandable message must be produced
at the end of the diamond structure, to ensure that the final herded message is
always a fixed length. This is necessary since we assume that the length of the
message will be included in the last block. If only the widest layer of 2k hash
values is used, no expandable message is required.

Precomputation of the Prefix. If the full set of prefixes are known and small
enough, the diamond structure can be computed from their resulting intermediate

190 J. Kelsey and T. Kohno

hashes. This follows from the fact that the starting hash values are arbitrary.
This is discussed at more depth in Sections 3.1 and 4.

Variant: The Elongated Diamond Structure. Using ideas from [12], long
messages offer a naive way to mount the attack; the diamond structure offers
much shorter suffixes. However, the attacker can build a diamond structure with
many intermediate hashes more cheaply than above, if she is willing to tolerate
unreasonably long messages.

The widest layer of the diamond structure is chosen, with 2k hash values.
Then, the attacker computes 2r message blocks for each of the 2k hash values,
thus producing a total of 2k+r reachable intermediate states. He then constructs
the collision tree as described above.

The total work done to build a 2r-long elongated diamond structure with 2k

values at its widest point is about 2r+k+2k/2+n/2+2; this structure contains 2k+r

intermediate hash values, and yields suffixes of about 2r−1 message blocks on
average. In general, for reasonable suffix lengths, the elongated diamond struc-
ture has only a small advantage over regular diamond structures. An elongated
diamond structure must have an (r, 2r + r)-expandable message appended to its
end, to ensure that the final herded messages are always the same length, and
so always have the same final hash value.

It is possible to parallelize much of the production of an elongated diamond
structure. If the width is 2k hash values at the beginning, then the construction
of the structure can be parallelized up to 2k ways.

3 How to Herd a Hash Function

The herding attack allows an attacker to commit to the hash of a message
she doesn’t yet fully know, at the cost of a large computation. This attack is
closely related to the long message second-preimage attacks of [8, 12] and the
multicollision-finding techniques of [10].

At a high level, the attack works as follows:

1. Build the Diamond Structure: Alice produces a search structure which con-
tains many intermediate hash values. From any of these intermediate hash
values, a message can be produced which will lead to the same final hash H .
Alice may commit to H at this point.

2. Determine the Prefix: Later, Alice gains knowledge of P .
3. Find a Linking Message: Alice now searches for a single-block which, if ap-

pended to P , would yield an intermediate hash value which appears in her
search structure.

4. Producing the Message: Finally, Alice produces a sequence of message blocks
from her structure to link this intermediate hash value back to the previously
sent H .

At the end of this process, Alice has first committed to a hash H , then decided
what message she will provide which hashes to H and which begins with the
prefix P .

Herding Hash Functions and the Nostradamus Attack 191

Building the Diamond Structure. This step is described in Section 2.

Finding a Linking Message. Once a diamond structure is constructed and
its hash H is committed to, the attacker learns the prefix P . She must then
find a linking message–a message which allows her to link the prefix P into the
diamond structure. See Figure 2. When there are 2k intermediate hash values in
the diamond structure, the attacker expects to try about 2n−k trial messages in
order to find a linking message.

Fig. 2. Finding a Linking Message and Producing the Suffix

The starting chaining values for the diamond structure can be chosen arbi-
trarily. This makes it easy to parallelize the search for linking messages when
herding a prefix into the first (widest) layer of the diamond structure. For ex-
ample, the starting chaining values may be chosen to have their low 64 bits all
zeros[18]; then each processor searching for a linking message need only check
the list of starting hash values about once per 264 trials.

Producing the Message. Once a linking message from P , Mlink, is found,
the suffix is produced as described above–basically, the attacker walks up the
tree from the linked-to hash value to the root, producing another message block
on each step. See Figure 2. If all 2k+1 − 2 intermediate hash values from the
diamond structure are used when finding Mlink, then the pre-determined ex-
pandable message must be appended to the end of the suffix.

3.1 Work Done for Herding Attacks

A maximally short suffix for the herding attack is found by producing a 2k hash
value wide diamond structure, and only searching for linking messages to the
outermost (widest) level of hash values in the diamond structure, so that no
expandable message is needed. In this case, the length of the suffix is k + 1
message blocks, and the work done for the herding attack is approximately

2n−k + 2n/2+k/2+2 . (1)

Searching for linking messages to all 2k+1−2 intermediate hashes in the structure
requires adding an additional lg(k) + 1 message blocks for a (lg(k), k + lg(k))-
expandable message, and decreases the work required to

2n−k−1 + 2n/2+k/2+2 + k × 2n/2+1 , (2)

192 J. Kelsey and T. Kohno

the k × 2n/2+1 term arising from the search for an expandable message[12].
The cheapest herding attack with a reasonably short suffixes can be deter-

mined by setting the work done for constructing the diamond structure and
finding the linking message equal. We thus get a diamond structure of width 2k,
suffix length L, and total work W , where:

k =
n − 5

3
(3)

L = lg(k) + k + 1 (4)

W = 2n−k−1 + 2n/2+k/2+2 + k × 2n/2+1 ≈ 2n−k . (5)

Thus, using a 160-bit hash function, the cheapest attack with a reasonably short
suffix involves a diamond structure with about 252 messages at its widest point,
producing a 59-block suffix, and with a total work for the attack of about 2108

compression function calls. See Table 1 for additional examples.

Work for Herding Attacks with the Elongated Diamond Structure.
The cheapest herding attack with a suffix of slightly more than 2r blocks can be
determined by once again setting the work done for constructing the diamond
structure and finding the linking message equal, so long as k + r < k/2 + n/2.
We thus get an elongated diamond structure of width 2k, suffix length L, and
total work W , where:

k =
n − 2r − 3

3
(6)

L = lg(k + 2r) + k + 1 + 2r (7)

W = 2n−k−r + 2n/2+k/2+2 + k × 2n/2+1 + 2k+r ≈ 2n−k−r+1 . (8)

Thus, with a 160-bit hash function and a 255 block suffix (about as long as is
allowed for SHA1 or RIPEMD-160), an attacker would end up doing about 290

work total to herd any prefix into the previously published hash value.

Work for Herding from Precomputed Prefixes. If the set of possible pre-
fixes contains 2k possible messages, the diamond structure can be built from
the resulting 2k intermediate hashes. In this case, there is no search for a link-
ing message, and the total work for the attack is done in building the diamond
structure.

3.2 Making Messages Meaningful

These attacks all involve producing a suffix to some forced prefix, which forces
the complete message to have a specific hash value H . In order to use herding
in a real deception, however, the attacker probably cannot just append a bunch
of random blocks to the end of her predictions or other messages. Instead, she
needs to produce a suffix which is at least somewhat meaningful or plausible.
There are a number of tricks for doing this.

Herding Hash Functions and the Nostradamus Attack 193

Using Yuval’s Trick. Using Yuval’s clever trick[25], the attacker can prepare a
basic long document appropriate to her intended deception, and produce many
independent variation points in the document. This allows the use of meaningful-
looking messages for most contexts. For example, each message block in layer i
of the diamond structure could be a variation on the same theme, using about
n/2 possible variation points. In practice, this likely will make the suffix longer,
since it is hard to put 80 variation points in a 64-character message. However,
this has almost no effect on the herding attack. If the attacker needs ten message
blocks (640 characters) for each collision, her suffixes will be ten times longer,
but no harder to find. The algorithm for finding them works the same way.

The contents of these suffixes must be pretty general. The natural way to
handle this in most applications of herding is to write some common text dis-
cussing how the results are supposed to have been obtained (“I consulted my
crystal ball, and spent many hours poring over the manuscripts of the ancient
prophets....”). These can then be varied at many different points, independently,
to yield many possible bitstrings all having the same meaning.

Committing to Meaning, Not Bits. For many of the attacks for which
herding is useful, the goal is to falsely commit to some actual meaning, not
necessarily some specific message string. For example, an attacker trying to prove
her ability to predict the stock market is not really forced to use any fixed format
for the contents of her stock market predictions, so long as anyone reading them
will unambiguously be able to tell whether she got her predictions right.

This provides a great deal of extra flexibility for the attacker in using Yuval’s
trick, and also in arranging the different parts of the message to be committed
to, in order to maximize her convenience.

4 Exploiting Prior Knowledge of the Prefix Space

As suggested in Sections 2 and 3.1, the attack becomes much more efficient
if the prefix can be precomputed. In fact, it is often possible to precompute
the message piecemeal in ways that leave a huge number of possible prefixes
available, without requiring a huge amount of work.

Just as with the full herding attack, the precomputed version would not be
useful against a random oracle–we make use of the iterative structure of existing
hash functions to make the attack work.

Precomputing All Possible Prefixes. In the herding attack, the attacker may
reasonably expect to produce a diamond structure with 250 or more possible hash
values. For a great many possible applications of the herding attack, this may
be more than the possible number of prefix messages. The attacker may now
take advantage of an interesting feature of the diamond structure: There is no
restriction on the choice of starting hash values for the structure.

Let 2k, the width of the diamond structure, be the number of possible prefix
messages that the attacker may need to herd to her fixed hash value. (If there
are fewer prefix messages, the attacker appends one block to all the possible

194 J. Kelsey and T. Kohno

prefix messages, and varies that block to produce a set of prefix messages that is
exactly the right size.) She computes the intermediate hash after processing each
prefix message, and uses these intermediate hashes as the starting hash values
for the diamond structure.

The initial work to construct the diamond structure in this way is the same as
for the more general herding attack. However, the attacker now has the ability
to immediately produce a message which starts with any possible prefix with the
desired hash value. That is, she need not do a second expensive computation to
herd the prefix she is given.

The attacker who has a larger set of possible prefixes than this is not lost; she
may precompute the hashes of the most likely 2k prefixes. Then, if any of those
prefixes is presented to her, she can herd it immediately; otherwise, she must do
the large computation, or simply allow her prediction or other deception to fail
with some probability.

Using Joux Multicollisions. Joux multicollisions are not sufficient for the
general herding attack. However, when the set of possible messages to be com-
mitted to is of the right form and can be precomputed, Joux multicollisions can
be used to mount a weaker form of the herding attack.

Consider the case where the attacker wishes to commit to a sequence of “yes”
or “no” predictions, without knowing which she will need to reveal later. An
example of this would be a list of famous people who will or will not marry during
the year. In the precomputation phase of the attack, the attacker determines a
list of famous people and the order in which she will predict whether they will
marry. Following the Joux multicollision technique, she produces a list of about
2n/2 variations on a “Yes, this person will marry this year” prediction and about
2n/2 variations on a “No, this person will not marry this year” prediction. Each
prediction is independent; the attacker finds a colliding yes/no prediction for the
first famous person, then for the second, and so on. See Figure 3. When finished,
she publishes her list of famous people and the hash of her predictions for the
future. At the end of the year, she “reveals” her predictions, choosing for each
pair of colliding blocks the one that reflects what did happen that year.

Fig. 3. Using Joux Multicollisions to Predict Who Will Get Married

This variant of the attack is much cheaper than those based on the diamond
structure, but is also much less flexible. It can use existing cryptanalytic tech-
niques on SHA1 and MD5 since, at each stage, the attacker is looking for two
messages that collide starting from the same IV; of course, the use of existing
cryptanalytic techniques might influence the structure of the attacker’s yes/no
predictions. Precomputations of enormous sets of prefixes become possible using

Herding Hash Functions and the Nostradamus Attack 195

this technique. Most importantly, it can be combined with the diamond struc-
ture and variations of the Joux multicollision to provide even more flexibility to
the attacker, as we discuss below.

Combining Precomputations and Joux Multicollisions. In some cases,
some large part of the information to be committed to will fit cleanly into the
Joux multicollision structure, but other parts will not. For example, consider
a prediction of the course and outcome of a national election in the United
States4. Before the election is run, the attacker produces a set of 32 prefixes which
describe the course of the election in broad terms, e.g., “Smith won a decisive
victory,” “Jones narrowly carried the critical swing states and won,” etc. After
this, each state’s outcome is listed, e.g., “Alabama went for Smith, Alaska went
for Jones,” The first part of the message is a precomputed diamond structure;
the second part is a Joux multicollision allowing 250 different outcomes.

Applying the Joux Multicollision Idea to Diamond Structures. An even
more powerful way to structure these predictions is to concatenate precomputed
diamond structures in a kind of super-Joux collision.

Consider the above description, but now suppose we wanted to specify one of
32 possible descriptions of how the election went in each state, e.g., “In Alabama,
Smith won a resounding victory,” or “In Maryland, Jones narrowly won after a
series of vicious attack ads.”

The attacker can string together 51 diamond structures total, one to describe
the whole election, one for each state. This allows the attacker to “commit”
to a prediction with 2255 possible values (requiring 2127.5+n/2+2 work with an
n-bit hash function using a straightforward precomputed diamond structure),
while doing much less work (51× 22.5+n/2+2). The attacker also gains enormous
flexibility by being able to avoid the strict format of the Joux multicollisions.

5 Applying the Attacks: Herding for Fun and Prophets

In this section, we describe how the herding attack can be used in many different
contexts to do (what we believe to be) surprising things.

Predicting the Future: The Nostradamus Attack. The “Nostradamus at-
tack” is the use of herding to commit to the hash of a message that the attacker
doesn’t even know. This destroys the ability to use hashes, for which collisions
can be found, to prove prior knowledge of any information.

The Nostradamus attack is carried out in order to convince people that the
attacker can tell the future. This could be based on some claimed psychic power,
but also on some claimed improved understanding in science or economics, al-
lowing detailed prediction of the weather, elections, markets, etc. This can also
be used to “prove” access to some inside information, as with some attacker at-
tempting to convince a reporter or intelligence agent that she has inside access
to a terrorist cell or secretive government agency.
4 The only detail about US politics needed to understand this example is that all

elections ultimately produce exactly one victor.

196 J. Kelsey and T. Kohno

At a very general level, this attack works as follows:

1. The attacker presents the victim with a hash H , along with a claim about
the kind of information this represents. She promises to produce the message
that yields the hash after the events predicted have occurred.

2. The attacker waits for the events to unfold, just as the victim does.
3. The attacker herds a description of the events as they did unfold into her hash

output, and provides the resulting message to the victim, thus “proving” her
prior knowledge.

There are many variations on this theme; the predictions can be fully precom-
puted, completely unpredictable until they come to pass, or some mix of the
two.

Committing to an Ordering. The techniques for many of the variants of
the Nostradamus attack follow from the discussions in Sections 3 and 4. Here
we suggest another possibility, which uses what we call a “hash router;” see
Figure 4. Alice decides to prove (perhaps in a gambling context) that she can
predict the outcome of a race with 32 entrants. She commits to a sequence of 32
hash outputs, H0,1,...,31. After the race is over, she produces 32 strings, S0,1,...,31
such that Si describes the entrant in the race who finished in ith place, and
Hi = hash(Si).

Fig. 4. Committing to an Ordering Using a “Hash Router”

Alice builds a precomputed diamond structure starting from the names of the
32 entrants. When the diamond structure yields a final hash H , she produces 32
new message strings (probably simply strings like “1st place”, “2nd place”, etc.),
and processes them from H to get 32 different hash outputs. She commits to these
hash outputs. When the time comes to reveal her choices, she produces 32 strings
which commit her to the correct ordering of entrants in the race. Note that Alice
can route any of her starting precomputed prefixes to any of the hash outputs.

Retroactive Collisions. Under normal circumstances, someone creating a hash
collision must broadly know to what he is committing. While some clever attacks
have gotten around this by using some bits of the two colliding messages to

Herding Hash Functions and the Nostradamus Attack 197

change the meaning of later parts of a message[7, 9], these attacks are easy to
detect by looking at the underlying data.

The herding attack may be used to “backdate” a collision. That is, the attacker
sets up a collision today, and commits to its hash and perhaps one message with
that hash. Later, she decides what document she wishes collided with the one she
committed to, and so she herds that document to the same hash. The property
of the hash function being violated is identical as in the case of “proving” prior
knowledge, but the applications are quite different.

Stealing Credit for Inventions. The attacker can use the same idea to claim
to be a brilliant inventor, while actually stealing other peoples’ work. He submits
hashes to a digital timestamping service periodically. After he sees some new
invention he wants to claim, he herds a description of the invention to some old
hash value.

To save the attacker from building multiple diamond structures, the attacker
could construct a single diamond structure, and append a single message block
which would vary for each submission.

Tweaking a Signed Document. Consider the case where Alice has a very
reasonable document which she has signed, making some sensible predictions
about the future or statements of fact or terms of agreement. She wants to make
sure she can later “tweak” this document in some ways. Herding will permit this:

1. Using the precomputed variant with Joux multicollisions, she can produce
two alternatives for each paragraph or section of the document.

2. Using the precomputed diamond with Joux multicollisions, she can produce
many variations for some sections, and pairs of variations for others. She
chooses one to produce initially, but can change to another without changing
the hash.

3. Using the full herding attack, she can produce one “herded” document. Any
variation in the “prefix” part of the document she wishes to make later can
be made by carrying out another herding attack.

This attack can be used to tweak messages, contracts, news stories, signed/hashed
software, etc.

Random Number Fixing. Alice and Bob want to agree on a shared random
sequence for some game. Alice sends hash(X1), then Bob responds with X2. Fi-
nally, Alice reveals X1, and Alice and Bob each derive random bits by combining
X1 and X2 in some way. The herding attacks and its variations can be used to
allow Alice to exert substantial control over the resulting random bit sequence.
If the full herding attack isn’t practical in this scenario, Alice can at least use
the Joux multicollision variant to allow herself two choices per agreed random
number, where Bob has no choice.

6 Finding Multiblock Fixed Points

Attacks on commitment schemes are not the only applications of the diamond
structure and herding attack ideas. We can also find short cycles in hash

198 J. Kelsey and T. Kohno

functions. This is done in a simple way: We first construct a diamond structure,
where each of the starting hash values in the structure are found by generating
a random message block, and computing the compression function result of that
message block from the hash function’s initial value. If the diamond structure
is 2k wide, we then compute 2n−k trial message blocks from the end of the di-
amond structure. We expect an intermediate collision, which yields a k-block
fixed point for the hash algorithm.

This can be extended; with 2n−k+r work, we expect about 2r different k-block
fixed points, all reachable from a legitimate message. These can be concatenated
together; we can choose which of the 2r k-block chunks of message we wish
to append to the message next, without reference to previous choices. Further,
any message can be “herded” to this set of fixed points with about 2n−k work
and k appended blocks. For completeness, we recall that [17] show how to find
single-block fixed points in Davies-Meyer constructions and [12] show how to
find single-block fixed points in Snefru.

7 Conclusions

In this paper, we have defined a property of a hash function, Chosen Target
Forced Prefix (CTFP) preimage resistance, which is both surprisingly important
for real-world applications of hash functions, and also surprisingly dependent on
collision resistance of the hash function. We have described a variation on the
Joux multicollision technique for building tree-like structures of multicollisions
called “diamond structures,” and enumerated a number of techniques made pos-
sible by these structures. We have described a number of arguably practical
attacks which use these techniques.

At a very basic level, we believe that the most important lesson the reader
can take from this paper is that using iterated hash functions whose collision
resistance has been violated is very difficult, even when the relevant security
property does not appear to depend on collision resistance.

A great deal of research remains to be done in this area. The diamond struc-
ture seems likely to us to be about as useful in developing new attacks as the
Joux multicollision result, and we hope to see others building on the work in this
paper by finding other surprising things to do to iterated hash functions using
herding attacks and the diamond structure. Additionally, there may be many
other surprising ways in which iterated hash functions built on the Damg̊ard-
Merkle construction may be attacked when the attacker can find intermediate
collisions.

Acknowledgments

The authors wish to thank Dan Brown, Morris Dworkin, Niels Ferguson, Hal
Finney, Stuart Haber, Ulrich Kuehn, Bart Preneel, Christian Rechberger, Bruce
Schneier, the many participants of the NIST hash workshop, and the anony-
mous referees for helpful comments and discussions on the subject of this paper.

Herding Hash Functions and the Nostradamus Attack 199

T. Kohno was supported by NSF CCR-0208842, NSF ANR-0129617, and NSF
CCR-0093337. Part of this research was performed while T. Kohno was visiting
the University of California at Berkeley.

References

1. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM CCS 93, pages 62–73. ACM Press, 1993.

2. E. Biham and R. Chen. Near-collisions of SHA-0. In M. Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 290–305. Springer-Verlag, Berlin,
Germany, 2004.

3. E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, and W. Jalby. Collisions
of SHA-0 and Reduced SHA-1. In R. Cramer, editor, EUROCRYPT 2005, volume
3494 of LNCS. Springer-Verlag, Berlin, Germany, 2005.

4. D. R. Brown and D. B. Johnson. Hash functions based on block ciphers. In
D. Naccache, editor, CT-RSA 2001, volume 2020 of LNCS. Springer-Verlag, Berlin,
Germany, 2001.

5. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited:
How to construct a hash function. In V. Shoup, editor, CRYPTO 2005, volume
3621 of LNCS. Springer-Verlag, Berlin, Germany, 2005.

6. I. Damg̊ard. A design principle for hash functions. In G. Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 416–427. Springer-Verlag, Berlin,
Germany, 1989.

7. M. Daum and S. Lucks. Attacking hash functions by poisoned messages: The story
of Alice and her boss, 2005. http://www.cits.rub.de/MD5Collisions .

8. R. D. Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton
University, Jan. 1999.

9. M. Gebhardt, G. Illies, and W. Schindler. A note on practical value of single
hash collisions for special file formats. NIST Cryptographic Hash Workshop, 2005.
No published proceedings, available online at http://www.csrc.nist.gov/pki/
HashWorkshop/2005/Oct31_Presentations/Illies_NIST_05.pdf.

10. A. Joux. Multicollisions in iterated hash functions. Application to cascaded con-
structions. In M. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages
306–316. Springer-Verlag, Berlin, Germany, 2004.

11. D. Kaminsky. MD5 to be considered harmful someday. Cryptology ePrint Archive,
Report 2004/357, 2004. http://eprint.iacr.org/.

12. J. Kelsey and B. Schneier. Second preimages on n-bit hash functions for much less
than 2n work. In R. Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS,
pages 474–490. Springer-Verlag, Berlin, Germany, 2005.

13. V. Klima. Finding MD5 collisions on a notebook PC using multi-message
modifications. Cryptology ePrint Archive, Report 2005/102, 2005. http://
eprint.iacr.org/.

14. X. Lai and J. L. Massey. Hash functions based on block ciphers. In R. A. Rueppel,
editor, EUROCRYPT’92, volume 658 of LNCS. Springer-Verlag, Berlin, Germany,
1992.

15. A. Lenstra, X. Wang, and B. de Weger. Colliding X.509 certificates. Cryptology
ePrint Archive, Report 2005/067, 2005. http://eprint.iacr.org/.

16. R. C. Merkle. One way hash functions and DES. In G. Brassard, editor, CRYPTO’
89, volume 435 of LNCS, pages 428–446. Springer-Verlag, Berlin, Germany, 1989.

200 J. Kelsey and T. Kohno

17. S. Miyaguchi, K. Ohta, and M. Iwata. Confirmation that some hash functions are
not collision free. In I. Damg̊ard, editor, EUROCRYPT’90, volume 473 of LNCS.
Springer-Verlag, Berlin, Germany, May 1990.

18. B. Preneel, 2005. Personal communication.
19. V. Rijmen and E. Oswald. Update on SHA-1. In A. Menezes, editor, CT-RSA 2005,

volume 3376 of LNCS, pages 58–71. Springer-Verlag, Berlin, Germany, 2005.
20. P. van Oorschot and M. Wiener. Parallel collision search with cryptanalytic appli-

cations. Journal of Cryptology, 12(1):1–28, 1999.
21. X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the hash functions

MD4 and RIPEMD. In R. Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS. Springer-Verlag, Berlin, Germany, 2005.

22. X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1. In V. Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS. Springer-Verlag, Berlin, Germany,
2005.

23. X. Wang and H. Yu. How to break MD5 and other hash functions. In R. Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 19–35. Springer-Verlag,
Berlin, Germany, 2005.

24. X. Wang, H. Yu, and Y. L. Yin. Efficient collision search attacks on SHA-0. In
V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS. Springer-Verlag, Berlin,
Germany, 2005.

25. G. Yuval. How to swindle Rabin. Cryptologia, 3(3):187–189, 1979.

Optimal Reductions Between Oblivious
Transfers Using Interactive Hashing

Claude Crépeau� and George Savvides�

McGill University, Montéral, QC, Canada
{crepeau, gsavvi1}@cs.mcgill.ca

Abstract. We present an asymptotically optimal reduction of one-out-
of-two String Oblivious Transfer to one-out-of-two Bit Oblivious Trans-
fer using Interactive Hashing in conjunction with Privacy Amplification.
Interactive Hashing is used in an innovative way to test the receiver’s ad-
herence to the protocol. We show that (1 + ε)k uses of Bit OT suffice to
implement String OT for k-bit strings. Our protocol represents a two-fold
improvement over the best constructions in the literature and is asymp-
totically optimal. We then show that our construction can also accommo-
date weaker versions of Bit OT, thereby obtaining a significantly lower
expansion factor compared to previous constructions. Besides increasing
efficiency, our constructions allow the use of any 2-universal family of
Hash Functions for performing Privacy Amplification. Of independent
interest, our reduction illustrates the power of Interactive Hashing as an
ingredient in the design of cryptographic protocols.

Keywords: interactive hashing, oblivious transfer, privacy amplifica-
tion.

1 Introduction

The notion of Oblivious Transfer was originally introduced by Rabin [12]. How-
ever, a variant of OT was first invented by Wiesner [14] but his work was only
published post-facto. Its application to multi-party computation was shown by
Even, Goldreich and Lempel in [8]. One-out-of-two String Oblivious Transfer,
denoted

(2
1

)
–String OTk, is a primitive that allows a sender Alice to send one

of two k-bit strings, a0, a1 to a receiver Bob who receives ac for a choice bit
c ∈ {0, 1}. It is assumed that the joint probability distribution Pa0a1c from
which the inputs are generated is known to both parties. The primitive offers
the following security guarantees to an honest party facing a dishonest party:

– (Dishonest) Alice does not learn any extra information about Bob’s choice c
beyond what can be inferred from her inputs a0, a1 under distribution Pa0a1c.

– (Dishonest) Bob can learn information about only one of a0, a1. This excludes
any joint information about the two strings except what can be inferred from
Bob’s input, (legitimate) output, and Pa0a1c.

� Supported in part by NSERC, MITACS, and CIAR.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 201–221, 2006.
c© International Association for Cryptologic Research 2006

202 C. Crépeau and G. Savvides

One-out-of-two Bit Oblivious Transfer, denoted
(2
1

)
–Bit OT or simply Bit OT,

is a simpler primitive which can be viewed as a special case of
(2
1

)
–String OTk

with k = 1. Its apparent simplicity belies its surprising power as a cryptographic
primitive: it is by itself sufficient to securely implement any two-party compu-
tation [9]. It is therefore not surprising that

(2
1

)
–String OTk can, in principle at

least, be reduced to Bit OT. However, as such generic reductions are typically
inefficient and impractical, many attempts at finding direct and efficient reduc-
tions have been made in the past. Besides increasing efficiency an orthogonal
goal of some of these reductions has been to reduce

(2
1

)
–String OTk to weaker

variants of Bit OT such as XOR OT, Generalized OT and Universal OT.

Contributions of This Paper. The original motivation behind our work
was to highlight the potential of Interactive Hashing [11, 10] as an ingredient
in the design of cryptographic protocols. This paper shows how in the context
of reductions between Oblivious Transfers, Interactive Hashing (both its round-
unbounded and constant-round version[6]) can be used for the selection of a
small subset of positions to be subsequently used for tests. This selection is suf-
ficiently random to thwart any dishonest receiver’s attempts at cheating as well
as sufficiently under the honest receiver’s control to protect his privacy.

We show how such tests can be embedded in the reduction of String OT
to Bit OT and weaker variants given by Brassard, Crépeau and Wolf [3]. The
tests ensure that the receiver cannot deviate from the protocol more than an
arbitrarily small fraction of the time, leading to two important improvements
over the original reduction:

1. The expansion factor n/k (namely, the ratio of Bit OT uses to string length)
is significantly reduced. Specifically:
– In the case of Bit OT and XOR OT it decreases from 2+ ε to 1+ ε′. This

is in fact asymptotically optimal as the receiver has n bits of entropy
after the n executions of Bit OT. For a formal proof that any reduction
of

(2
1

)
–String OTk requires at least k executions of Bit OT, see [7].

– In the case of Generalized OT it decreases from 4.8188 to 1 + ε′′, which
is again optimal.

– In the case of Universal OT it is reduced by a factor of at least 8 ln 2 =
5.545 (its exact value is a function of the channel’s characteristics).

2. The construction is more general as it allows any 2-Universal Family of Hash
Functions to be used for Privacy Amplification.

2 Oblivious Transfer Variants and Their Specifications

2.1
(
2

1

)
–ROTk and Its Equivalence to

(
2

1

)
–String OTk(2

1

)
–ROTk is a randomized variant of

(2
1

)
–String OTk where Alice sends to Bob

two independently chosen random strings r0, r1 ∈R {0, 1}k, of which Bob learns
rc for c ∈R {0, 1}.

Optimal Reductions Between Oblivious Transfers Using Interactive Hashing 203

Security Requirements. Let R0, R1 be two independent random variables
uniformly distributed in {0, 1}k corresponding to the strings sent by Alice. Let
C be a binary random variable uniformly distributed in {0, 1} corresponding
to Bob’s choice. The security requirements for

(2
1

)
–ROTk are captured by the

following information-theoretic conditions:

1. (Dishonest) Alice does not gain any information about C during the protocol.
In other words H (C) = 1.

2. (Dishonest) Bob obtains information about only one of the two random
strings during the protocol. Formally, at the end of each run of the protocol,
there exists some d ∈ {0, 1} such that H (Rd | Rd̄) = k.

Equivalence to
(
2

1

)
–String OTk. It is easy to see that

(2
1

)
–ROTk reduces

to
(2
1

)
–String OTk. Conversely, as Protocol 1 shows, it is also possible to re-

duce
(2
1

)
–String OTk to

(2
1

)
–ROTk in a straightforward way. As

(2
1

)
–ROTk and(2

1

)
–String OTk are equivalent, in this paper we will focus on reductions of(2

1

)
–ROTk to Bit OT. This choice is motivated by the fact that the random-

ized nature of
(2
1

)
–ROTk and the independence of the two parties’ inputs yield

simpler constructions with easier to prove security.

Protocol 1. Reducing
(2
1

)
–String OTk to

(2
1

)
–ROTk

Let the inputs to
(2
1

)
–String OTk be a0, a1 ∈ {0, 1}k for Alice and c ∈ {0, 1} for Bob.

1. Alice uses
(2
1

)
–ROTk to send r0, r1 ∈R {0, 1}k to Bob, who receives rc′ for some

randomly chosen c′ ∈ {0, 1}.

2. Bob sends d = c⊕ c′ to Alice.

3. Alice sets e0 = a0 ⊕ rd and e1 = a1 ⊕ rd̄ and sends e0, e1 to Bob.

4. Bob decodes ac = ec ⊕ rc′ .

Note that Step 1 of Protocol 1 can be performed before the two parties’ inputs
to

(2
1

)
–String OTk have been determined and its results stored for later. In Step

2 Bob sends to Alice a “flip bit” d which effectively allows him to invert the order
in which Alice’s strings are encrypted and thus to eventually learn the string ac

of his choice regardless of his initial random choice of c′ in Step 1.

2.2 Weaker Variants of Bit OT

By relaxing the security guarantees against a dishonest receiver (Bob) we obtain
weaker variants of Bit OT, as described below. In all cases b0, b1 denote Alice’s
input bits. Whatever extra choices may be available to Bob, he can always act
honestly and request bc for a choice c ∈ {0, 1}. As in ‘regular’ Bit OT, dishonest
Alice never obtains information about Bob’s choice.

204 C. Crépeau and G. Savvides

XOR OT (XOT). Bob can choose to learn one of b0, b1, b⊕ where b⊕
def= b0⊕b1.

Generalized OT (GOT). Bob can choose to learn f(b0, b1) where f is any of
the 16 possible one-bit functions of b0, b1.

Universal OT (UOT). Bob can choose to learn Ω(b0, b1) where Ω is any ar-
bitrary discrete memoryless channel whose input is a pair of bits and whose
output satisfies the following constraint: let B0, B1 ∈ {0, 1} be uniformly
distributed random variables and let α ≤ 1 be a constant. Then,

H (B0, B1 | Ω (B0, B1)) ≥ α.

Note that we disallow α > 1 as the channel would not allow Bob to act honestly.

3 Tools and Mathematical Background

3.1 Encoding of Subsets as Bit Strings

Let x be a small constant. In our protocols we will need to encode subsets of
xn elements out of a total of n as bit strings. Let K =

(
n
xn

)
be the number of

such subsets. There exists a simple and efficiently computable bijection between
the K subsets and the integers 0, . . . , K − 1, providing an encoding scheme
with output length m = �log (K) ≤ nH (x). See [5] (Section 3.1) for details
on its implementation. Note that in this encoding scheme, the bit strings in
{0, 1}m that correspond to valid encodings, namely the binary representations
of numbers 0, . . . , K − 1, could potentially make up only slightly more than half
of all strings. In order to avoid having to deal with invalid encodings, we will
consider any string w ∈ {0, 1}m to encode the same subset as w (mod K). Thus
in our modified encoding scheme each string in {0, 1}m is a valid encoding of
some subset, while to each of the K subsets correspond either 1 or 2 bit strings
in {0, 1}m. This imbalance1 in the number of encodings per subset turns out to
be of little importance in our scenario thanks to Lemma 1 below.

Lemma 1. Assume the modified encoding of Section 3.1 mapping subsets to bit
strings in {0, 1}m. If the fraction of subsets possessing a certain property is f ,
then the fraction f ′ of bit strings in {0, 1}m that map to subsets possessing that
property satisfies f ′ ≤ 2f .

Proof. Let P be the set containing all subsets possessing the property, and let
Q be its complement. Then f = |P |

|P |+|Q| . The maximum fraction of strings in
{0, 1}m mapping to subsets in P occurs when all subsets in P have two encod-
ings each, while all subsets in Q have only one. Consequently, f ′ ≤ 2|P |

2|P |+|Q| ≤
2|P |

|P |+|Q| = 2f ��
1 Note that this imbalance could be further reduced, if necessary, at the cost of a slight

increase in the encoding length. Let M ≥ m and let every w ∈ {0, 1}M map to the
same subset as w (mod K). Then each of the K subsets will have at least � 2M

K
� and

at most � 2M

K
� different encodings.

Optimal Reductions Between Oblivious Transfers Using Interactive Hashing 205

3.2 Interactive Hashing

Interactive Hashing is a primitive (first appearing in [11, 10] in the context of
perfectly hiding commitments) that allows a sender to send an m–bit string s to
a receiver, who receives both s and another, effectively random string in {0, 1}m.
The security properties of this primitive that are relevant to our setting are:

1. The receiver cannot tell which of the two output strings was the original in-
put. Let the two output strings be s0, s1 (labeled according to lexicographic
order). Then if both strings were apriori equally likely to have been the
sender’s input s, then they are aposteriori equally likely as well.

2. When both participants are honest, the input is equally likely to be paired
with any of the other strings. Let s be the sender’s input and let s′ be the
second output of Interactive Hashing. Then provided that both participants
follow the protocol, s′ will be uniformly distributed among all 2m −1 strings
different from s.

3. The sender cannot force both outputs to have a rare property. Let G be
a subset of {0, 1}m such that |G|

2m is exponentially small in m. Then the
probability that a dishonest sender will succeed in having both outputs s0, s1

be in G is also exponentially small in m.

Implementation of Interactive Hashing. In our reductions we will use Pro-
tocol 2 to implement Interactive Hashing. All operations below take place in F2.

Protocol 2. Interactive Hashing
Let s be a m-bit string that the sender wishes to send to the receiver.

1. The receiver chooses a (m − 1) × m matrix Q of rank m − 1. Let qi be the i-th
query, consisting of the i-th row of Q.

2. The receiver sends query q1 to the sender. The sender responds with c1 = q1 · s
where · denotes the dot product.

3. For 2 ≤ i ≤ m − 1 do:
(a) Upon receiving ci−1 the receiver sends query qi to the sender.

(b) The sender responds with ci = qi · s
4. Both parties compute the two solutions to the resulting system of m− 1 equations

and m unknowns and label them s0, s1 according to lexicographic order.

Security of Protocol 2. The properties of the linear system resulting from
the interaction between the two parties easily establish that the first security
requirement is met: that the receiver cannot guess which of the two output
strings was the sender’s original input to the protocol. Let V be the receiver’s
(marginal) view at the end of the protocol and let s0, s1 be the corresponding
output strings. Note that V would be identical whether the sender’s input was s0

or s1 as the responses obtained after each challenge would be the same in both
cases. Consequently, if before the protocol begins the sender is equally likely to

206 C. Crépeau and G. Savvides

have chosen s0 and s1 as input — both with some small probability α — then
at the end of the protocol each of these two strings has equal probability 1/2

of having been the original input string given V . We remark that a dishonest
receiver would gain nothing by selecting a matrix Q in a non-random fashion or
with rank less than t − 1.

As for the second property, let s be the sender’s input and let s′ be the
second output of Interactive Hashing. We first note that since the linear system
has two distinct solutions, it is always the case that s′ �= s. To see that s′ is
uniformly distributed among all strings in {0, 1}m \ s, it suffices to observe that
Q is randomly chosen among all rank m − 1 matrices and that the number of
such Q’s satisfying Q(s) = Q(s′) ⇔ Q(s − s′) = 0 is the same for any s′ �= s.

Concerning the third security requirement, it can be shown (see [5], Lemma 6)
that if G is an exponentially small (in m) subset of {0, 1}m, then whatever
dishonest strategy the receiver might use with the aim of forcing both outputs s0

and s1 to be strings from G, he will only succeed in doing so with exponentially
small probability. We remark that more recent, unpublished results by the second
author of this paper establish a tight upper bound of 15.682 · |G|/2m for this
probability and that this upper bound remains valid for all ratios |G|/2m.

More Efficient Implementations of Interactive Hashing. A constant-
round Interactive Hashing protocol appears in [6]. The construction capitalizes
on results from pseudorandomness, in particular efficient implementations of
almost t-wise independent permutations, to significantly reduce the amount of
interaction necessary. Specifically, it is shown that 4 rounds are sufficient for
inputs of any size, in contrast to Protocol 2 that requires m−1 rounds for inputs
of size m. The main disadvantages of this constant-round implementation are
its much greater complexity as well as the fact that some parameters in the
construction require prior knowledge of an upper bound on G. As our only
efficiency concern in this paper is the number of Bit OT executions, we will
not deal with this alternative construction any further even though the authors
believe that it would be a suitable replacement to Protocol 2, at least in the
context of our reductions.

3.3 Tail Bounds

Markov’s Inequality. Let X be a random variable assuming only positive
values and let μ = E [X]. Then Pr [X ≥ t] ≤ μ

t .

Chernoff Bounds. Let B(n, p) be the binomial distribution with parameters
n, p and mean μ = np. We will use the following versions of the Chernoff bound
for 0 < δ ≤ 1:

Pr [B(n, p) ≤ (1 − δ)μ] ≤ e−δ2μ/2 (1)

Pr [B(n, p) ≥ (1 + δ)μ] ≤ e−δ2μ/3 (2)

From (1) we can also deduce the following inequality

Pr [B(n, p) ≤ μ − Δn] ≤ e−Δ2n/2 (3)

Optimal Reductions Between Oblivious Transfers Using Interactive Hashing 207

3.4 Error Probability and Its Concentration on an Erasure Event

Fano’s Lemma (Adapted from [3]). Let X be a random variable with range
X and let Y be another, related random variable. Let pe be the (average) error
probability of correctly guessing the value of X with any strategy given the
outcome of Y and let h(p) def= −p log p − (1 − p) log(1 − p). Then pe satisfies:

h(pe) + pe · log2(|X | − 1) ≥ H (X | Y) (4)

Specifying an Erasure Event Δ. Let X be a binary random variable and
let pe be the error probability of guessing X correctly using an optimal strategy
(in other words, pe is the minimum average error probability). Let p ≤ pe. For
a specific guessing strategy with average guessing error at most 1/2, let E be an
indicator random variable corresponding to the event of guessing the value of
X incorrectly. Note that Pr

[
Ē
] ≥ Pr [E] ≥ pe ≥ p. Define Δ to be another

indicator random variable such that

Pr [Δ | E] =
p

Pr [E]
Pr

[
Δ | Ē

]
=

p

Pr
[
Ē
] (5)

It follows that Pr [Δ] = 2p and that Pr [E | Δ] = Pr
[
Ē | Δ

]
= 1

2 . Suppose
that the value of Δ is provided as side information by an oracle. Then with
probability 2p we have Δ = 1 in which case X is totally unknown We will refer
to this event as an erasure of X . This leads to the following lemma:

Lemma 2. Let X be a binary random variable and let pe be the error probability
when guessing X. Then X can be erased with probability 2p ≤ 2pe.

3.5 Privacy Amplification

Privacy Amplification [2] is a technique that allows a partially known string
R to be shrunk into a shorter but almost uniformly distributed string r that
can be used effectively as a one-time pad in cryptographic applications. For our
needs we will use a simplified version of the Generalized Privacy Amplification
Theorem [1] (also covered in [2]) which assumes that there are always u or more
unknown physical bits about R (as opposed to general bounds on R’s entropy).

Theorem 1. Let R be a random variable uniformly distributed in {0, 1}n. Let
V be a random variable corresponding to Bob’s knowledge of R and suppose that
any value V = v provides no information about u or more physical bits of R.
Let s be a security parameter and let k = u − s. Let H be a 2-Universal Family
of Hash functions mapping {0, 1}n to {0, 1}k and let H be uniformly distributed
in H. Let r = H(R) Then the following holds:

H (r | V H) ≥ k − log
(
1 + 2k−u

) ≥ k − 2k−u

ln 2
= k − 2−s

ln 2
(6)

It follows from Equation (6) that I(r; V H) ≤ 2−s/ ln 2. From Markov’s inequality
it follows that the probability that Bob has more than 2−s/2 bits of information
about r is no larger than 2−s/2/ ln 2.

208 C. Crépeau and G. Savvides

4 Previous Work

All reductions of
(2
1

)
–ROTk to Bit OT fall within two major categories: reduc-

tions based on Self-Intersecting Codes (Section 4.1) and reductions based on
Privacy Amplification (Section 4.2).

4.1 Reductions Based on Self-intersecting Codes

These reductions use a special class of error-correcting codes called “self-inter-
secting codes” encoding k-bit input strings into n-bit codewords. They have the
extra property that any two non-zero codewords c0, c1 must have a position i
such that c0i �= 0 �= c1i. Consult [4] for more details.

Advantages and Disadvantages. The main advantage of this approach is
that the self-intersecting code can be chosen ahead of time and embedded once
and for all in the protocol. One of its main disadvantages is the rather large
expansion factor n/k, theoretically lower-bounded by 3.5277 [13] and in practice
roughly 4.8188. Another important limitation is that this approach does not lend
itself to generalizations to weaker forms of Bit OT, such as XOT, GOT and UOT.

4.2 Reductions Based on Privacy Amplification

In Protocol 3 we introduce the construction of [3] upon which our own construc-
tion (Protocol 4) builds and expands.

Protocol 3. Reducing
(2
1

)
–ROTk to Bit OT

1. Alice selects R0, R1 ∈R {0, 1}n. Bob selects c ∈R {0, 1}.
2. Alice sends R0, R1 to Bob using n executions of Bit OT, where the i-th round

contains bits Ri
0, R

i
1. Bob receives Rc.

3. Let k = n/2− s where s is a security parameter. Alice randomly chooses two k×n
binary matrices M0, M1 of rank k and sets r0 = M0 ·R0 and r1 = M1 · R1.

4. Alice sends M0, M1 to Bob, who sets rc = Mc ·Rc.

It is easy to see that Protocol 3 always succeeds in achieving
(2
1

)
–ROTk when

both parties are honest. The properties of Bit OT guarantee that (dishonest)
Alice cannot obtain any information on Bob’s choice bit c at Step 2. On the
other hand, at the end of Step 2 (dishonest) Bob is guaranteed to be missing
at least n/2 bits of Rd for some d ∈ {0, 1}. This is exploited at Step 3 by
performing Privacy Amplification with output length k = n/2 − s. Specifically,
the 2-universal family of Hash Functions used in Protocol 3 guarantees that rd

is uniformly distributed in {0, 1}k and independent of rd̄ except with probability
exponentially small in s. It is shown in [3] that using this family of hash functions
this property can be maintained even if Bit OT is replaced with weaker variants
such as XOR OT, Generalized OT and Universal OT — albeit at the cost of
further reducing the size of k.

Optimal Reductions Between Oblivious Transfers Using Interactive Hashing 209

Advantages and Disadvantages. Besides its apparent simplicity and straight-
forward implementation, the reduction of Protocol 3 has two main advantages
over reductions based on Self-Intersecting Codes: Using n executions of Bit OT
one can achieve

(2
1

)
–ROTk for k slightly less than n/2, leading to an expansion

factor of 2 + ε. Consequently, it achieves a lower expansion factor than any re-
duction based in Self-Intersecting Codes. Using the 2-universal family of Hash
Functions defined at Step 3, the reduction works without any modification when
Bit OT is replaced with XOT and requires only a decrease in the size of k to
work with GOT and UOT.

The construction suffers from two disadvantages: The proof of security relies
heavily on the properties of matrices in F2 used for Privacy Amplification in
Step 3. A general result for any universal class of hash functions was left as an
open problem. In every run of the protocol a new set of matrices M0, M1 must be
selected and transmitted, thereby increasing the amount of randomness needed
as well as the communication complexity by Θ(n2) bits.

5 The New Reduction of
(2
1

)
–ROTk to Bit OT

Notation and Conventions. In our reduction, two randomly chosen strings
T0, T1 ∈R {0, 1}n are transmitted pairwise using n executions of Bit OT. We
denote by ti0, t

i
1 the bits at position i of T0, T1, respectively. Let I be the set of all

n positions. For a subset s ⊆ I let T (s) be the substring of T consisting of the bits
at all positions i ∈ s in increasing order of position. Note that T (I) = T . Subsets
of I of cardinality xn will be mapped to bit strings of length m = �log

((
n
xn

))
using the encoding/decoding scheme of Section 3.1.

Intuition Behind Protocol 4. At Step 1, the two parties agree on the value
of x which will determine the proportion of bits sacrificed for tests.

At Step 2 Alice selects the two random n-bit strings to be transmitted to Bob
using n executions of Bit OT.

At Step 3 Bob randomly chooses his choice bit c ∈ {0, 1}. He also selects a
small subset s ∈ I of cardinality xn. This selection is made by first choosing
an encoding w uniformly at random among {0, 1}m and then mapping it to
the corresponding subset s. This guarantees that on one hand, s is sufficiently
random and on the other hand, that every string in {0, 1}m is equally likely to
be Bob’s initial choice. The latter fact will be crucial in preventing Alice from
guessing Bob’s choice bit in later steps.

At Step 4 Alice transmits T0, T1 using n executions of Bit OT. Bob selects
to learn tic at all positions except at the few positions in s where his choice is
reversed. As a result he knows most bits of Tc and only xn bits of Tc̄. See Fig. 1.

The goal of the protocol at Step 5 is to select a second, effectively random
subset. Bob starts by sending w to Alice using Interactive Hashing, the output
of which will be w0, w1. As from Alice’s point of view both strings are equally
likely to have been Bob’s original choice at Step 3, Property 1 of Interactive
Hashing (Section 3.2) guarantees to Bob that Alice cannot guess the value of b
such that wb = w. At the same time Property 3 of Interactive Hashing provides

210 C. Crépeau and G. Savvides

Protocol 4. New reduction of
(2
1

)
–ROTk to Bit OT using Interactive Hashing

1. Alice and Bob select x to be a (very small) positive constant less than 1.

2. Alice chooses two random strings T0, T1 ∈R {0, 1}n.

3. Bob chooses a random c ∈R {0, 1}. Let m = �log ((n
xn

))�. Bob selects w ∈R {0, 1}m

uniformly at random and decodes w into a subset s ⊂ I of cardinality xn according
to the encoding/decoding scheme of Section 3.1.

4. Alice transmits T0, T1 to Bob using n executions of Bit OT, with round i containing
bits ti

0, t
i
1. Bob chooses to learn ti

c if i /∈ s and ti
c̄ if i ∈ s.

5. Bob sends w to Alice using Interactive Hashing (Protocol 2). Alice and Bob com-
pute the two output strings, labeled w0 , w1 according to lexicographic order, as
well as the corresponding subsets s0, s1 ⊂ I . Bob computes b ∈ {0, 1} s.t. wb = w.

6. Alice checks that |s0 ∩ s1| ≤ 2 · x2n and aborts otherwise.

7. Both parties compute s′
0 = s0 \ (s0 ∩ s1) and s′

1 = s1 \ (s0 ∩ s1).

8. Bob announces a = b ⊕ c to Alice. He also announces T0(s′
1−a) and T1(s′

a).

9. Alice checks that the strings announced by Bob are consistent with a and contain
no errors. Otherwise she aborts the protocol.

10. Alice and Bob discard the Bit OT’s at positions s0 ∪ s1 and concentrate on the
remaining positions in J = I \ (s0 ∪ s1). Let j = |J | and R0 = T0(J), R1 = T1(J).

11. Alice chooses two functions h0, h1 randomly and independently from a 2-universal
family of hash functions with input length j and output length k = j − 6xn ≥
n− 8xn. She sets r0 = h0(R0) and r1 = h1(R1). She sends h0, h1 to Bob.

12. Bob sets rc = hc(Rc).

Alice with the guarantee that the choice of one of w0, w1 was effectively random
and beyond Bob’s control. We will see that this implies that the corresponding
subset is also random enough to ensure that a cheating Bob will fail the tests at
Step 9 except with negligible probability.

At Step 6 Alice makes sure that the intersection of s0, s1 is not too large as
this would interfere with the proof of security against a dishonest Bob.

Fig. 1. During the n Bit OT executions Bob chooses ti
c at positions i ∈ I \ s, and ti

c̄

at positions i ∈ s. In the Figure, c = 0 so in the end Bob knows T0(I \ s) and T1(s).
Note that while s ⊂ I is shown here as a contiguous block, in reality the positions it
represents occur throughout the n executions.

Optimal Reductions Between Oblivious Transfers Using Interactive Hashing 211

Fig. 2. Honest Bob sends his subset s to Alice through Interactive Hashing. With
overwhelming probability this procedure produces two outputs s0, s1 of which one is
s and the other is effectively randomly chosen. Alice does not know which of the two
was Bob’s original choice. The intersection of s0, s1 is later excluded to form s′

0, s
′
1.

Fig. 3. After establishing sets s′
0, s

′
1, Alice expects Bob to announce either T0(s′

0) and
T1(s′

1) or T0(s′
1) and T1(s′

0) depending on the value of a. If Bob’s choice was c = 0 as in
Figure 1 and s = s0 after Interactive Hashing, then he would choose the latter option.

Fig. 4. After Bob has passed the tests, both players ignore the Bit OT executions at
positions s0 ∪ s1 and form strings R0, R1 from the remaining bits. Then independent
applications of Privacy Amplification on R0, R1 produce r0, r1 ∈ {0, 1}k.

At Step 7 the two parties exclude the bits in this intersection from the tests
that will follow since Bob cannot be expected to know both T0(s0 ∩ s1) and
T1(s0 ∩ s1). What remains of s0, s1 is denoted s′0, s′1.

At Step 8 Bob effectively announces Tc(s′̄b) and Tc̄(s′b) in both cases. Note
that the only information related to c which is implied by the announced bits is
the value of a, which is already made available to Alice at the beginning of the
step. Alice can correctly guess c = a ⊕ b if and only if she can correctly guess b.

At Step 9 Alice checks that the strings were announced correctly and are con-
sistent with the value of a — see Fig. 3. If that is the case then Alice is convinced

212 C. Crépeau and G. Savvides

that Bob has not deviated much from the protocol at Step 4. In a nutshell the
idea here is that Interactive Hashing guarantees that even if Bob behaves dishon-
estly, without loss of generality s1 was chosen effectively at random. Therefore,
if Bob can announce all bits in T0(s′0), T1(s′1), say, it must have been the case
that he knew most bits in T1 to begin with and consequently few bits in T0. In
fact, we prove that if (dishonest) Bob learns more than 5xn bits of both T0 and
T1 during Step 4 then he gets caught with overwhelming probability.

In Step 10 the two players discard the Bit OT executions at positions s0 ∪ s1
that were used for tests and concentrate on the remaining j executions. Note
that j ≥ n − 2xn. As Bob passed the tests of Step 9, Alice is convinced that
there is a d ∈ {0, 1} such that Bob knows at most 5xn bits in Td and thus at
most 5xn bits in Rd. This implies that he is missing at least j − 5xn bits of Rd.

In Step 11 she thus sets k = (j − 5xn) − xn ≥ n − 8xn and performs Privacy
Amplification (with security parameter xn) on R0, R1 to get r0, r1. See Fig. 4.

Gains in Efficiency. As k ≥ n − 8xn for any small constant x, the expansion
factor n/k is 1 + ε for some small constant ε = 8x

1−8x . This is asymptotically
optimal (see [7]) and represents a two-fold improvement over the corresponding
reduction in [3] where the expansion factor was at least 2 + ε′.

5.1 Proof of Security and Practicality

Theorem 2. The probability of failure of Protocol 4 with honest participants is
exponentially small in n.

Proof. If both parties are honest then Protocol 4 can only fail at Step 6. We will
show that for any (fixed) w ∈ {0, 1}m that Bob inputs to Interactive Hashing at
Step 5, the probability that the second output w′ is such that |s ∩ s′| > 2 · x2n
is exponentially small in n. Let s be the subset corresponding to Bob’s choice of
w. We will call a subset s′ bad if |s ∩ s′| > 2 · x2n. Likewise, we will call a string
w′ ∈ {0, 1}m bad if it maps to a bad subset.

We start by showing that the fraction of bad subsets is exponentially small in
n. Suppose s′ ⊂ I is randomly chosen among all subsets of cardinality xn. One
way to choose s′ is by sequentially selecting xn positions uniformly at random
without repetition among all n positions in I. The probability qi that the i–th
position thus chosen happens to collide with one of the xn positions in s satisfies

qi <
xn

n − xn
=

x

1 − x

As a thought experiment, suppose that one were to choose xn positions inde-
pendently at random, so that each position collides with an element of s with
probability exactly q = x

1−x . This artificial way of choosing xn positions can only
increase the probability of ending up with more than 2x2n collisions. We can
use the Chernoff bound (2) to upper bound this (larger) probability. Assuming
x < 1/2 and setting δ = 1 − 2x we get

Pr
[
B(xn,

x

1 − x
) > 2x2n

]
≤ ε′

Optimal Reductions Between Oblivious Transfers Using Interactive Hashing 213

where ε′ = e−
(1−2x)2x2

3(1−x) n. This in turn guarantees that when s′ is selected in the
appropriate way, the event |s ∩ s′| > 2 · x2n occurs with probability ε < ε′. In
other words, the fraction of bad subsets is upper bounded by ε < ε′.

By Lemma 1, the fraction of bad strings in {0, 1}m is at most 2ε. As w itself
is bad, it follows that among all 2m − 1 strings other than w the fraction of
bad strings is no larger than 2ε. Since by Property 2 of Interactive Hashing, w
is paired to some uniformly chosen w′ �= w, the probability that the protocol
aborts at Step 6 is upper bounded by 2ε which is exponentially small in n. ��
Theorem 3. Alice learns nothing about (honest) Bob’s choice bit c.

Proof. During Bob’s interaction with Alice, his choice bit c comes into play only
during the Bit OT executions of Step 4 and later at Step 8 when Bob announces
a = b⊕c. As Bit OT is secure by assumption, Alice cannot obtain any information
about c in Step 4. As for Step 8, since (honest) Bob chooses w uniformly at
random in {0, 1}m, both w0 and w1 are apriori equally likely choices. By Property
1 of Interactive Hashing (see Section 3.2), the aposteriori probabilities of w0, w1
having been Bob’s input are then equal as well. Consequently, Alice cannot guess
b with probability higher than 1/2 and the same holds for c = a ⊕ b. ��

Security Against a Dishonest Bob. The proof of security against a dishonest
Bob is considerably more involved. The main idea is that if Bob deviates from
the protocol more than a small fraction of the time then he gets caught by the
end of Step 9 with overwhelming probability. If, on the other hand, he deviates
only a small fraction of the time, then Privacy Amplification effectively destroys
any illegal information he may have obtained. We start with some definitions and
lemmas that will help to prove the main theorem (Theorem 4) of this section.

Definition 1. For a bit string σ, define up(σ) to be the number of bits in σ that
can be guessed correctly with probability at most p < 1. These bits will be referred
to as unknown bits.

Definition 2. Let s ⊂ I. Assuming Definition 1, we call s good for Tc if
up(Tc(s)) ≤ 3x2n. Otherwise, we call s bad for Tc. We say that s is good for
either T0 or T1 if at least one of up(T0(s)), up(T1(s)) is at most 3x2n.

Definition 3. Let w be a string in {0, 1}m. We call w good for Tc if the subset
s it encodes is good for Tc according to Definition 2. Otherwise, w is bad for Tc.

Lemma 3. Let up(Tc) ≥ 5xn. Then among all subsets s ⊂ I of cardinality xn

the fraction of good subsets for Tc is less than e−x2n/8.

Proof. We will use the Probabilistic Method to show that the probability that a
randomly chosen subset s is good for Tc is less than e−x2n/8. One way of choosing
s would be to sequentially choose xn positions in I at random and without
replacement. Note that regardless of previous choices, for all 1 ≤ i ≤ xn the
probability qi of position i being chosen among the up(Tc) positions of unknown
bits always satisfies

214 C. Crépeau and G. Savvides

qi >
up(Tc) − xn

|I| ≥ 5xn − xn

n
= 4x

This implies that the probability of choosing a good subset for Tc would be
greater if we were to choose the xn positions independently at random so that
each position corresponds to an unknown bit with probability q = 4x. In this
artificial case the distribution of the number of unknown bits is binomial with
parameters xn, 4x and mean μ = 4x2n. Applying the Chernoff bound (Equation
1) with δ = 1/4 we get

Pr
[
B(xn, 4x) ≤ 3x2n

] ≤ e−x2n/8

We conclude that a subset s chosen randomly in the appropriate way has proba-
bility smaller than e−x2n/8 of being good for Tc, which establishes the claim. ��
Lemma 4. Let both up(T0), up(T1) ≥ 5xn. Then the fraction of strings in {0, 1}m

that are good for either T0 or T1 is no larger than 4 · e−x2n/8.

Proof. It follows from Lemma 3 and the Union Bound that the proportion of
good subsets for either T0 or T1 is no larger than 2 · e−x2n/8. Lemma 1 in turn
guarantees that the fraction of strings in {0, 1}m that are good for either T0 or
T1 in {0, 1}m is at most 4 · e−x2n/8. ��

Lemma 5. Let both up(T0), up(T1) ≥ 5xn. Then the probability that (dishonest)
Bob will clear Step 9 is exponentially small in n.

Proof. By Lemma 4, the proportion of good strings in {0, 1}m for either T0 or
T1 is at most 4 · e−x2n/8. By Property 3 of Interactive Hashing, the probability
that both w0, w1 will be good at Step 5 of the protocol is at most ε1 which is
exponentially small in m (and hence in n). Consequently, with probability at
least 1− ε1, at least one of the two bit strings (without loss of generality, w1) is
bad for both T0 and T1. In other words, w1 corresponds to a subset s1 with both
up(T0(s1)), up(T1(s1)) ≥ 3x2n. Moreover, as Alice did not abort at Step 6 it must
be the case that |s0 ∩ s1| ≤ 2x2n. It follows that both up(T0(s′1)), up(T1(s′1)) ≥
3x2n − 2x2n = x2n. Therefore, however Bob decides to respond in Step 8, he
must correctly guess the value of at least x2n unknown bits in one of T0, T1. As
the bits were independently chosen, the probability of guessing them is ε2 ≤ px2n.

Bob will clear Step 9 only if he got two good strings from Interactive Hashing
or got at least one bad string and then correctly guessed all the relevant bits.
This probability is upper bounded by ε1 + ε2 (exponentially small in n). ��

Theorem 4. The probability of (dishonest) Bob successfully cheating in Protocol
4 is exponentially small in n.

Proof. Let v0, v1 ⊆ I be the positions where (dishonest) Bob requested ti0, t
i
1

respectively during Step 4. Note that v0 ∩ v1 = ∅. We distinguish two cases:
(Case 1 and Case 2 taken together establish the claim.)

Optimal Reductions Between Oblivious Transfers Using Interactive Hashing 215

Case 1: Both |v0| , |v1| ≤ n − 5xn
In this case u1/2 (T0) , u1/2 (T1) ≥ 5xn, so by Lemma 5 (dishonest) Bob will fail
to clear Step 9 except with exponentially (in n) small probability.

Case 2: One of |v0| , |v1| is greater than n − 5xn
Without loss of generality, let |v0| > n − 5xn. Then Bob knows less than 5xn
bits about T1, and consequently, less than 5xn bits about R1 = T1(J). Note
that as T0, T1 are independently chosen, even if an oracle were to subsequently
provide all the bits of T0 (or R0 , or r0), Bob would obtain no new information
about R1. As u1/2 (R1) ≥ j − 5xn, Privacy Amplification with output length
k = (j − 5xn) − xn destroys all but an exponentially (in n) small amount of
information about r1, with probability exponentially close to 1. ��

6 Extension to Weaker Variants of Bit OT

We demonstrate that Protocol 4 can accommodate weaker versions of Bit OT.
Specifically, it requires no modification at all if Bit OT is replaced with XOT,
while a virtually imperceptible decrease in the output length k guarantees its
security with GOT. Decreasing k even further allows us to prove the Protocol’s
security when Bob has access to UOT with α ≤ 1. As in all three cases honest
Bob’s choices during Step 4 are identical to the case of Bit OT and remain equally
well hidden from Alice’s view, the proofs of Theorems 2 and 3 (establishing the
Protocol’s practicality and security against dishonest Alice) carry over verbatim
to the new settings.

On the other hand, arguing that the Protocol remains secure against dishonest
Bob is more involved and requires a separate analysis in each case. The basic
idea, however, is the same as in the case of Bit OT and consists in showing
that if Bob has deviated ‘significantly’ from the protocol then he gets caught
with overwhelming probability, and if he has not, then Privacy Amplification
effectively eliminates any illegal information he may have accumulated.

6.1 Security Against a Dishonest Bob Using XOT

Theorem 5. The probability of (dishonest) Bob successfully cheating in Protocol
4 is exponentially small in n even if the Bit OT protocol is replaced with XOT.

Proof. Let v0, v1, v⊕ ⊆ I denote the sets of positions i where (dishonest) Bob
requested ti0, t

i
1, t

i⊕ = ti0 ⊕ ti1 respectively during Step 4. As in the proof of
Theorem 3, we distinguish two cases, in both of which the probability of cheating
is exponentially small in n, as desired.
Case 1: One of |v0| , |v1| is greater than n − 5xn
Without loss of generality, let |v0| > n − 5xn. Then |v1 ∪ v⊕| < 5xn. Conse-
quently, Bob knows less than 5xn bits about R1 even if he is provided with all
the bits of T0 by an oracle after Step 4. We note in passing that such oracle in-
formation can only be helpful for the positions in v⊕. Since u1/2 (R1) > j − 5xn,
Privacy Amplification with output length k = (j − 5xn) − xn would destroy all
but an exponentially (in n) small amount of information about r1, with proba-
bility exponentially close to 1.

216 C. Crépeau and G. Savvides

Case 2: Both |v0| , |v1| ≤ n − 5xn.
This implies that both |v1 ∪ v⊕| and |v0 ∪ v⊕| are at least 5xn and consequently,
u1/2 (T0) , u1/2 (T1) ≥ 5xn. By Lemma 5, Bob will fail to clear Step 9 except with
exponentially (in n) small probability. ��
Gains in Efficiency. The expansion factor is identical to the case of Bit OT
(and optimal). Compared to the reduction in [3], ours is again twice as efficient.

6.2 Security Against a Dishonest Bob Using GOT

In the case of Generalized OT, during round i of Step 4 dishonest Bob can choose
to obtain f(ti0, t

i
1) for any of the 16 functions f : {0, 1}2 �→ {0, 1}. Without

loss of generality, we will assume that Bob never requests the two constant
functions as this would provide him with no information. It is not difficult to
see that in our context the information content of each of the remaining 14
functions is equivalent to that of one of the four functions f0, f1, f⊕, fAND defined
in Equation (7) below. We will thus assume that Bob always requests the output
of one of these functions. In keeping with the notation of previous sections we
let v0, v1, v⊕, vAND ⊆ I be the positions where Bob requested f0, f1, f⊕, fAND
respectively.

f0(t0, t1) = t0, f1(t0, t1) = t1, f⊕(t0, t1) = t0 ⊕ t1, fAND(t0, t1) = t0 ∧ t1 (7)

A Necessary Modification to Protocol 4. Our proof of security requires
that k be slightly shorter than in the case of Bit OT and XOR OT, that is
k = (j − 8xn) − xn ≥ n − 11xn.

The security analysis of the protocol in this setting is somewhat more com-
plicated compared to the case of Bit OT and XOT. This is due to the fact that
requesting fAND may or may not result in loss of information about (t0, t1): with
probability 1/4 the output of fAND is 1 and so Bob learns both bits while with
complementary probability 3/4 the output is 0 in which case the input bits were
(0, 0), (0, 1), (1, 0), all with equal probability. Note that in this latter case both
t0, t1 are unknown as each can be guessed correctly with probability at most 2/3.

Complications Arising from Adaptive Strategies. If dishonest Bob’s re-
quests could be assumed to be fixed ahead of time, our analysis would be quite
straightforward since we could claim that among all requests in vAND, with high
probability a fraction 3/4 − ε would produce an output of 0 and thus both t0, t1
would be added to the set of unknown bits in T0, T1. Our task is complicated by
the fact that Bob obtains the output of the function he requested immediately
after each round and can thus adapt his future strategy to past results. For ex-
ample, Bob may be very risk-averse and start by asking for fAND in the first
round. If he is lucky and the output is 1, he asks for fAND again, until he gets
unlucky in which case he starts behaving honestly. This strategy makes it almost
impossible to catch Bob cheating while it allows Bob to learn both r0, r1 with
some nonzero — but admittedly quite small— probability. This example illus-
trates that we cannot assume that |vAND| is known ahead of time and remains
independent of results obtained during the n executions of Step 4.

Optimal Reductions Between Oblivious Transfers Using Interactive Hashing 217

Dealing with Adaptive Strategies. In order to prove the security of the
protocol for any conceivable strategy that dishonest Bob might use, we start by
observing that at the end of Step 4 one of the following two cases always holds:

Case 1: One of |v0| , |v1| > n − 8xn, Case 2: Both |v0| , |v1| ≤ n − 8xn

Note that these two cases refer only to the types of requests issued by Bob
during Step 4 and do not depend in any way on the results obtained along the
way. Given any (adaptive) strategy S for Bob, one can construct the following
two strategies: Strategy S1 begins by making the same choices as S but ensures
that eventually the condition in Case 1 will be met: it “applies the brakes” just
before this constraint becomes impossible to meet in the future and makes its
own choices from that point on in order to meet its goal. Similarly, Strategy S2
initially copies the choices of S but if necessary, stops following them to ensure
that the condition of Case 2 is met. Let δ, δ1, δ2 be the probabilities of successfully
cheating using Strategies S, S1, S2, respectively. We will argue that δ ≤ δ1 + δ2.
To see this, imagine three parallel universes in which Bob is interacting with
Alice using strategies S, S1, S2 respectively. Recall that by the end of Step 4 the
universe of Strategy S is identical either to the Universe of Strategy S1 or to
the Universe of Strategy S2 (one of the two never had to “apply the brakes”).
Therefore, Strategy S succeeds only if one of S1, S2 succeeds and so δ ≤ δ1 + δ2.

It remains to prove that both δ1, δ2 are exponentially small in n. To do this,
we let Σ1, Σ2 be any adaptive strategies ensuring that the conditions of Case
1 and Case 2, respectively, are met. We will show that for any such strategies
(thus, for S0, S1 as well), the probabilities of success Δ1, Δ2 are exponentially
small in n, and therefore so is δ (since δ ≤ δ1 + δ2 ≤ Δ1 + Δ2).

Theorem 6. The probability of (dishonest) Bob cheating in (modified) Protocol
4 is exponentially small in n even if Bit OT is replaced with GOT.

Proof. We will prove that Δ1, Δ2 are both exponentially small in n.
Without loss of generality, let |v0| > n − 8xn at the end of Step 4. Then Bob

knows at most 8xn bits about T1, even if he is provided with all the bits of
T0 by an oracle. Consequently, u1/2 (R1) > j − 8xn and therefore using Privacy
Amplification with output length k = (j − 8xn) − xn ≥ n − 11xn will result in
Bob having only an exponentially small amount of information about r1 (even
given r0), except with an exponentially small probability Δ1.

As for Strategies Σ2, we start by showing that Pr
[
u2/3 (T1) ≤ 5xn

]
is small.

Since any such strategy guarantees that |v1| ≤ n − 8xn, it follows that
|v0 ∪ v⊕ ∪ vAND| ≥ 8xn. Given this constraint, the probability that u2/3 (T1) ≤
5xn is maximized if |vAND| = 8xn, |v0| = |v⊕| = 0. This is because each re-
quest in v0 and v⊕ results with certainty in the corresponding bit in T1 being
unknown, while a request in vAND produces an unknown bit in T1 with prob-
ability 3/4 (moreover, in this case the unknown bit can be guessed correctly
with probability 2/3 instead of 1/2). Using the Chernoff bound (Equation 1) with
(n, p, δ) �→ (8xn, 3/4, 1/6) gives

Pr
[
u2/3 (T1) ≤ 5xn

] ≤ Pr
[
B(8xn,

3
4
) ≤ 5xn

]
≤ e−xn/12

218 C. Crépeau and G. Savvides

and similarily for u2/3 (T0). By the Union Bound, both u2/3 (T0) , u2/3 (T1) ≥ 5xn

except with probability at most 2 · e−xn/12. In this case, Lemma 5 guarantees
that Bob will manage to clear Step 9 with some probability ε exponentially small
in n. We conclude that using any Strategy Σ2, Bob can successfully cheat with
probability Δ2 ≤ 2 · e−xn/12 + ε which is exponentially small in n.

Probability of Successfully Cheating Using Any Adaptive Strategy S.
As argued above, for any adaptive strategy S, the probability δ of cheating is
upper bounded by δ1 + δ2 ≤ Δ1 + Δ2 and hence exponentially small in n. ��

Gains in Efficiency. As k ≥ n− 11xn for any small constant x, the expansion
factor n/k is 1 + ε′ for some (related) small constant ε′. It is only slightly larger
than the expansion factor in the case of Bit OT and XOR OT and remains
asymptotically optimal. This represents an increase in efficiency by a factor of
about 4.8188 over the corresponding reduction in [3].

6.3 Security Against a Dishonest Bob Using Universal OT

In this case, in each round of Bit OT at Step 4 dishonest Bob can choose to
obtain the output of any discrete, memoryless channel subject to the following
constraint: let B0, B1 be independent, uniformly distributed random variables
corresponding to Alice’s inputs to Bit OT and let Ω = Ω(B0, B1) be the chan-
nel’s output to Bob. Then for some constant α ≤ 1 the following holds:

H ((B0, B1) | Ω) ≥ α (8)

Note that we require α to be at most 1 since otherwise, the channel would
disallow honest behavior as well. Let ε to be any (very small) positive constant
strictly less than 1/2. We can then partition all possible channels satisfying the
constraint of Equation 8 into the following three categories.

Ω0: All channels satisfying H (B0 | Ω) < εα and H (B1 | B0Ω) > (1 − ε)α.

Ω1: All channels satisfying H (B1 | Ω) < εα and H (B0 | B0Ω) > (1 − ε)α.

Ωb: All channels satisfying H (B0 | Ω) ,H (B1 | Ω) ≥ εα.

Let ρ(α) be the unique solution x ∈ [0, 1/2] to the equation h(x) = α. Let p0 =
p1 = ρ ((1 − ε)α) and pb = ρ (εα). Then from Fano’s inequality and Lemma 2
(Section 3.4) we can assert the following:

– p0 is a lower bound on the error probability when guessing the value of B1
after using a channel of type Ω0 and this is true even if the value of B0 is
known with certainty. There thus exists an indicator random variable Δ0
(provided as side information by an oracle) which leads to an erasure of
B1 with probability 2p0. Note: when there is no erasure (Δ0 = 0) it is not
necessarily the case the corresponding bit is known with certainty.

Optimal Reductions Between Oblivious Transfers Using Interactive Hashing 219

– Likewise, p1 lower bounds the error probability when guessing B0 given the
value of B1 and the output of a channel of type Ω1. This implies the existence
of side information in the form of an indicator random variable Δ1 that leads
to an erasure of B0 with probability 2p1 = 2p0.

– When using a channel of type Ωb, the probability of guessing B0 incorrectly
given the channel’s output is at least pb, and the same holds when guessing
the value of B1. Thus, there exists an indicator random variable Δ0

b (resp.
Δ1

b) which, if provided by an oracle, would lead to an erasure of B0 (resp.
B1) with probability 2pb. Note that this statement is true only if the oracle
provides one of Δ0

b , Δ
1
b each time. To see why this is so, suppose both were

provided at the same time. Since Δ0
b along with Ω might contain more infor-

mation about B1 than was available in Ω alone, one can no longer assume
that the event Δ1

b = 1 would necessarily correspond to an erasure of B1.

In order to simplify our analysis we will assume that after each round of UOT
in Step 4, an oracle supplies Bob with the following side information, depending
on the type of channel that Bob used:

Ω0: The exact value of B0, as well as the value of Δ0. Note that this leads to
B1 being erased with probability 2p0.

Ω1: The exact value of B1, as well as the value of Δ1. Note that this leads to
B0 being erased with probability 2p1 = 2p0.

Ωb: One of Δ0
b , Δ

1
b , chosen at random with equal probability. Note that this

leads to each of B0, B1 being erased with probability pb in each round (not
independently, though: B0 and B1 cannot be erased at the same time).

Another Modification to Protocol 4. For any very small positive constant
ε, let pb

def= ρ(εα) and p0
def= ρ((1−ε)α). Our proof of security will require that we

reduce k even further at step 11, by setting k = 2p0(j − 8pbn) ≥ 2p0n − 9p0pbn.
For convenience, we will also set x = p2

b in Step 1.

Theorem 7. The probability of dishonest Bob successfully cheating in (modi-
fied) Protocol 4 is exponentially small in n even if the Bit OT protocol is replaced
with UOT satisfying the constraint of Equation (8).

Proof. Let v0, v1, vb ⊆ I be the positions in Step 4 where Bob selected a channel
of type Ω0, Ω1, Ωb, respectively. Then, at the end of Step 4 one of the following
two cases always holds:

Case 1: One of |v0| , |v1| > n − 6pbn

Case 2: Both |v0| , |v1| ≤ n − 6pbn

We proceed as in the proof of security for GOT in Section 6.2.
Without loss of generality, let |v0| > n − 6pbn at the end of Step 4. This

implies that at least j − 6pbn of the bits of R1 were received over a channel of
type Ω0. Let μ1 be the expected number of erasures in R1, resulting from the side

220 C. Crépeau and G. Savvides

information Δ0 provided by the oracle in each round. Then μ1 ≥ 2p0 (j − 6pbn).
From Equation (3) we deduce that with probability exponentially close to 1 there
will be at least 2p0 (j − 7pbn) erasures, in which case u1/2 (R1) ≥ 2p0 (j − 7pbn).

Applying Privacy Amplification with output length k = 2p0 (j − 8pbn) will
thus produce an almost-uniformly distributed k-bit string r1 (independent of
r0), except with exponentially (in n) small probability. Note that as p3

b < 1/2

and j ≥ n − 2x2n = n − 2p4
bn, the output size k satisfies k = 2p0 (j − 8pbn) ≥

2p0
(
n − 2p4

bn − 8pbn
) ≥ 2p0 (n − 9pbn) = 2p0n − 9p0pbn.

The probability of any strategy Σ1 successfully cheating is at most equal to the
probability that there are too few erasures to begin with plus the probability
that Privacy Amplification failed to produce an almost-uniformly distributed
string. Our choices guarantee that this probability is exponentially small in n.

We show that with near certainty both u1/2 (T0) and u1/2 (T1) are at least
5xn, which by Lemma 5 guarantees that Bob will fail to clear Step 9 with
probability exponentially close to 1. We start by upper bounding the probability
that u1/2 (T1) ≤ 5xn. Since |v1| ≤ n − 6pbn, there are at least 6pbn bits that
were either sent over a channel of type Ω0 or Ωb. We will assume that exactly
6pbn bits were sent over a channel of type Ωb, as this choice minimizes the
expected number of erasures in T1 given our constraints, and hence maximizes
the probability that u1/2 (T1) ≤ 5xn. Note that the expected number of erasures
of B1 in this case is pb · 6pbn = 6p2

bn = 6xn. By the Chernoff bound

Pr
[
u1/2 (T1) ≤ 5xn

] ≤ Pr
[
B(6pbn, pb) ≤ 5p2

bn
] ≤ λ

where λ is exponentially small in n.
The same argument applies to u1/2 (T0). Therefore, both u1/2 (T0) , u1/2 (T1) ≥

5xn except with probability at most 2λ. Then Lemma 5 guarantees that Bob
will fail to clear Step 9 with probability 1 − ε′ for some ε′ exponentially small
in n. We conclude that using any Strategy Σ2, Bob can successfully cheat with
probability at most 2λ + ε′ which is exponentially small in n.

Probability of Cheating Using Any Adaptive Strategy S. As argued in
Section 6.2, the probability of successful cheating for any adaptive strategy S
is upper bounded by the sum of the probabilities of success of any strategies
Σ1, Σ2. We have shown that both of these are exponentially small. ��
Gains in Efficiency. In both our reduction and that of [3], the expansion
factor is a function of α. In our case k ≥ 2p0n − 9p0pbn. Since pb = ρ(εα), p0 =
ρ((1− ε)α), for ε → 0 we get p0 → ρ(α), pb → 0 and therefore k ≈ 2ρ(α)n, which
translates to an expansion factor of 1

2ρ(α) + ε′. The corresponding expansion
factor in [3] is at least 4 ln 2

pe
where pe is the unique solution in (0, 1/2] to the

equation h(pe) + pe log2 3 = α. It is easy to verify by means of a graph that for
all 0 ≤ α ≤ 1, we have ρ(α) > pe. Consequently, our expansion factor is always
at least 8 ln 2 = 5.545 times smaller than the one in [3]. It is noteworthy that
in the special case where α = 1 we have ρ(α) = 1/2 and therefore the expansion
factor is 1 + ε′, which is optimal. Proving optimality for other values of α is left
as an open problem.

Optimal Reductions Between Oblivious Transfers Using Interactive Hashing 221

7 Conclusions, and Open Problems

We have demonstrated how the properties of Interactive Hashing can be ex-
ploited to increase the efficiency and generality of existing String OT reductions.
Specifically, we have shown that our reductions are optimal in the case of Bit
OT, XOT and GOT, as well as for the special case of UOT where α = 1. We
conclude by listing some problems that our current work leaves open. (1) Mod-
ify Protocol 4 so that it never aborts when both participants are honest. This
will require proving that Interactive Hashing would not allow a dishonest Bob
to obtain strings w0, w1 such that the corresponding subsets s0, s1 have a large
intersection. (2) Prove that our reduction is optimal for all α in the case of UOT,
or modify it accordingly to achieve optimality. (3) Replace the Interactive Hash-
ing Protocol (Protocol 2) with an appropriately adapted implementation of the
constant round Protocol of [6] and prove that the ensuing reduction (Protocol
4) remains secure. (4) Further explore the potential of Interactive Hashing as
an ingredient in cryptographic protocols design.

References

1. C. H. Bennett, G. Brassard, C. Crépeau, and U. Maurer. Generalized privacy
amplification. IEEE Trans. on Info. Theory, 41(6):1915–1923, November 1995.

2. C. H. Bennett, G. Brassard, and J.-M. Robert. Privacy amplification by public
discussion. SIAM J. Comput., 17(2):210–229, 1988.

3. G. Brassard, C. Crépeau, and S. Wolf. Oblivious transfers and privacy amplifica-
tion. IEEE Transaction on Information Theory, 16(4):219–237, 2003.

4. G. Brassard, C. Crépeau, and M. Santha. Oblivious transfers and intersecting
codes. IEEETIT: IEEE Transactions on Information Theory, 42, 1996.

5. C. Cachin, C. Crépeau, and J. Marcil. Oblivious transfer with a memory-bounded
receiver. In IEEE Symposium on Foundations of Computer Science, 1998.

6. Y. Zong Ding, D. Harnik, A. Rosen, and R. Shaltiel. Constant-round oblivious
transfer in the bounded storage model. In TCC, pages 446–472, 2004.

7. Y. Dodis and S. Micali. Lower bounds for oblivious transfer reductions. Lecture
Notes in Computer Science, 1592, 1999.

8. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Commun. ACM, 28(6):637–647, 1985.

9. Joe Kilian. Founding crytpography on oblivious transfer. In STOC ’88: Proceedings
of the twentieth annual ACM symposium on Theory of computing, pages 20–31,
New York, NY, USA, 1988. ACM Press.

10. M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Perfect zero-knowledge
arguments for NP using any one-way permutation. Journal of Cryptology, 11(2),
1998.

11. R. Ostrovsky, R. Venkatesan, and M. Yung. Fair games against an all-powerful ad-
versary. AMS DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 13, 1993.

12. M. O. Rabin. How to exchange secrets by oblivious transfer. Technical Memo
TR–81, Aiken Computation Laboratory, Harvard University, 1981.

13. D.R. Stinson. Some results on nonlinear zigzag functions. Journal of Combinatorial
Mathematics and Combinatorial Computing, 29:127–138, 1999.

14. S. Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, 1983.

Oblivious Transfer Is Symmetric

Stefan Wolf and Jürg Wullschleger

Computer Science Department, ETH Zürich, Switzerland
{wolf, wjuerg}@inf.ethz.ch

Abstract. We show that oblivious transfer of bits from A to B can
be obtained from a single instance of the same primitive from B to A.
Our reduction is perfect and shows that oblivious transfer is in fact a
symmetric functionality. This solves an open problem posed by Crépeau
and Sántha in 1991.

1 Introduction

Modern cryptography is an increasingly broad discipline and deals with many
subjects besides the classical tasks of encryption or authentication. An example
is multi-party computation, where two or more parties, mutually distrusting each
other, want to collaborate in a secure way in order to achieve a common goal, for
instance, to carry out an electronic election. An example of a specific multi-party
computation is secure function evaluation, where every party holds an input to
a function, and the output should be computed in a way such that no party has
to reveal unnecessary information about her input.

A primitive of particular importance in the context of two- and multi-party
computation is oblivious transfer. In classical Rabin oblivious transfer [19] or
Rabin OT for short, one of the parties—the sender—sends a bit b which reaches
the receiver with probability 1/2; the sender hereby remains ignorant of about
whether the message has arrived or not. In other words, Rabin OT is nothing else
than a binary erasure channel. Another variant of oblivious transfer is chosen
one-out-of-two oblivious transfer—

(2
1

)−OT for short—, where the sender sends
two bits b0 and b1 and the receiver’s input is a choice bit c; the latter then
learns bc but gets no information about the other bit b1−c. Chosen one-out-of-
two oblivious transfer can be generalized to a primitive where the sender sends
n messages, k of which the receiver can choose to read: chosen k-out-of-n l-bit
string oblivious transfer or

(
n
k

)−OTl. One reason for the importance of oblivious
transfer is its universality, i.e., it allows, in principle, for carrying out any two-
party computation [14].

Besides computational cryptographic security, which is based on the assumed
hardness of certain computational problems and a limitation on the adversary’s
computing power, there also exists unconditional security, which is based on the
fact that the information the potential adversary obtains is limited. This latter
type of security withstands attacks even by a computationally unlimited adver-
sary; clearly, it is, a priori, more desirable to realize cryptographic primitives
in such an unconditionally secure way. Unfortunately, oblivious transfer is im-
possible to achieve in an unconditionally secure way from scratch, i.e., between

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 222–232, 2006.
c© International Association for Cryptologic Research 2006

Oblivious Transfer Is Symmetric 223

parties connected by a noiseless channel; in fact, not even if this is a quan-
tum channel over which the parties can exchange not only “classical” bits but
quantum states [15]. However, if some additional weak and realistic primitives
are available such as noisy channels and noisy correlations, then unconditional
security can be often achieved [7], [6], [8], [13], [22], [23].

Another way of realizing unconditionally secure oblivious transfer is from (a
weaker form of) oblivious transfer itself: All the variants of oblivious transfer
have been shown equivalent to different extents. For instance,

(2
1

)−OT can be
reduced to m realizations of Rabin OT as long as a failure probability of 2−m can
be accepted [5]. On the other hand,

(2
1

)−OTl can be reduced to Θ(l) realizations
of

(2
1

)−OT—with or without failure probability, where the reduction can be
made more efficient in terms of the hidden constant if a small probability of
failure can be accepted [4]. In [2], a protocol was presented that reduces

(2
1

)−OT
to a

(2
1

)−OT being available at an earlier point in time. This means that
(2
1

)−OT
can be precomputed (or stored and used at any time later).

In [18] and [9], methods were proposed for obtaining
(2
1

)−OT from A to B

from n instances of
(2
1

)−OT from B to A, where a failure probability of 2−Θ(n)

has to be tolerated. The protocol of [18] is based on the realization of so-called
“XOT” (i.e., the receiver can also choose to receive the XOR of the two bits
sent) from two realizations of

(2
1

)−TO—the reversed version of
(2
1

)−OT. Note,
however, that the resulting reduction of

(2
1

)−OT to
(2
1

)−TO of [18] also requires
Θ(log(1/ε)) realizations of

(2
1

)−TO if ε is the tolerated failure probability.

1.1 Our Contribution

In [9], Crépeau and Sántha raised the question of whether it is possible to imple-
ment oblivious transfer in one direction using fewer instances of oblivious transfer
in the other. In this paper, we answer this question with yes by presenting a pro-
tocol that needs one instance of oblivious transfer, one bit of communication
and one bit of additional (local) randomness. All these parameters are optimal.
Our reduction is very simple; in other words, the reversed version of oblivious
transfer is basically just another way of looking at it. The symmetry is already
there, oblivious transfer is symmetric.

Our reduction can be used to transform any protocol for
(2
1

)−OT—offering
either computational or information-theoretic security for A and B, respec-
tively—into a protocol for oblivious transfer from B to A having exactly the
same security both for A and B as the original protocol; no additional failure
can occur.

1.2 Outline

In Section 3, we first present protocols from [2] that allow
(2
1

)−OT to be “stored”,
i.e., to transform oblivious transfer into an oblivious key. Then, we will show that
such an oblivious key can very easily be reversed—by a simple XOR executed
by both players on their local data. It follows that oblivious transfer can be
reversed equally easily. In Section 4 we present an even simpler protocol for
reversing oblivious transfer and prove its security.

224 S. Wolf and J. Wullschleger

2 Definitions and Security

We define
(2
1

)−OT as a black-box (see Figure 1).

Definition 1. By
(2
1

)−OT or chosen one-out-of-two oblivious transfer we denote
the following primitive between a sender A and a receiver B. A has two inputs b0
and b1 and no output, and B has input c and output y such that y = bc.

(2
1

)−OT
bc

c

b1

b0

A B

Fig. 1. Chosen one-out-of-two oblivious transfer

For the reversed version of
(2
1

)−OT, where B is the sender and A is the receiver,
we will write

(2
1

)−TO.

This black-box model of oblivious transfer is called the ideal model, and it is
how the world is supposed to be: The players have no other way of accessing the
box than by the defined inputs and outputs: cheating is impossible. However, in
reality such a perfect box does normally not exist. It must be simulated by a
protocol. In this real model, the players can cheat in principle by not following
the rules. A protocol is called a secure implementation of oblivious transfer if an
adversary cannot do anything in the real model that he could not just as well
have done in the ideal model. Thus, it must be shown that for any adversary in
the real model, there exists an equivalent adversary in the ideal model: he gets
the same information and the honest player obtains the same outputs as in the
real model; the resulting views are indistinguishable.

We follow the formalism of [16] and [1] (see also [11]) to define when a protocol
perfectly securely evaluates a function f : X ×Y → U×V . A protocol is a pair of
algorithms A = (A1, A2) that can interact by two-way message exchange. A pair
(A1, A2) of algorithms is admissible for protocol A if at least one of the parties
is honest, i.e., if A1 = A1 or A2 = A2 holds. (Note that in the case where both
parties are cheaters, no security is required.) By z, we denote some additional
auxiliary input that can potentially be used by both parties. For instance, z could
include information about previous executions of the protocol. Note, however,
that an honest party never makes use of z.

The Ideal Model. In the ideal model, the two parties can make use of a
trusted party to calculate the function. The algorithms B1 and B2 of the protocol
B = (B1, B2) receive the inputs x and y, respectively, and the auxiliary input z.
They send values x′ and y′ to the trusted party, who sends them back the values
u′ and v′—satisfying (u′, v′) = f(x′, y′). Finally, B1 and B2 output the values u
and v. The two honest algorithms B1 and B2 always send x′ = x and y′ = y to
the trusted party, and always output u = u′ and v = v′. Now, if B = (B1, B2) is

Oblivious Transfer Is Symmetric 225

an admissible pair of algorithms for protocol B = (B1, B2), the joint execution
of f under B in the ideal model,

idealf,B(z)(x, y) ,

is the resulting output pair, given the inputs x and y and the auxiliary input z.

The Real Model. In the real model, the parties have to compute f by a pro-
tocol Π = (A1, A2) without the help of a trusted party. Let A = (A1, A2) be an
admissible pair for A. Then the joint execution of Π under A in the real model,

realΠ,A(z)(x, y) ,

is the resulting output pair, given the inputs x and y and the auxiliary input z.

Perfect Security: “Real = Ideal”. A protocol Π computes a function f
perfectly securely if, intuitively speaking, every “real” cheater has an equally
powerful counterpart in the ideal model. Definition 2 also applies to reduction
protocols from one functionality to another; here, the algorithms are allowed to
call an oracle which perfectly implements the given functionality.

Definition 2. A protocol Π computes f perfectly securely if for every admissible
A = (A1, A2) there exists an admissible B = (B1, B2)—as efficient as A1 and
with identical set of honest players—such that for all x ∈ X , x ∈ Y, and z ∈ Z,

realΠ,A(z)(x, y) ≡ idealf,B(z)(x, y)

holds, where ≡ means that the distributions are identical.

3 Storing and Reversing Oblivious Transfer

Oblivious transfer protocols rely either on tools borrowed from public-key cryp-
tography [19], [10] or on additional assumptions [3], [6], [20], [4], [23]. In the first
case, we have to deal with relatively slow algorithms which may be the bottleneck
of the protocol execution. In the second case, one depends on these additional
assumptions being present at the time of the execution of the protocol. In both
cases it is, therefore, desirable to carry out as much of the computation as possi-
ble in advance, and to make the actual execution of oblivious transfer as fast and
simple as possible, based on this pre-computation. Actually, almost the entire
computation can be done beforehand: Protocols 1 and 2, proposed in [2], show
how

(2
1

)−OT can be transformed into a so-called oblivious key, and vice versa.
An oblivious key is, intuitively speaking, the distribution that arises when A

and B choose their inputs at random and execute
(2
1

)−OT.

Definition 3. By an oblivious key,
(2
1

)−OK, we denote the primitive where a
sample of two random variables U = (X0, X1) and V = (C, Y) is given to A
and B, respectively, where X0, X1, and C are independently and uniformly
distributed bits, and where Y = XC holds.
1 The running time of B must by polynomial in the running time of A.

226 S. Wolf and J. Wullschleger

Note that
(2
1

)−OK is a key for oblivious transfer in very much the same sense
as a shared secret bit is an encryption key in the one-time pad.

BA

c(2
1

)−OT

choose x0, x1 ∈ {0, 1}
at random.

choose c ∈ {0, 1}
at random.

(2
1

)−OK

x0

x1
y

x0, x1 c, y

Protocol 1.
(2
1

)−OK from
(2
1

)−OT

(2
1

)−OT
bc = rc ⊕ Y

C, Y

m = c ⊕ C

X0, X1

r1 := b1 ⊕ X1−m

b0

b1

bc

c

r0, r1

(2
1

)−OK

m

r0 := b0 ⊕ Xm

Protocol 2.
(2
1

)−OT from
(2
1

)−OK

A B

The proofs that Protocols 1 and 2 are perfect single-copy reductions between
the primitives

(2
1

)−OT and
(2
1

)−OK are given in [2] (and straight-forward). Note
that both Protocols 1 and 2 work in the honest-but-curious model, whereas their
combination is even perfectly secure in the malicious model.

The distribution of
(2
1

)−OK is given and illustrated on the left hand side of
Figure 2.

PUV ((x0, x1), (c, y)) =
{

1/8 if y = xc

0 otherwise .

When the symbols of U and V are renamed in a suitable way, the distribution
corresponds to the one arising when Shannon’s so-called “noisy-typewriter chan-
nel” [21] is used with random input (see on the right hand side of
Figure 2). Obviously, this distribution is symmetric. On the other hand,

(2
1

)−OK

Oblivious Transfer Is Symmetric 227

(1, 0)

(0, 1)

(0, 0)

(1, 1)

(1, 0)

(0, 1)

(0, 0)

V = (C, Y)U = (X0,X1)

(1, 1)

VU

d

c

b

d

c

b

a a

Fig. 2. Left hand side: The distribution of
(2
1

)−OK. (Each edge is a possible com-
bination with probability 1/8.) Right hand side: The distribution arising from the
“noisy-typewriter channel.” Obviously, the two distributions are equivalent.

is equivalent to
(2
1

)−OT, which is, hence, symmetric as well: A single instance
of

(2
1

)−TO allows for generating a realization of
(2
1

)−OT. The reduction is not
only single-copy but also perfect, i.e., unconditionally secure without any error.
This solves an open problem posed in [9] in a very simple way. Lemma 1 shows
how the values in the distribution of a

(2
1

)−OK must be renamed in order for
the oblivious key to be reversed.

Lemma 1. Let X0, X1, C, and Y be binary random variables and let (U, V) =
((X0, X1), (C, Y)) be a

(2
1

)−OK. Then ((X0, X1), (C, Y)) := ((Y, C ⊕ Y), (X0 ⊕
X1, X0)) is a

(2
1

)−OK as well.

Proof. Y = X0 = XC⊕C(X0⊕X1) = Y ⊕C(X0⊕X1) = X0⊕(X0⊕X1)C = XC .

A formal proof of the security of this transformation is omitted here. Intuitively,
the privacy of both players is preserved since the ignorance of one player about
the XOR of X0 and X1 is transformed into the ignorance of C, and vice versa.

4 Optimally Reversing Oblivious Transfer

The protocol outlined in the end of Section 3 requires three bits of additional
communication. We present an even simpler protocol, Protocol 3, using only one
bit of additional communication from A to B; this is optimal.

Theorem 1. Protocol 3 perfectly securely reduces
(2
1

)−OT to one realization of(2
1

)−TO.

Proof. Let first both parties be honest, i.e., A = (A1, A2) in Protocol 3. Then
we have, for all (b0, b1) ∈ {0, 1}2, c ∈ {0, 1}, and z ∈ Z,

real3,A(z)((b0, b1), c) = (⊥, r ⊕ (b0 ⊕ a))

= (⊥, b0 ⊕ (b0 ⊕ b1)c)
= (⊥, bc)
= ideal(2

1)−OT,B(z)((b0, b1), c) .

228 S. Wolf and J. Wullschleger

r ⊕ c

r

a

b0 ⊕ b1 (2
1

)−TO

Protocol 3.
(2
1

)−OT from
(2
1

)−TO

at random
choose r ∈ {0, 1}

m
m := b0 ⊕ a

(2
1

)−OT

b0

b1

bc

c

A B

bc := r ⊕ m

Let now the first party be honest, i.e., A = (A1, A2). In the real model,
A2 receives (c, z) and sends (a0, a1) = a(c, z) to

(2
1

)−TO. Then he receives
m = b0 ⊕ab0⊕b1 , and outputs v(c, z, a0, a1, m). Let the adversary B2 in the ideal
model be defined as follows: On inputs (c, z), he sends (c, z) to A2, and gets
(a0, a1) = a(c, z) back. He sends c := a0 ⊕ a1 to

(2
1

)−OT and gets bc back. Then
he sends m := bc ⊕ a0 to A2, gets v = v(c, z, a0, a1, m) back and outputs v.

Since

m = a0 ⊕ bc = a0 ⊕ ba0⊕a1 = b0 ⊕ a0 ⊕ (b0 ⊕ b1)(a0 ⊕ a1) = b0 ⊕ ab0⊕b1 ,

we have, for all (b0, b1) ∈ {0, 1}2, c ∈ {0, 1}, and z ∈ Z,

real3,A(z)((b0, b1), c) = (⊥, v(c, z, a0, a1, m))

= (⊥, v(c, z, a0, a1, b0 ⊕ ab0⊕b1))
≡ (⊥, v(c, z, a0, a1, b0 ⊕ ab0⊕b1))
= (⊥, v(c, z, a0, a1, m))
= ideal(2

1)−OT,(B1,B2)(z)((b0, b1), c) .

Assume now that the second party is honest, i.e., A = (A1, A2). In the
real model, A1 receives ((b0, b1), z) and sends d = d((b0, b1), z) to

(2
1

)−TO,
which returns l = r ⊕ dc. Then, he sends m = m((b0, b1), z, l) to A2 and
outputs u((b0, b1), z, d, l, m). Let the adversary B1 in the ideal model be de-
fined as follows: On inputs ((b0, b1), z), B1 sends ((b0, b1), z) to A1 and gets
d = d((b0, b1), z) back. He chooses l uniformly at random and sends it to A1,
who sends m = m((b0, b1), z, l) and u = u((b0, b1), z, d, l, m) back. He sends
(l ⊕ m, l ⊕ m ⊕ d) to

(2
1

)−OT and outputs u.
The honest player will output l ⊕ m ⊕ cd. Since l = r ⊕ dc and r is uniform

and independent of everything else, l is uniform and independent as well, which

Oblivious Transfer Is Symmetric 229

means that it has the same joint distribution as l with everything else. Therefore
we have, for all (b0, b1) ∈ {0, 1}2, c ∈ {0, 1}, and z ∈ Z,

real3,A(z)((b0, b1), c) = (u((b0, b1), z, d, l, m), r ⊕ m)

= (u((b0, b1), z, d, l, m, l ⊕ dc ⊕ m)

≡ (u((b0, b1), z, d, l, m, l ⊕ dc ⊕ m)
= ideal(2

1)−OT,B(z)((b0, b1), c) .

Obviously, the simulated adversary is as efficient as the real adversary. �

Our protocol is optimal: First of all, since it is impossible to construct uncondi-
tionally secure oblivious transfer from scratch, using a single instance of

(2
1

)−TO
is optimal. Since

(2
1

)−TO does not allow any communication from Bob to Alice,
but

(2
1

)−OT does allow one bit of communication, any protocol must communi-
cate at least one bit. Furthermore, there cannot exist a protocol where Bob does
not use any randomness, because then his inputs to

(2
1

)−TO would be deter-
ministic functions of c. These functions could not both be constant, since then
the output of

(2
1

)−TO would not depend on c and be useless, and therefore no
oblivious transfer would be possible. But if the functions are not constant, A is
able to obtain information about c.

5 Oblivious Linear-Function Evaluation

In contrast to
(2
1

)−OT, all the other forms of oblivious transfer cannot be re-
versed without loss, i.e., in the perfect single-copy sense of Sections 3 and 4. This
can easily be seen from the monotones, defined in [24]: A primitive can only be
reversed without loss if

H(Y ↘ X |X) = H(X ↘ Y |Y),

and
(2
1

)−OT is the only example of
(
n
k

)−OTl having this property.
In this section, we present another natural generalization of oblivious transfer

to strings that can be reversed perfectly: oblivious linear-function evaluation over
GF (q) or GF (q)−OLFE for short. Roughly speaking, the sender’s input is a lin-
ear function f : x �→ y = a0 + a1x, where a0, a1, x, y ∈ GF (q), and the receiver’s
input is an argument x ∈ GF (q) for which he then learns the evaluation of the
function, y = f(x) (see Figure 3). GF (q)−OLFE is a special case of oblivious
polynomial evaluation [17]. It can easily be verified that GF (2)−OLFE is equiva-
lent to

(2
1

)−OT. Furthermore, [20] shows that with one instance of GF (q)−OLFE
a very simple commitment scheme can be implemented, which allows to commit
to a value x ∈ GF (q). The scheme is perfectly hiding and 1/q-binding.

The protocols of Sections 3 and 4 generalize to GF (q)−OLFE in a straight-
forward way: GF (q)−OLFE is, as oblivious transfer, equivalent to a non-inter-
active key—and can, therefore, be stored in the same sense. Moreover, this key
is, as

(2
1

)−OK, symmetric. Hence, GF (q)−OLFE from A to B can be reduced to

230 S. Wolf and J. Wullschleger

GF (q)−OLFE
y = a0 + a1x

A B

a0
a1

x

Fig. 3. Oblivious linear-function evaluation over GF (q)

GF (q)−OLFE from B to A—GF (q)−EFLO for short—in a perfect and single-
copy sense. Protocol 4 is, in addition, optimal with respect to the required
communication.

BA

m

at random

r

a0

a1

x

x

r + a1x

a1

m := a0 + (r + a1x)

y := m − r y = a0 + a1x

Protocol 4: GF (q)−OLFE from GF (q)−EFLO

choose r ∈ GF (q)

GF (q)−OLFE

GF (q)−EFLO

6 Concluding Remarks

We have shown that chosen one-out-of-two bit oblivious transfer can be opti-
mally reversed very easily. Furthermore, we have have presented a more general
primitive with the same property: oblivious linear-function evaluation.

Acknowledgments

This work was carried out while both authors were with Université de Montréal,
Canada. This research was supported by Canada’s NSERC, Québec’s FQRNT,
and Switzerland’s SNF.

References

1. D. Beaver, Foundations of Secure Interactive Computing, Advances in Cryptology
—Proceedings of CRYPTO ’91, LNCS, Vol. 576, pp. 377–391, Springer-Verlag, 1992.

2. D. Beaver, Precomputing oblivious transfer, Advances in Cryptology—Proceedings
of CRYPTO ’95, LNCS, Vol. 963, pp. 97–109, Springer-Verlag, 1995.

Oblivious Transfer Is Symmetric 231

3. C. H. Bennett, G. Brassard, C. Crépeau, and H. Skubiszewska, Practical quan-
tum oblivious transfer, Advances in Cryptology—Proceedings of EUROCRYPT ’91,
LNCS, Vol. 576, pp. 351–366, Springer-Verlag, 1992.

4. G. Brassard, C. Crépeau, and S. Wolf, Oblivious transfers and privacy amplifica-
tion, Journal of Cryptology, Vol. 16, No. 4, pp. 219–237, 2003.

5. C. Crépeau, Correct and private reductions among oblivious transfers, Ph. D. The-
sis, Massachusetts Institute of Technology, 1990.

6. C. Crépeau, Efficient cryptographic protocols based on noisy channels, Advances in
Cryptology—Proceedings of CRYPTO ’97, LNCS, Vol. 1233, pp. 306–317, Springer-
Verlag, 1997.

7. C. Crépeau and J. Kilian, Achieving oblivious transfer using weakened security
assumptions, Proceedings of the 28th Symposium on Foundations of Computer Sci-
ence (FOCS ’88), pp. 42–52, IEEE, 1988.

8. C. Crépeau, K. Morozov, and S. Wolf, Efficient unconditional oblivious transfer
from almost any noisy channel, Proceedings of Fourth Conference on Security in
Communication Networks (SCN) ’04, LNCS, Springer-Verlag, 2004.

9. C. Crépeau and M. Sántha, On the reversibility of oblivious transfer, Advances
in Cryptology—Proceedings of EUROCRYPT ’91, LNCS, Vol. 547, pp. 106–113,
Springer-Verlag, 1991.

10. S. Even, O. Goldreich, and A. Lempel, A randomized protocol for signing contracts,
Communications of the ACM, Vol. 28, No. 6, pp. 637–647, 1985.

11. O. Goldreich, Foundations of Cryptography, Volume II: Basic Applications, Cam-
bridge University Press, 2004.

12. H. Imai, J. Müller-Quade, A. Nascimento, and A. Winter, Rates for bit commitment
and coin tossing from noisy correlation, Proceedings of the IEEE International
Symposium on Information Theory (ISIT) ’04, IEEE, 2004.

13. H. Imai, A. Nascimento, and A. Winter, Oblivious transfer from any genuine noise,
unpublished manuscript, 2004.

14. J. Kilian, Founding cryptography on oblivious transfer, Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing (STOC ’88), pp. 20–31,
1988.

15. D. Mayers, Unconditionally secure quantum bit commitment is impossible, Phys.
Rev. Lett., Vol. 78, pp. 3414–3417, 1997.

16. S. Micali and P. Rogaway, Secure computation, Advances in Cryptol-
ogy—Proceedings of CRYPTO ’91, LNCS, Vol. 576, pp. 392–404, Springer-Verlag,
1992.

17. M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation, Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing (STOC ’99),
pp. 245-354, 1999.

18. R. Ostrovsky, R. Venkatesan, and M. Yung, Fair games against an all-powerful ad-
versary, AMS DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, Vol. 13, pp. 155–169, 1990.

19. M. Rabin, How to exchange secrets by oblivious transfer, Technical Report TR-81,
Harvard Aiken Computation Laboratory, 1981.

20. R. L. Rivest, Unconditionally secure commitment and oblivious transfer schemes
using private channels and a trusted initializer, unpublished manuscript, 1999.

21. C. E. Shannon, A mathematical theory of communication, Bell System Technical
Journal, Vol. 27, pp. 379–423, 623–656, 1948.

22. A. Winter, A. Nascimento, and H. Imai, Commitment capacity of discrete memo-
ryless channels, Cryptography and Coding, LNCS, Vol. 2898, pp. 35–51, Springer-
Verlag, 2003.

232 S. Wolf and J. Wullschleger

23. S. Wolf and J. Wullschleger, Zero-error information and applications in cryptogra-
phy, Information Theory Workshop (ITW) ’04, IEEE, 2004.

24. S. Wolf and J. Wullschleger. New monotones and lower bounds in unconditional
two-party computation. In Advances in Cryptology—Proceedings of CRYPTO ’05,
LNCS, Vol. 3621, pp. 467–477, Springer-Verlag, 2005.

25. A. D. Wyner, The wire-tap channel, Bell System Technical Journal, Vol. 54, No. 8,
pp. 1355–1387, 1975.

26. R. W. Yeung, A new outlook on Shannon’s information measures, IEEE Transac-
tions on Information Theory, Vol. 37, No. 3, pp. 466–474, 1991.

Symplectic Lattice Reduction and NTRU

Nicolas Gama1, Nick Howgrave-Graham2, and Phong Q. Nguyen3

1 École normale supérieure, DI, 45 rue d’Ulm, 75005 Paris, France
Nicolas.Gama@ens.fr

2 NTRU Cryptosystems, Burlington, MA, USA
nhowgravegraham@ntru.com

3 CNRS/École normale supérieure, DI, 45 rue d’Ulm, 75005 Paris, France
http://www.di.ens.fr/~pnguyen

Abstract. NTRU is a very efficient public-key cryptosystem based on
polynomial arithmetic. Its security is related to the hardness of lattice
problems in a very special class of lattices. This article is motivated by
an interesting peculiar property of NTRU lattices. Namely, we show that
NTRU lattices are proportional to the so-called symplectic lattices. This
suggests to try to adapt the classical reduction theory to symplectic lat-
tices, from both a mathematical and an algorithmic point of view. As a
first step, we show that orthogonalization techniques (Cholesky, Gram-
Schmidt, QR factorization, etc.) which are at the heart of all reduction
algorithms known, are all compatible with symplecticity, and that they
can be significantly sped up for symplectic matrices. Surprisingly, by do-
ing so, we also discover a new integer Gram-Schmidt algorithm, which is
faster than the usual algorithm for all matrices. Finally, we study sym-
plectic variants of the celebrated LLL reduction algorithm, and obtain
interesting speed ups.

1 Introduction

The NTRU cryptosystem [12] is one of the fastest public-key cryptosystems
known, offering both encryption (under the name NTRUEncrypt) and digital
signatures (under the name NTRUSign [11]). Besides efficiency, another inter-
esting feature of NTRU compared to traditional public-key cryptosystems based
on factoring or discrete logarithm is its potential resistance to quantum comput-
ers: no efficient quantum algorithm is known for NP-hard lattice problems. The
security and insecurity of NTRU primitives has been a popular research topic
in the past 10 years, and NTRU is now being considered by the IEEE P1363.1
standards [16].

The security of NTRU is based on the hardness of two famous lattice problems,
namely the shortest and closest vector problems (see for instance the survey [23]),
in a very particular class of lattices called convolution modular lattices by [20].
More precisely, it was noticed by the authors of NTRU and by Coppersmith
and Shamir [6] that ideal lattice reduction algorithms could heuristically recover
NTRU’s secret key from the public key. This does not necessarily imply that
NTRU is insecure, since there is a theoretical and experimental gap between

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 233–253, 2006.
c© International Association for Cryptologic Research 2006

234 N. Gama, N. Howgrave-Graham, and P.Q. Nguyen

existing reduction algorithms (such as LLL [18] or its block improvements by
Schnorr [25]) and ideal lattice reduction (which is assumed to be solving NP-
hard lattice problems), while NTRU is so far the only lattice-based cryptosystem
known that can cope with high dimensions without sacrificing performances. Nor
does it mean that the security of NTRU primitives is strictly equivalent to the
hardness of lattice problems. In fact, the main attacks on NTRU primitives have
bypassed the hard lattice problems: this was notably the case for the decryp-
tion failure attacks [15] on NTRUEncrypt, the attacks [7, 8] on the ancestor
NSS [13] of NTRUSign [11], as well as the recent attack [21] on NTRUSign [11]
without perturbation. Almost ten years after the introduction of NTRU [12], no
significant weakness on NTRU lattices has been found, despite the very par-
ticular shape of NTRU lattice bases: both the public and secret NTRU bases
are 2N × 2N matrices formed by four blocks of N × N circulant matrices. It is
this compact representation that makes NTRU much more efficient than other
lattice-based or knapsack-based schemes (see the survey [23]). A fundamental
open question is whether this particular shape makes NTRU lattices easier to
reduce or not.

Our Results. We propose to exploit the structure of NTRU lattices in lattice re-
duction algorithms. As a starting point, we observe a peculiar property of NTRU
lattices: we show that NTRU lattices are proportional to the so-called symplectic
lattices (see the survey [2]). As their name suggests, symplectic lattices are re-
lated to the classical symplectic group [28]: a lattice is said to be symplectic if it
has at least one basis whose Gram matrix is symplectic, which can only occur in
even dimension. Such lattices are isodual : there exists an isometry of the lattice
onto its dual. Interestingly, most of the well-known lattices in low even dimension
are proportional to symplectic lattices, e.g.the roots lattices A2, D4 and E8, the
Barnes lattice P6, the Coxeter-Todd lattice K12, the Barnes-Wall lattice BW16
and the Leech lattice Λ24 (see the bible of lattices [5]). Besides, there is a one-to-
one correspondence between symplectic lattices and principally polarized com-
plex Abelian varieties, among which Jacobians form an interesting case (see [3]).
This has motivated the study of symplectic lattices in geometry of numbers.

However, to our knowledge, symplectic lattices have never been studied in
reduction theory. The long-term goal of this paper is to explore the novel concept
of symplectic lattice reduction in which the classical reduction theory is adapted
to symplectic lattices, from both a mathematical and an algorithmic point of view
in order to speed up reduction algorithms. As a first step, we show that the Gram-
Schmidt orthogonalization process – which is at the heart of all lattice reduction
algorithms known – preserves symplecticity, and that is made possible by a slight
yet essential change on the classical definition of a symplectic matrix, which is
fortunately compatible with the standard theory of the symplectic group. We
then exploit this property to speed up its computation for symplectic lattices. In
doing so, we actually develop a new and faster method to compute integral Gram-
Schmidt, which is applicable to all matrices, and not just symplectic matrices.
The method is based on duality: it is faster than the classical method, because
it significantly reduces the number of long-integer divisions. When applied to

Symplectic Lattice Reduction and NTRU 235

symplectic matrices, a further speed up is possible thanks to the links between
symplecticity and duality: in practice, the method then becomes roughly 30
times faster than the classical GS method, which is roughly the time it would
take on a matrix of halved dimension. Finally, we study symplectic versions of
the celebrated LLL lattice basis reduction algorithm [18] and obtain a speedup
of 6 for NTRU lattices of standard size. We restrict to the so-called integral
version of LLL to facilitate comparisons: it might be difficult to compare two
floating-point variants with different stability properties. We leave the cases of
floating-point variants [22] and improved reduction algorithms [25] to future
work, but the present work seems to suggest that reduction algorithms might be
optimized to NTRU lattices in such a way that a 2n-dimensional NTRU lattice
would not take more time to reduce than an αn-dimensional lattice for some
α < 2. This is the case for Gram-Schmidt orthogonalization and LLL.

Related Work. Incidentally, the compatibility of the symplectic group with
respect to standard matrix factorizations has recently been studied in [19]: how-
ever, because they rely on the classical definition of a symplectic matrix, they
fail to obtain compatibility with Gram-Schmidt orthogonalization or the QR
decomposition.

Road Map. The paper is organized as follows. In Section 2, we provide necessary
background on lattice reduction and the symplectic group. In Section 3, we
explain the relationship between NTRU lattices and symplecticity. In Section 4,
we show that the Gram-Schmidt orthogonalization process central to all lattice
reduction algorithms known is fully compatible with symplecticity. In Section 5,
we present a new integral Gram-Schmidt algorithm, which leads to significant
speed-ups for symplectic matrices. The final section 6 deals with symplectic
variants of integral LLL.

2 Background

Let ‖.‖ and 〈., .〉 be the Euclidean norm and inner product of Rn. Vectors will be
written in bold, and we will use row-representation for matrices. The notations
Mn(R) represents the n × n-dimensional matrices over R, and GLn(R) the n-
dimensional invertible matrices of Mn(R). For a matrix M whose name is a
capital letter, we will usually denote its coefficients by mi,j : if the name is a
Greek letter like μ, we will keep the same symbol for both the matrix and its
coefficients. The matrix norm |M | represents the maximum of the Euclidean
norms of the rows of M . The notation �x� denotes a closest integer to x.

2.1 Lattices

We refer to the survey [23] for a bibliography on lattices. In this paper, by the
term lattice, we mean a discrete subgroup of Rn. The simplest lattice is Zn. It
turns out that in any lattice L, not just Zn, there must exist linearly independent
vectors b1, . . . ,bd ∈ L such that:

236 N. Gama, N. Howgrave-Graham, and P.Q. Nguyen

L =

{
d∑

i=1

nibi | ni ∈ Z

}
.

Any such d-tuple of vectors b1, . . . ,bd is called a basis of L: a lattice can be
represented by a basis, that is, a row matrix. Two lattice bases are related to
one another by some matrix in GLd(Z). The dimension of a lattice L is the
dimension d of the linear span of L. Let [b1, . . . ,bd] be vectors: the lattice is
full-rank if d = n, which is the usual case. We denote by G(b1, . . . ,bd) their
Gram matrix, that is the d× d symmetric matrix (〈bi,bj〉)1≤i,j≤d formed by all
the inner products. The volume vol(L) (or determinant) of the lattice L is the
square root of the determinant of the Gram matrix of any basis of L: here, the
Gram matrix is symmetric definite positive. The dual lattice L× of a lattice L is:

L× = {v ∈ spanL, ∀u ∈ L, 〈u,v〉 ∈ Z} .

They have the same dimension and their volumes satisfy vol(L) · vol(L×) = 1.
If B = [b1, ...,bd] is a basis of L, and δi,j the Kronecker symbol, then the dual
family B× = [b×

1 , ...,b×
d] with b×

i ∈ span(L) satisfying 〈b×
i ,bj〉 = δi,j is a basis

of L× called the dual basis of B. The Gram matrices of B and B× are inverse
of each other, and when L is a full rank lattice, B× = B−t.

2.2 The Symplectic Group

The symplectic group is one of the classical groups [28], whose name is due to
Weyl. Given four matrices A, B, C, D ∈ Mn(R) we denote by Q[A, B, C, D] the
(2n) × (2n) matrix with A, B, C, D as its quadrants:

Q[A, B, C, D] =
(

A B
C D

)
.

Symplectic matrices are matrices preserving a nondegenerate antisymmetric
bilinear form. Let σ be an isometry of Rn. Then σ2 = −1 if and only if there exists
an orthonormal basis of Rn over which the matrix of σ is J2n = Q[0, In,−In, 0],
where In is the n× n identity matrix. Usually, a matrix M ∈ M2n(R) is said to
be symplectic if and only if

M tJ2nM = J2n. (1)

where M t is the transpose of M . This is equivalent to M being invertible and
having inverse equal to:

M−1 = −J2nM tJ2n. (2)

The set of such matrices is denoted by Sp(2n, R), which is a subgroup of the
special linear group SL2n(R): a symplectic matrix has determinant +1. A matrix
is symplectic if and only if its transpose is symplectic. The matrix Q[A, B, C, D]
is symplectic if and only if ADt − BCt = In and both the matrices ABt and
CDt are symmetric. It follows that a triangular matrix Q[A, 0, C, D] may only
be symplectic if A and D are diagonal, which is too restrictive to make the

Symplectic Lattice Reduction and NTRU 237

symplectic group fully compatible with standard matrix factorizations involving
triangular matrices.

To fix this, we consider a variant of the usual symplectic group obtained
by equation (1) with another matrix J2n. Fortunately, this is allowed by the
theory, as while as J2n is a nonsingular, skew-symmetric matrix. From now on,
we thus let J2n = Q[0, Rn,−Rn, 0] where Rn is the reversed identity matrix:
the identity where the rows (or the columns) are in reverse order, that is, the
(i, j)-th coefficient is the Kronecker symbol δi,n+1−j . This new matrix J2n still
satisfies J2

2n = −I2n, and is therefore compatible with symplecticity. From now
on, by a symplectic matrix, we will mean a matrix satisfying equation (1) or (2)
with this choice of J2n, and this will be our symplectic group Sp(2n, R). Now, a
matrix Q[A, B, C, D] is symplectic if and only if the following conditions hold:

BAs = ABs, DCs = CDs, ADs − BCs = Rn (3)

where M s = RnM tRn for any M ∈ Mn(R), which corresponds to reflecting
the entries in the off-diagonal mi,j ↔ mn+1−j,n+1−i. The matrix RnM reverses
the rows of M , while MRn reverses the columns. In other words, compared
to the usual definition of symplectic matrices, we have replaced the transpose
operation M t and In by respectively the reflection M s and Rn. This will be the
general rule to switch from the usual symplectic group to our variant. In fact,
it can be checked that the reflection M �→ M s is an involution of Sp(2n, R):
M s is symplectic (though Rn is not symplectic), and (M s)s = M . Now a trian-
gular matrix Q[A, 0, C, D] may be symplectic without requiring A and D to be
diagonal. Naturally, M−s will mean the inverse of M s.

To conclude this subsection, let us give a few examples of symplectic matrices
with our own definition of Sp(2n, R), which will be very useful in the rest of the
paper:

– Any element of SL2(R), that is, any 2x2 matrix with determinant 1.
– A diagonal matrix of M2n(R) with coefficients d1, ..., d2n is symplectic if and

only if di = 1/d2n+1−i for all i.

– Any

⎡⎣A 0 B
0 M 0
C 0 D

⎤⎦ including

⎡⎣ I 0 0
0 M 0
0 0 I

⎤⎦ where
{

M ∈ Sp(2n, R)
Q[A, B, C, D] ∈ Sp(2m, R) .

– Q[U, 0, 0, U−s] for any invertible matrix U ∈ GLn(R).
– Q[In, 0, A, In] for any A ∈ Mn(R) such that A = As, that is, A is reversed-

symmetric.

The symplecticity can be checked by equations (1), (2) or (3). In particular,
these equations prove the following elementary lemma, which gives the structure
of symplectic triangular matrices.

Lemma 1. A lower-triangular 2n-dimensional matrix L can always be decom-
posed as follows:

L =

⎡⎣ α 0 0
ut M 0
β v γ

⎤⎦ where

⎧⎨⎩
α, β, γ ∈ R

u,v ∈ R2n−2

M ∈ M2n−2(R) is triangular
.

238 N. Gama, N. Howgrave-Graham, and P.Q. Nguyen

Then the matrix L is symplectic if and only if M is symplectic (and triangular),
γ = 1

α and u = −αvJ2n−2M
t.

2.3 Symplectic Lattices

A lattice L is said to be isodual if there exists an isometry σ of L onto its dual
(see the survey [2]). One particular case of isodualities is when σ2 = −1, in which
case the lattice is called “symplectic”. Then there exists an orthogonal basis of
span(L) over which the matrix of σ: is J2n there is at least a basis of L whose
Gram matrix is symplectic.

A symplectic lattice has volume equal to 1. In this paper, we will say that an
integer full-rank lattice L ∈ Z2n is q-symplectic if the lattice L/

√
q is symplectic

where q ∈ N∗. Its volume is equal to qn. Our q-symplectic lattices seem to be a
particular case of the modular lattices introduced by Quebbemann [24], which
are connected to modular forms.

2.4 Orthogonalization

Cholesky. Let G ∈ Mn(R) be symmetric definite positive. There exists a unique
lower triangular matrix L ∈ Mn(R) with strictly positive diagonal such that
G = LLt. The matrix L is the Cholesky factorization of G, and its Gram matrix
is G.
The μDμt Factorization. This factorization is the analogue of the so-called
“LDL decomposition”in [9, Chapter 4.1]. Let G ∈ Mn(R) be symmetric definite.
There exists a unique lower triangular matrix μ ∈ Mn(R) with unit diagonal
and a unique diagonal matrix D ∈ Mn(R) such that G = μDμt. The pair (μ, D)
is the μDμt factorization of G. When G is positive definite, then D is positive
diagonal, and the relation between the μDμt and Cholesky factorizations of G
is L = μ

√
D.

QR or LQ. Let M ∈ GLn(R). There exists a unique pair (Q, R) ∈ Mn(R)2 such
that M = QR, where Q is unitary and R is upper triangular with strictly positive
diagonal. This is the standard QR factorization. Since we deal with row matrices,
we prefer to have a lower triangular matrix, which can easily be achieved by
transposition. It follows that there also exists a unique pair (L, Q) ∈ Mn(R)2

such that M = LQ, where Q is unitary and L is lower triangular with strictly
positive diagonal. Note that L is the Cholesky factorization of the Gram matrix
MM t of M .
Gram-Schmidt. Let [b1, . . . ,bd] be linearly independent vectors represented
by the d × n matrix B. Their Gram-Schmidt orthogonalization (GSO) is the
orthogonal family [b∗

1, . . . ,b
∗
d] defined recursively as follows: b∗

1 = b1 and b∗
i is

the component of bi orthogonal to the subspace spanned by b1, . . . ,bi−1. We
have b∗

i = bi −
∑i−1

j=1 μi,jb∗
j where μi,j = 〈bi,b∗

j 〉/‖b∗
j‖2 for all i < j. We let

μ ∈ Md(R) be the lower triangular matrix whose coefficients are μi,j above the
diagonal, and 1 on the diagonal. If B∗ is the d × n row matrix representing
[b∗

1, . . . ,b
∗
d], then B = μB∗. If we let G be the Gram matrix BBt of B, then

Symplectic Lattice Reduction and NTRU 239

μ is exactly the matrix from the μDμt decomposition of G, and its Cholesky
factorization L = (i,j) is related to the GSO by: 	i,j = μi,j‖b∗

j‖ for i < j. The
matrices L and B have the same Gram matrix, so the GSO can be viewed as a
trigonalization of the lattice Λ spanned by B. Note that vol(Λ) =

∏d
i=1 ‖b∗

i ‖.
Integral Gram-Schmidt. In practice, we are interested in the case where the
bi’s are in Zn. Then the b∗

i ’s and the μi,j ’s are in general rational. To avoid
rational arithmetic, it is customary to use the following integral quantities (as
in [27] and in the complexity analysis of [18]): for all 1 ≤ i ≤ d, let: λi,i =∏i

j=1 ‖b∗
j‖2 = vol(b1, . . . ,bi)2 ∈ Z. Then let λi,j = μi,jλj,j for all j < i, so

that μi,j = λi,j

λj,j
. It is known that λi,j ∈ Z. When using the GSO for lattice

reduction, one does not need to compute the b∗
i ’s themselves: one only needs to

compute the μi,j ’s and the ‖b∗
i ‖2. Since ‖b∗

i ‖2 = λi,i/λi−1,i−1 (if we let λ0,0 = 1),
it follows that it suffices to compute the integral matrix λ = (λi,j)1≤i,j≤d for
lattice reduction purposes. This is done by Algorithm1, whose running time is
O(nd4 log2 |B|) where |B| is an upper bound of the ‖bi‖’s.

Algorithm 1. Standard GS
Input: A set of d linearly independent vectors [b1, ..., bd] of Zn

Output: The λ matrix of the GSO of [b1, ..., bd].
1: for i = 1 to d do
2: λi,1 ← 〈bi,b1〉
3: for j = 2 to i do
4: S = λi,1λj,1

5: for k = 2 to j − 1 do
6: S ← (λk,kS + λj,kλi,k)/λk−1,k−1

7: end for
8: λi,j ← 〈bi,bj〉λj−1,j−1 − S
9: end for

10: end for

2.5 LLL Reduction

Size Reduction. A basis [b1, . . . ,bd] is size-reduced with factor η ≥ 1/2 if its
GSO family satisfies |μi,j | ≤ η for all j < i. An individual vector bi is size-
reduced if |μi,j | ≤ η for all j < i. Size reduction usually refers to η = 1/2, and is
typically achieved by successively size-reducing individual vectors.

LLL Reduction. A basis [b1, . . . ,bd] is LLL-reduced [18] with factor (δ, η) for
1/4 < δ ≤ 1 and 1/2 ≤ η <

√
δ if the basis is size-reduced with factor η and

if its GSO satisfies the (d − 1) Lovász conditions (δ − μ2
i,i−1)

∥∥b∗
i−1

∥∥2 ≤ ‖b∗
i ‖2,

which means that the GSO vectors never drop too much. Such bases have several
useful properties (see [4, 18]), notably the following one: the first basis vector is
relatively short, namely

‖b1‖ ≤ β(d−1)/4vol(L)1/d , where β = 1/(δ − η2).

240 N. Gama, N. Howgrave-Graham, and P.Q. Nguyen

LLL-reduction usually refers to the factor (3/4, 1/2) because this was the choice
considered in the original paper by Lenstra, Lenstra and Lovász [18]. But the
closer δ and η are respectively to 1 and 1/2, the more reduced the basis is. The
classical LLL algorithm obtains in polynomial time a basis reduced with factor
(δ, 1/2) where δ can be arbitrarily close to 1. Reduction with a factor (1,1/2) is
closely related to a reduction notion introduced by Hermite [10].
The LLL Algorithm. The basic LLL algorithm [18] computes an LLL-reduced
basis in an iterative fashion: there is an index κ such that at any stage of the
algorithm, the truncated basis [b1, . . . ,bκ−1] is LLL-reduced. At each loop iter-
ation, κ is either incremented or decremented: the loop stops when κ eventually
reaches the value d + 1, in which case the entire basis [b1, . . . ,bd] is already
LLL-reduced.

LLL uses two kinds of operations: swaps of consecutive vectors and Babai’s
nearest plane algorithm [1], which performs at most d translations of the form
bκ ← bκ − mbi, where m is some integer and i < κ. Swaps are used to achieve
Lovász conditions, while Babai’s algorithm is used to size-reduce vectors.

If L is a full-rank lattice of dimension n and |B| is an upper bound on the
‖bi‖’s, then the complexity of the LLL algorithm (using integral Gram-Schmidt)
without fast integer arithmetic is O(n6 log3 |B|). The recent L2 algorithm [22]
(based on floating-point Gram-Schmidt) by Nguyen and Stehlé achieves a factor
of (δ, ν) arbitrarily close to (1,1/2) in faster polynomial time: the complexity
is O(n5(n + log |B|) log |B|) which is essentially O(n5 log2 |B|) for large entries.
This is the fastest LLL-type reduction algorithm known.

3 NTRU Lattices

The NTRU [12] cryptosystem has many variants. To simplify our exposition, we
focus on the usual version, but our results apply to all known variants of NTRU.

Let n be a prime number about several hundreds (e.g.251), and q be a small
power of two (e.g.128 or 256). Let R be the ring Z[X]/(Xn − 1) whose multipli-
cation is denoted by ∗. The NTRU secret key is a pair of polynomials (f, g) ∈ R2

with tiny coefficients compared to q, say 0 and 1. The polynomial f is chosen to
be invertible modulo q, so that the polynomial h = g/f mod q is well-defined in
R. The NTRU public key is the polynomial h ∈ R with coefficients modulo q.
Its fundamental property is: f ∗ h ≡ g mod q in R.

In order to fit multiplicative properties of polynomials of R, we use circulant
matrices. The application ϕ that maps a polynomial in R to its circulant matrix
in Mn(Z) is defined by:

ϕ(
n−1∑
i=0

hiX
i) =

⎡⎢⎢⎢⎣
h0 h1 · · · hn−1

hn−1 h0 · · · hn−2
...

.
...

h1 · · · hn−1 h0

⎤⎥⎥⎥⎦

Symplectic Lattice Reduction and NTRU 241

1. This application is a ring morphism.
2. Circulant matrices are reversed-symmetric: ϕ(a)s = ϕ(a) for any a ∈ R.

There is a natural lattice Λ in Z2n corresponding to the set of pairs of polynomials
(u, v) ∈ R2 such that v ∗ h ≡ u mod q (see [6, 23]). This lattice can be defined by
the following basis, which is public since it can be derived from the public key:

B = Q [ϕ(q), ϕ(0), ϕ(h), ϕ(1)] .

This basis is in fact the Hermite normal form of Λ. It follows that the di-
mension of Λ is 2n and its volume is qn. Notice that B/

√
q is symplectic by

equation (1), and therefore the public basis B and the NTRU lattice Λ are
q-symplectic.

Because of the fundamental property of the public key h, there is a special
lattice vector in Λ corresponding to (g, f), which is heuristically the shortest
lattice vector. All the vectors corresponding to the rotations (g ∗ Xk, f ∗ Xk)
also belong to Λ. In fact, in NTRUSign [11], the pair (f, g) is selected in such
a way that there exists another pair of polynomials (F, G) ∈ R2 such that
f ∗G− g ∗F = q in R. It follows that the following matrix is a secret basis of Λ:

C = Q [ϕ(g), ϕ(f), ϕ(G), ϕ(F)] .

This is the basis used to sign messages in NTRUSign.
Hence, if a, b, c, d are polynomials in R, the matrix M = Q[ϕ(a), ϕ(b), ϕ(c),

ϕ(d)] satisfies:

−MJ2nM tJ2n = Q[ϕ(a ∗ d − b ∗ c), 0, 0, ϕ(a ∗ d − b ∗ c)].

In particular, the secret basis satisfies: −CJ2nCtJ2n = qI2n, which proves that
C is a q-symplectic matrix like B, only with smaller coefficients. Hence, the
unimodular transformation that transforms the public basis B into the secret
basis C is symplectic. One may wonder if it is possible to design special (possibly
faster) lattice reduction algorithms for NTRU lattices, which would restrict their
elementary row transformations to the symplectic subgroup of GL2n(Z). This
motivates the study of symplectic lattice reduction.

4 Symplectic Orthogonalization

All lattice reduction algorithms known are based on Gram-Schmidt orthogonal-
ization, which we recalled in Section 2. In this section, we show that Cholesky
factorization, LQ decomposition and Gram-Schmidt orthogonalization are com-
patible with symplecticity. The key result of this section is the following
symplectic analogue of the so-called LDLt factorization of a symmetric matrix:

Theorem 1 (Symplectic μDμt). Let G be a symmetric matrix in Sp(2n, R).
There exists a lower-triangular matrix μ ∈ Sp(2n, R) whose diagonal is 1, and
a diagonal matrix D ∈ Sp(2n, R) such that, G = μDμt. And the pair (μ, D) is
unique.

242 N. Gama, N. Howgrave-Graham, and P.Q. Nguyen

Before proving this theorem, let us give three important consequences on Cholesky
factorization, LQ factorization and Gram-Schmidt orthogonalization:

Theorem 2 (Symplectic Cholesky). If G ∈ Sp(2n, R) is a symmetric posi-
tive definite matrix, then its Cholesky factorization is symplectic.

Proof. Apply Theorem 1 to G, then μ is lower-triangular symplectic with only 1
on the diagonal. Since G is positive definite, the diagonal matrix D = μ−1Gμ−t

is positive definite. But D is also symplectic, so its coefficients satisfy di,i =
1/d2n+1−i,2n+1−i (see the end of Section 2.2). For these reasons, the square root
C of D (with ci,i =

√
di,i) is also symplectic. It is clear that L = μC is symplectic

and satisfies G = LLt. Since the Cholesky factorisation of G is unique, it must
be L and it is therefore symplectic. ��
Theorem 3 (Symplectic LQ). If B is symplectic, then its LQ decomposition
is such that both L and Q are symplectic.

Proof. L is the Cholesky factorization of the matrix BBt, which is symplectic,
so the previous theorem shows that L is symplectic. Then Q = L−1B is also
symplectic, because Sp(2n, R) is a group. ��
Theorem 4 (Symplectic Gram-Schmidt). If B is symplectic, then the μ
matrix of its Gram-Schmidt orthogonalisation is also symplectic.

Proof. Apply Theorem 1 to G = BBt, then μB represents an orthogonal basis,
because its Gram matrix is diagonal. ��
Thus, the isometry σ represented by J2n that sends the symplectic basis onto its
dual basis is also an isometry between each part of the GSO of the symplectic
basis and its dual basis:

Corollary 1. Let [b1, ...,b2n] be a symplectic basis of a 2n-dimensional lat-
tice, then the GSO satisfy for all i ≤ n, b∗

2n+1−i = 1
||b∗

i ||2 b
∗
i J and b∗

i =
1

||b∗
2n+1−i||2 b

∗
2n+1−iJ .

Proof. Consider the LQ factorization of [b1, ...,b2n]. The unitary matrix Q is
symplectic, therefore equation (2) implies that Q = −JQJ . Hence, a unitary
symplectic matrix always has the form:(

C D
−RnDRn RnCRn

)
=

(
A

RnAJ2n

)
.

This proves that the directions of the b∗
i in this corollary are correct. Their norm

are the diagonal coefficients of L, and this matrix is lower-triangular symplectic,
so Lemma 1 implies that ||b∗

2n+1−i|| = 1/||b∗
i ||. ��

We now prove Theorem 1 by induction over n. There is nothing to prove for
n = 0. Thus, assume that the result holds for n − 1 and let G = (gi,j) be a
symmetric matrix in Sp(2n, R). The main idea is to reduce the first column G

Symplectic Lattice Reduction and NTRU 243

with a symplectic transformation, then verify that it automatically reduces the
last row, and finally use the induction hypothesis to reduce the remaining 2n−2
dimensional block in the center. The symplectic transformation has the form:

P =

⎡⎣ 1 0 0
(α2, ..., α2n−1)t I2n−2 0

α2n (α2, ..., α2n−1)J2n−2 1

⎤⎦ where α2, ..., α2n−1 ∈ R.

This is a symplectic matrix because of Lemma 1. Apply the transformation with
αi = − gi,1

g1,1
. Then PGP t has the following shape:

PGP t =

⎡⎣g1,1 0 γ
0 S uT

γ u β

⎤⎦ ,

where S is a (2n − 2) × (2n − 2) symmetric matrix, u is a (2n − 2) dimensional
row vector, and β ∈ R and γ = 0. The coefficient γ in the bottom left corner of
PGP t is equal to zero, because α2n satisfies α2ng1,1+α2n−1g2,1+ ...+αn+1gn,1−
αngn+1,1 − ... − α2g2n−1,1 + g2n,1 = 0.

Since PGP t is symplectic, the image by J2n of the first row r1 of PGP t has
the form e2n = (0, ..., 0, g1,1) and its jth row rj satisfies 〈e2n, rj〉 = δ2n,j for all
j ≥ 2 (where δ is the Kronecker symbol): in other words, u = 0 and β = 1/g11.

PGP t =

⎡⎣g1,1 0 0
0 S 0
0 0 1

g1,1

⎤⎦ .

As a result, S is symmetric positive definite and symplectic. The induction
hypothesis implies the existence of a pair (μS , DS) such that S = μSDsμ

t
S , and

we can extend μS to a lower-triangular matrix U ∈ Sp(2n, R) using the third
property at the end of Section 2.2:

U =

⎡⎣1 0 0
0 μS 0
0 0 1

⎤⎦ .

Hence, the product μ = UP−1 is a lower-triangular symplectic matrix whose
diagonal is 1, and D = μ−1Gμ−t ∈ Sp(2n, R) is diagonal. This concludes the
proof of Theorem 1 by induction.

5 Speeding-Up Gram-Schmidt by Duality

The standard integral Gram Schmidt algorithm we recalled in Section 2 is based
on a formula which computes μi,j from the μi,k’s (k < j) on the same row. This
leads to many integer divisions for each coefficient as in the innerloop rows 5-7
of Algorithm1.

244 N. Gama, N. Howgrave-Graham, and P.Q. Nguyen

5.1 The General Case

We now show that most of these divisions can be avoided. Consider a basis
B = [b1, ...,bd] and its Gram matrix G = BBt. We know that if μ is the Gram-
Schmidt orthogonalization of B, then G = μDμt where D is a positive diagonal
matrix. If we rewrite the previous equation as μ = Gμ−tD−t, it appears that
for any integer k < d, if we know the k × k topleft triangle of μ and D, we
can compute the k × k topleft triangle of μ−tD−t and the first full k columns
of μ. The matrix μ−t is just a rotation of μ−s, which is the Gram-Schmidt
orthogonalization of the dual basis of (bd, ...,b1). At the end, we get not only
the GSO of B, but also the one of its reverse dual basis: this method which we
call “Dual Gram-Schmidt”, is surprisingly faster than the classical one despite
computing more information.

Theorem 5. Let G ∈ Mn(Z) be a symmetric (positive) definite matrix, and μ
the μDμt factorization of G. As in Section 2, we define λ0,0 = 1 and λk,k =
detGk where Gk is the k × k topleft block of G. Let λ = μ · diag(λ1,1, ..., λn,n)
and U = μ−t · diag(λ0,0, ..., λn−1,n−1). Then the following three relations hold:

λ ∈ Mn(Z), (4)
U ∈ Mn(Z), (5)
λ = GU. (6)

Proof. From G = μDμt, we know that μ−1G is uppertriangular: for all i and t
with i > t, then

∑i
j=1 μ−1

i,j gj,t = 0. If we call G′the (i− 1)× (i− 1) topleft block
of G, v = (μ−1

i,1 , ..., μ−1
i,i−1) and g′ = (gi,1, ..., gi,i−1), then the previous equation

is equivalent to g′ = −vG′. By Cramer’s rule, we deduce the following relation
for all j < i, which proves relation (5):

uj,i = detG′ · vj = (−1)i−j det

⎛⎜⎝ g1,1 . . . g1,j−1 g1,j+1 . . . g1,i

...
. . .

...
...

. . .
...

gi−1,1 . . . gi−1,j−1 gi−1,j+1 . . . gi−1,i

⎞⎟⎠ .

The relation (6) is obtained by multiplying μ = Gμ−tD−t by diag(λ1,1, ..., λn,n).
It also implies that λp,i =

∑i
k=1 gp,kuk,i is the last row development of an integer

determinant:

λp,i = det

⎛⎜⎜⎜⎝
g1,1 . . . g1,i

...
. . .

...
gi−1,1 . . . gi−1,i

gp,1 . . . gp,i

⎞⎟⎟⎟⎠ ,

which concludes the proof. ��
Note that these determinants prove that λp,i ≤ |G|i and Uj,i ≤ |G|i−1.

We derive from μ−tμt = Id a column formula to compute the matrix U defined
in the previous theorem:

Symplectic Lattice Reduction and NTRU 245

(μ−t)i,j = −μt
i,j −

i−1∑
k=j+1

μt
i,k(μ−t)k,j . (7)

From the definition of U , we know that (μ−t)i,j = Ui,j

λj−1,j−1
. Replacing μi,j by

λi,j

λj,j
, we may rewrite the formula as: −Ui,j =

(∑i−1
k=j+1 λk,iUk,j

)
/λi,i. Hence

if we know the i × (i − 1) top-left triangle of λ, we can compute the ith col-
umn of U using this formula (from the diagonal to the top), and then the ith

column of λ using relation (6) of Theorem 5. It is not necessary to keep the ith

column of U after that.
We deduce Algorithm2 to compute the GSO of a basis B. The correctness of

this algorithm is a consequence of the results described in this section. If we look
at the number of operations requested, there are i2/2 multiplications and one
division in the innerloop lines 4-6, and i(n+1− i) small multiplications between
the input Gram matrix and U in the innerloop lines 7-9. This gives a total of
n3/6 large multiplications and n2/2 divisions. In the Standard GS algorithm,
there was as many multiplications, but Θ(n3) divisions.

Algorithm 2. Dual Gram Schmidt
Input: A basis B = (b1, ..., bd) or its Gram matrix G
Output: The GSO decomposition λ of B
1: for i = 1 to d do
2: Ui ← λi−1,i−1

3: Ui−1 ← −λi,i−1

4: for j = i− 2 downto 1 do
5: compute Uj = −(i

k=j+1 λk,jUk)/λj,j

6: end for
7: for j = i to d do
8: compute λj,i = i

k=1〈bj ,bk〉Uk

9: end for
10: end for

5.2 The Symplectic Case

We derive an algorithm specialized to q-symplectic bases to compute the λ ma-
trix of the GSO, and we show why it is faster than the Dual Gram-Schmidt
procedure applied to symplectic bases (see Algorithm1 of Section 2). Let B
be a q-symplectic basis. We know that L in the LQ decomposition of B is q-
symplectic and the μ matrix corresponding to the GSO of B is symplectic. We
will also use the integer dual matrix U we introduced in Theorem 5. Let us
denote the quadrants of μ, and λ by:

μ =
(

μa 0
μγ μδ

)
, λ =

(
λa 0
λγ λδ

)
and U =

(
Uα 0
Uγ Uδ

)
.

246 N. Gama, N. Howgrave-Graham, and P.Q. Nguyen

Because of Theorem 4, we know that μδ = μ−s
α . Together with Corollary 1,

we have Uα = RnλδRn for symplectic matrices and the following relation for q-
symplectic matrices: Uα·diag(q2, q4, ..., q2n) = RnλδRn. For this reason, it is only
necessary to run DualGS up to the middle of the matrix, and fill the columns
of λδ using those of Uα. Given as input a symplectic basis B = (b1, ...,b2n),
Algorithm3 computes the λ matrix of the GSO of B in time O(n5 log2 B) using
standard arithmetic.

Algorithm 3. Symplectic Gram-Schmidt
Input: A q-symplectic basis B = [b1, ..., b2n]
Output: The λ matrix of the GSO of B.
1: precompute: q2i for i = 1 to n
2: for i = 1 to n do
3: Ui ← λi−1,i−1 (for all k, Uk represents Uk,i)
4: Ui−1 ← −λi,i−1

5: for j = i− 2 downto 1 do
6: Uj ← −(i

k=j+1 λk,jUk)/λj,j

7: end for
8: for j = 1 to i do
9: λ2n+1−j,2n+1−i ← q2(n+1−i) · Uj

10: end for
11: for j = i to 2n do
12: compute λj,i = i

k=1 Gj,kUk

13: end for
14: end for

5.3 Experiments

We performed tests on randomly generated bases, whose coefficients are uni-
formly distributed 128-bit integers (see Table 1). On these random matrices, the
speedup is rather moderate, but it will be much more significant when consid-
ering symplectic matrices.

We also performed tests on secret bases of NTRUSign as described in Sec-
tion 3 (see Table 2). Roughly speaking, Algorithm2 is at least 3 times as fast
as Standard GS, and the specialized algorithm is from 10 to 30 times as fast as
Standard GS. We give in function of the dimension of the input matrix, the run-
ning time in seconds to compute the GSO for each algorithm on 2Ghz Opteron

Table 1. Timing of Gram-Schmidt algorithms on random matrices

n StandardGS
in seconds

DualGS in
seconds

DualGS
speedup

100 37.3 25.1 1.49
200 881 579 1.52
300 5613 3644 1.54

Symplectic Lattice Reduction and NTRU 247

Table 2. Timing of Gram-Schmidt algorithms on NTRUSign bases

2n Standard GS DualGS SympGS speedup
DualGS

speedup
SympGS

502 179 122 8.7 1.46 20.5
802 1822 1254 67 1.45 27.1
1214 12103 8515 390 1.42 31.0

processors with a 32-bit version of NTL 5.4. Note that the speed-up of 31 in
Symplectic GS seems to indicate that the cost of computing the GSO of a
2n-dimensional symplectic basis is roughly the one of computing the GSO of
a standard n-dimensional standard matrix.

6 Symplectic LLL

When applied to a symplectic basis, the standard LLL algorithm will likely
not preserve symplecticity, because its elementary operations are not necessarily
symplectic. In this section, we show how one can slightly modify the notion of
size-reduction used in LLL to make it compatible with symplecticity, and we
then deduce a symplectic version of LLL. We do not know if every symplectic
lattice contains an LLL-reduced basis which is also symplectic. But we show
how to obtain efficiently a symplectic basis which is effectively LLL-reduced (as
introduced in [14]). Such bases satisfy the most important properties of LLL-
reduced bases, those which are sufficient to guarantee the shortness of the first
basis vector.

6.1 Symplectic Size-Reduction

The first condition in LLL-reduction is size-reduction, which we recalled in Sec-
tion 2. Unfortunately, size-reduction transformations are not necessarily sym-
plectic. However, we show that it is still possible to force half of the coefficients
of μ to be very small using symplectic transformations, and at the same time,
bound the size of the remaining coefficients.

We say that a matrix B ∈ M2n(R) is semi-size reduced if its GSO satisfies:
for all j ≤ n, for all i ∈ [j + 1, 2n + 1 − j], |μi,j | ≤ 1

2 .

Theorem 6. If B ∈ Sp(2n, R) is semi-size reduced, then its GSO μ is bounded
by ||μ||∞ ≤ n · (3

2)n.

Proof. For the block μδ , Equation (7) gives for i ≥ n + 1 and j ≥ n + 1,
|μi,j | ≤ 1

2 + 1
2

∑i−1
k=j+1 |μi,k|, which is bounded by a geometric sequence of ratio

3
2 . Hence, the bottom diagonal block is bounded by |μi,j | ≤ 1

2 (3
2)i−j−1, and this

bound can be reached for μi∈[1,n],j∈[1,i−1] = −1/2.
For the bound on block μγ , apply Equation (1) to μs in order to get a column

formula. This gives for i ≥ n + 1 and j ≥ 2n − i :

248 N. Gama, N. Howgrave-Graham, and P.Q. Nguyen

μs
n+1−j,n+1−i = μs

i,j +
n∑

k=j+1

μs
i,kμs

2n+1−j,2n+1−k

−
i−1∑

k=n+1

μs
i,kμs

2n+1−j,2n+1−k.

After reindexing the matrix and applying the triangular inequality to this
sum, we obtain

|μi,j | ≤ 1
2

+
2n + 1 − 2j

4
+

1
2

i−1∑
k=2n+2−j

|μk,j |.

It is still bounded by a geometric sequence of ratio 3
2 , but the initial term

μi+1,i is less than 2n+3−2j
4 ≤ n. Thus |μi,j | ≤ n · (3

2)i−2n+j−2. ��

6.2 Lovász Conditions and Effective Reduction

A basis satisfying all Lovász conditions and |μi,i−1| ≤ 1/2 is referred to as effec-
tively LLL-reduced in [14]. Such bases have the same provable bounds on the size
of b1 (which is typically the most interesting vector in a basis) as LLL-reduced
bases. Besides, it is easy to derive an LLL-reduced basis from an effectively LLL-
reduced basis, using just size reductions (no swaps). In general the reason for
weakly reducing the other μi,j for 1 ≤ j < i−1 is to prevent coefficient explosion
in the explicit bi, but there are many other strategies for this that don’t require
as strict a condition as |μi,j | ≤ 1/2, 1 ≤ j < i− 1 (see [17, 26]). It is not difficult
to see that this notion of “effective LLL-reduction” can be reached by symplectic
transformations.

Lemma 2. A symplectic 2n-dimensional basis B is effectively-reduced if and
only if its first n + 1 vectors are effectively LLL-reduced.

Proof. Let μ be the GSO matrix of B, for i ≤ n, since μ is symplectic, we know
that μ2n+2+i,2n+1−i = μi,i−1. Using Corollary 1, the Lovasz condition for the
ith index is equivalent to δ 1

||b∗
2n+2−i||2 ≤ 1

||b∗
2n+1−i||2 − μ2n+2+i,2n+1−i

1
||b∗

2n+2−i||2 ,

which is precisely the Lovasz condition for the 2n + 2 − ith index. ��
This means that for all i ≤ n, every operation made on the rows i and i − 1
that reduces B can be blindly applied on the rows 2n − i + 2 and 2n − i + 1
without knowing the GSO of the second block. A symplectic basis is said to
be symplectic-LLL reduced if it is both effectively LLL-reduced and semi-size-
reduced.

6.3 A Symplectic-LLL Algorithm

It is easy to find polynomial algorithms for symplectic-LLL reduction, but the
difficulty is to make them run faster than LLL in practice. Here, we present an al-
gorithm which reaches symplectic-LLL reduction with an experimental running-
time 6 times smaller than LLL on NTRU public bases of standard size (but the
speed up may be larger for higher-dimensional lattices).

Symplectic Lattice Reduction and NTRU 249

Symplectic LLL is an iterative algorithm that reduces a symplectic lattice
L from its center. It takes as input the integer GSO λ of a symplectic lattice
and outputs the GSO of a symplectic-LLL reduced basis and the unimodular
transformation that achieves the reduction. More precisely, it only keeps one half
of the GSO of symplectic matrices, since the other half can be easily deduced with
(1) or Lemma 1. Here, we chose to keep the left triangle λ′ = λi,j , 1 ≤ j ≤ n, j ≤
i ≤ 2n+1−j. During the algorithm, every elementary operation (swap or a linear
combination of rows) is deduced from λ′, and λ′ is updated incrementally like in
the standard integer LLL (see [18, 4]). As a result, symplecticLLL can generate
the complete sequence of elementary operations of the reduction without knowing
the basis. Unfortunately, having only the GSO of the LLL reduced basis is not
sufficient to compute its coefficients, so every operation that occur in symplectic
LLL algorithm is in fact performed on a third part matrix U . If U is initially
equal to the input basis (resp. the identity matrix), then it is transformed into
the LLL-reduced basis (resp. the unitary transformation).

In this paragraph, we explain the principles of SymplecticLLL on the pro-
jected lattice vectors, but in practice, all operations are done on the GSO λ′ (see
Algorithm4 for details). Let Ck = [πn+1−k(bn+1−k), ..., πn+1−k(bn+k−1)] where
1 ≤ k ≤ n. The 2k-dimensional lattice L(Ck) is symplectic, and its GSO matrix
μ is the 2k × 2k block located in the center of the GSO of the basis. When
the algorithm begins, the counter k is set to 1. At the start of each loop itera-
tion, Ck−1 is already symplectic-LLL-reduced (there is no condition if k = 1).
If k = 1 then the projected lattice C1 is Lagrange-reduced and the counter k
is set to 2. If the determinant of the transformation computed by Lagrange re-
duction is -1, we negate bn+1 to preserve the symplecticity of the basis. In the
general case, Ck is semi-size-reduced, which means that λi,n+1−k is made lower
than 1

2λn+1−k,n+1−k with symplectic combinations of rows for i = n + 2 − k to
n + k. If the pair (n + 1 − k, n + 2 − k) does not satisfy Lovász condition (by
symplecticity neither does the pair (n + k − 1, n + k)), then the pairs of consec-
utive vectors (bn−k+1,bn−k+2) and (bk−1,bk) are swapped and the counter k
is decremented, otherwise k is incremented. The loop goes on until k eventually
reaches the value n + 1.

Experiments show that this basic symplecticLLL algorithm is already as fast
as LLL in dimension 200, and becomes faster in higher dimension. The quality
of the output basis is similar to the one of StandardLLL. The drop of the GSO
obtained with symplecticLLL is in general smoother (better) than with stan-
dardLLL, because both the basis and its dual are reduced in the same time (see
Figure 1). Note also that the curve of log ‖b∗

i ‖ obtained after symplecticLLL is
symmetric because of Corollary 1. We now describe optimizations.

6.4 Optimizations

The following two optimizations do not modify the output of the algorithm, but
considerably speed up the algorithm in practice:
Early Reduction. Let Ci be the 2i-dimensional central projection of the input
basis for 2 ≤ i ≤ n. Suppose that Algorithm4 found the unimodular matrix

250 N. Gama, N. Howgrave-Graham, and P.Q. Nguyen

Algorithm 4. symplectic LLL
Input: A GSO matrix λ of a q-symplectic basis (at least the left triangle λ′)
Output: The GSO λ′ of the reduced basis, and the unitary transformation U
1: k ← 1,U = I2n (or U = Uinit initially given by the user)
2: while k ≤ n do
3: if k = 1 then
4: compute λn+1,n+1 = q2λ′

n−1,n−1

5: find the 2 × 2 unimodular transformation P that Lagrange-reduces the GSO
of C1

6: ensure that the determinant of P is not −1, negate one row of P if necessary
7: Apply P on the two middle rows of λ′ and U , and update λ′

n,n, λ′
n+1,n

8: k ← 2
9: end if

10: for i = n + 2− k to n + k do
11: r ←�λi,n+1−k/λn+1−k,n+1−k�
12: ui ← ui − r un+1−k and λ′

i ← λ′
i − r λ′

n+1−k

13: un+k ← un+k + r u2n+1−i and λ′
n+k ← λ′

n+k + r λ′
2n+1−i if i ≤ n

14: un+k ← un+k−r u2n+1−i and λ′
n+k ← λ′

n+k−r λ′
2n+1−i if n+1 ≤ i ≤ n+k−1

15: end for
16: if Lovász does not hold for the pair (n− k + 1, n− k + 2) then
17: compute λn+k,n−k+2 using Lemma 1
18: swap un+k ↔ un+k−1 and λ′

n+k,j ↔ λ′
n+k−1,j for 1 ≤ j ≤ n − k

19: swap un−k+2 ↔ un−k+1 and λ′
n−k+2,j ↔ λ′

n−k+2,j for 1 ≤ j ≤ n − k
20: update λ′

n−k+2,n−k+1 and λ′
i,n−k+1, λ

′
i,n−k+2 for n − k + 3 ≤ i ≤ n + k using

the same swap formula as standard LLL
21: k ← k − 1
22: else
23: k ← k + 1
24: end if
25: end while

Up ∈ Sp(2p, Z) such that UpCp is symplecticLLL reduced and the reduced GSO
λ′

p. If we want to reduce the initial Cp+1 using Algorithm4, we know that when
the counter k reaches p+1 for the first time, the current state Up+1 and λ′

p+1 is:

Up+1 =

⎛⎝1 0 0
0 Up 0
0 0 1

⎞⎠ and λ′
p+1 =

⎛⎝ λn−p,n−p 0
Upλ.,n−p λ′

p

λn+p+1,n−p 0

⎞⎠ .

So we can launch Algorithm4 on λ′
p+1 with Uinit = Up+1 to finish the reduction.

Using this simple trick for p = 2 to n, the first transformations of Algorithm4
apply to lower dimensional matrices. On NTRU matrices, the execution is almost
two times faster than the basic symplecticLLL. In the Standard LLL algorithm,
the analogue is to update only the first p rows of the GSO, where p is the
maximum index of vectors already modified by the main loop of LLL since the
beginning of the execution.

Symplectic Lattice Reduction and NTRU 251

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 50 100 150 200 250

symplecticLLL
standardLLL

Fig. 1. Quality of the input basis (log ‖b∗
i ‖ as a function of i)

Table 3. Experimental results (on 2GHz Opteron with 32-bit NTL 5.4)

n

half of
dim.

q

max.
coefs

Standard
LLL in
seconds

SympLLL
Early red.
in seconds

SympLLL
Integer
triang.

optim. in
seconds

speedup
Early

reduction

speedup
integer
triang.

40 64 3.09 2.27 1.98 1.36 1.56
83 64 26.89 6.62 4.46 4.06 6.02
107 64 44.7 6.13 4.51 7.29 9.91
167 128 410.8 98.86 65.40 4.15 6.28
253 128 2028 553 294 3.66 6.89
317 128 3688 1131 519 3.26 7.10

Integer Triangular Matrices. This last optimization only works on matrices
for which every ‖b∗

k‖2 is an integer (at the beginning). It is the case of all NTRU
public key matrices, and all integer triangular matrices. The key result is that in
the previous algorithm, each λ′

p is initially divisible by Dn−p =
∏n−p

i=1 ‖b∗
i ‖2. The

only improvement is to use reduced GSO λ′
p/Dn−p instead of λ′

p in the previous
algorithm. Then the first transformations of Algorithm4 apply to matrices of
lower dimension, but also with smaller coefficients. On NTRU matrices, the
execution becomes almost 4 times faster than the basic symplecticLLL.

Acknowledgements. Part of this work, as well as a visit of the second author
to the ENS, were supported by the Commission of the European Communi-
ties through the IST program under contract IST-2002-507932 ECRYPT. We
would like to thank Joe Silverman, Mike Szydlo and William Whyte for useful
conversations.

252 N. Gama, N. Howgrave-Graham, and P.Q. Nguyen

References

1. L. Babai. On Lovász lattice reduction and the nearest lattice point problem. Com-
binatorica, 6:1–13, 1986.

2. A.-M. Bergé. Symplectic lattices. In Quadratic forms and their applications
(Dublin, 1999), volume 272 of Contemp. Math., pages 9–22. Amer. Math. Soc.,
Providence, RI, 2000.

3. P. Buser and P. Sarnak. On the period matrix of a Riemann surface of large genus.
Invent. Math., 117(1):27–56, 1994. With an appendix by J. H. Conway and N. J.
A. Sloane.

4. H. Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag,
1995. Second edition.

5. J. Conway and N. Sloane. Sphere Packings, Lattices and Groups. Springer-Verlag,
1998. Third edition.

6. D. Coppersmith and A. Shamir. Lattice attacks on NTRU. In Proc. of Eurocrypt
’97, volume 1233 of LNCS. IACR, Springer-Verlag, 1997.

7. C. Gentry, J. Jonsson, J. Stern, and M. Szydlo. Cryptanalysis of the NTRU signa-
ture scheme (NSS) from Eurocrypt 2001. In Proc. of Asiacrypt ’01, volume 2248
of LNCS. Springer-Verlag, 2001.

8. C. Gentry and M. Szydlo. Cryptanalysis of the revised NTRU signature scheme.
In Proc. of Eurocrypt ’02, volume 2332 of LNCS. Springer-Verlag, 2002.

9. G. H. Golub and Charles F. Van Loan. Matrix Computations. The John Hopkins
University Press, third edition, 1996.

10. C. Hermite. Extraits de lettres de M. Hermite à M. Jacobi sur différents objets
de la théorie des nombres, deuxième lettre. J. Reine Angew. Math., 40:279–290,
1850. Also available in the first volume of Hermite’s complete works, published by
Gauthier-Villars.

11. J. Hoffstein, N. A. Howgrave-Graham, J. Pipher, J. H. Silverman, and W. Whyte.
NTRUSIGN: Digital signatures using the NTRU lattice. In Proc. of CT-RSA,
volume 2612 of LNCS. Springer-Verlag, 2003.

12. J. Hoffstein, J. Pipher, and J. Silverman. NTRU: a ring based public key cryptosys-
tem. In Proc. of ANTS III, volume 1423 of LNCS, pages 267–288. Springer-Verlag,
1998. First presented at the rump session of Crypto ’96.

13. J. Hoffstein, J. Pipher, and J. H. Silverman. NSS: An NTRU lattice-based signature
scheme. In Proc. of Eurocrypt ’01, volume 2045 of LNCS. Springer-Verlag, 2001.

14. N. Howgrave-Graham. Finding small roots of univariate modular equations re-
visited. In Cryptography and coding (Cirencester, 1997), volume 1355 of Lecture
Notes in Comput. Sci., pages 131–142. Springer, Berlin, 1997.

15. N. A. Howgrave-Graham, P. Q. Nguyen, D. Pointcheval, J. Proos., J. H. Silverman,
A. Singer, and W. Whyte. The impact of decryption failures on the security of
NTRU encryption. In Proc. of the 23rd Cryptology Conference (Crypto ’03), volume
2729 of LNCS, pages 226–246. IACR, Springer-Verlag, 2003.

16. IEEE P1363.1 Public-Key Cryptographic Techniques Based on Hard Problems over
Lattices, June 2003. IEEE., Available from http://grouper.ieee.org/groups/
1363/lattPK/index.html.

17. B. A. LaMacchia. Basis reduction algorithms and subset sum problems. Technical
Report AITR-1283, 1991.

18. A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with
rational coefficients. Mathematische Ann., 261:513–534, 1982.

Symplectic Lattice Reduction and NTRU 253

19. D. S. Mackey, N. Mackey, and F. Tisseur. Structured factorizations in scalar prod-
uct spaces. SIAM J. of Matrix Analysis and Appl., 2005. To appear.

20. A. May and J. H. Silverman. Dimension reduction methods for convolution modular
lattices. In Proc. of CALC ’01, volume 2146 of LNCS. Springer-Verlag, 2001.

21. P. Q. Nguyen and O. Regev. Learning a parallelepiped: cryptanalysis of GGH and
NTRU signatures. In Proc. of Eurocrypt ’06, LNCS. Springer-Verlag, 2006.

22. P. Q. Nguyen and D. Stehlé. Floating-point LLL revisited. In Proc. of Eurocrypt
’05, volume 3494 of LNCS, pages 215–233. IACR, Springer-Verlag, 2005.

23. P. Q. Nguyen and J. Stern. The two faces of lattices in cryptology. In Proc. of
CALC ’01, volume 2146 of LNCS. Springer-Verlag, 2001.

24. H.-G. Quebbemann. Modular lattices in Euclidean spaces. J. Number Theory,
54(2):190–202, 1995.

25. C. P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. The-
oretical Computer Science, 53:201–224, 1987.

26. M. Seysen. Simultaneous reduction of a lattice basis and its reciprocal basis. Com-
binatorica, 13(3):363–376, 1993.

27. B. M. M. de Weger. Solving exponential Diophantine equations using lattice basis
reduction algorithms. J. Number Theory, 26(3):325–367, 1987.

28. H. Weyl. The classical groups. Princeton Landmarks in Mathematics. Princeton
University Press, 1997. Their invariants and representations, Fifteenth printing,
Princeton Paperbacks.

The Function Field Sieve in the
Medium Prime Case

Antoine Joux1,3 and Reynald Lercier1,2

1 DGA
2 CELAR, Route de Laillé, 35170 Bruz, France

Reynald.Lercier@m4x.org
3 Université de Versailles St-Quentin-en-Yvelines, PRISM
45, avenue des Etats-Unis, 78035 Versailles Cedex, France

Antoine.Joux@m4x.org

Abstract. In this paper, we study the application of the function field
sieve algorithm for computing discrete logarithms over finite fields of the
form Fqn when q is a medium-sized prime power. This approach is an
alternative to a recent paper of Granger and Vercauteren for comput-
ing discrete logarithms in tori, using efficient torus representations. We
show that when q is not too large, a very efficient L(1/3) variation of
the function field sieve can be used. Surprisingly, using this algorithm,
discrete logarithms computations over some of these fields are even easier
than computations in the prime field and characteristic two field cases.
We also show that this new algorithm has security implications on some
existing cryptosystems, such as torus based cryptography in T30, short
signature schemes in characteristic 3 and cryptosystems based on super-
singular abelian varieties. On the other hand, cryptosystems involving
larger basefields and smaller extension degrees, typically of degree at
most 6, such as LUC, XTR or T6 torus cryptography, are not affected.

1 Introduction

Computing discrete logarithms is, with integer factorization, one of the two
number-theoretical hard problems upon which public-key cryptography is usu-
ally based. Two kind of groups are often considered, elliptic curves and multi-
plicative groups of finite fields. The latter case is further partitioned into several
sub-cases, prime fields Fp, characteristic two fields F2n , where n is usually prime
and extensions of medium-sized fields Fqn , where q is a medium-sized prime
power1 pk. Until recently, the last case was rarely considered in cryptography.
However, two recent developments make use of such fields, pairing-based cryp-
tography [13, 5, 6, 7] and torus-based cryptography [19, 8, 21, 27]. For this reason,
practical evaluation of the hardness of discrete logarithms in such fields is be-
coming an important issue. Recently, an approach based on rational torus repre-
sentation was proposed by Granger and Vercauteren [12], it was applied in [22].

1 Remark that we use the notation Fqn to emphasize the fact that for composite
extension degrees, viewing the field as Fpkn is not necessarily optimal.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 254–270, 2006.
c© International Association for Cryptologic Research 2006

The Function Field Sieve in the Medium Prime Case 255

In this paper, we revisit a much older approach, the function field sieve. This
algorithm was originally introduced by Adleman [3] as an extension of Copper-
smith’s algorithm [9]. Its complexity was subsequently improved by Adleman
and Huang in [4]. This algorithm is known to be efficient when the base field
is fixed and the extension degree grows. Moreover, it was shown to be practical
and applied to characteristic 2 in [14]. Later on, it was also used in characteristic
3 in [11]. However, when both p and the total extension degree nk grow, the ref-
erence is the approach of Adleman and Demarrais in [2, 1], which makes use of a
variation of Coppersmith’s algorithm, involving function fields, when p ≤ nk. As
soon as this bound is exceeded they use a different algorithm based on number
fields. This approach gives an L(1/2) complexity for medium-sized base fields.
In this paper, we describe a new variation of the function field sieve which is
dedicated to medium-sized values of q and allows for fast computation of dis-
crete logarithms in Fqn , even when q is much larger than n. For such fields, we
show that our approach is faster, both from a theoretical complexity viewpoint
with an L(1/3) complexity and as a practical tool. More precisely, this variation
of the function field sieve is applicable with L(1/3) complexity whenever log q
remains smaller than O(

√
n log n).

The paper is organized as follows, in section 2 we describe the function field
sieve variation we are considering, in section 3 we show that the asymptotic com-
plexity is the same as the complexity of the function field sieve with small base
fields, in section 4 we describe real sized experimentations with this algorithm,
finally in section 5 we discuss the impact of our algorithm on the security of
some cryptosystems.

2 A Medium Sized Variation on the Function Field Sieve

The function field sieve algorithm for computing discrete logarithms over Fpn is
quite similar to the number field sieve for computing discrete logarithms over
Fp (see [10, 28]). Both algorithms consider multiplicative identities using smooth
objects over well-chosen smoothness bases. With the number field sieve, the
objects are numbers in number fields and the smoothness bases contain ideals of
small norm. With the function field sieve, the objects are polynomials in function
fields and the smoothness bases contain ideals whose norms are polynomials of
small degree. The complexity of such algorithms, is usually expressed using a
notation, initially introduced for fast integer factorization algorithms [20]. This
now classical notation is defined as follows:

LQ(α, c) = exp((c + o(1))(log Q)α(log log Q)1−α).

For the two extreme cases, prime fields Fp and extension fields Fpn with fixed
characteristic p, the number field sieve and the function field sieve respectively
yield L(1/3, (64/9)1/3) and L(1/3, (32/9)1/3) algorithms. In the intermediate
cases, the best available complexity is L(1/2) as described by Adleman and
Demarrais in [1, 2]. We would like to further remark, that using the function
field sieve with fixed p, we have a smaller constant in the L(1/3) expression

256 A. Joux and R. Lercier

than with the number field sieve. This is due to the fact that Fpn has a large
number of different representations, one for each irreducible polynomial of degree
n over Fp. This was discovered in [4] and a practical variant was presented
in [14]. Surprisingly, even with medium-sized base fields, a similar construction
that makes use of well chosen representations is possible, as shown below. The
most important question is how to choose a good smoothness basis. With a
medium sized base field Fqn , when q has just the right size, this is in fact very
simple. It suffices to choose as the smoothness bases the sets of ideals whose
norms are degree one polynomials, no more, no less. When log q and

√
n log n are

correctly balanced, this choice yields a very efficient algorithm with complexity
L(1/3, 31/3). In section 2.2, we discuss different choices of smoothness bases that
should be used instead of this simple choice, when the balance between q and n
varies.

More precisely, let q be the cardinality of the base field and n the degree
of the extension. In order to define Fqn , we proceed as follows. First, choose a
minimal pair (d1, d2), with d2 = d1 or d1 +1, and with d1d2 ≥ n. Then, find two
polynomials f1 and f2, in two unknowns, X and t, of the form:

f1(X, t) = X − g1(t), f2(X, t) = g2(X) + t,

where g1 and g2 are univariate polynomials of degree d1 and d2, such that,
g2(g1(t)) + t has an irreducible factor F (t) of degree n over Fq. We claim that
such polynomials are easy to find (see section 4 for examples). We use F (t) as our
definition polynomial for Fqn . Clearly, f1 and f2 have a common root X = g1(t)
in Fqn . As a consequence, f1 and f2 define good function fields for the function
field sieve algorithm. Using standard vocabulary, we say that f1 defines the linear
side of the sieve.

The next step of the algorithm is to send objects of the form a(t)X − b(t) in
the two function fields. At this point, we slightly differ from standard practice
and consider only a subset of such objects, by fixing a(t) = wt + 1 and choosing
b(t) = ut + v, where u, v and w are elements of the base field Fq. As usual, we
then compute the norm of a(t)X−b(t) in the two function fields. This restriction
on a(t) comes from the fact that, since we are working with polynomials, all
factorizations are defined up to a constant in the base field. This choice of a(t)
avoids multiple sieving of the same objects. Note that from a practical point
of view, when q is large enough, it is even better to reduce the sieving space
and fix a(t) = 1 only. Then, on the linear side, we find b(t) − g1(t) a degree
d1 polynomial. On the other side, we find g2(b(t)) + t a degree d2 polynomial.
This contrasts with the general case, where the respective degrees are d1 +1 and
d2 + 1. It is a well-known fact that among polynomials of degree d over Fq, the
proportion of degree d polynomials having d roots quickly tends towards 1/d!
as q grows. We say that b(t) generates a relation when both sides completely
split into degree 1 factors. Using the traditional heuristic and assuming that
the sieving process generates random looking polynomials, this occurs with a
probability which is very close to either 1/(d1! · d2!) or 1/((d1 + 1)! · (d2 + 1)!).
It remains to see whether we obtain enough relations. On the linear side, our

The Function Field Sieve in the Medium Prime Case 257

chosen smoothness basis contains the q possible unitary polynomials of degree
1, namely the polynomials t + u, with u in Fq. On the other side, due to our
particular choice of f2, the smoothness basis also contains q elements, which are
ideals of norm t + g2(u), with u in Fq. As a consequence, we need 2q equations.
Since we are sieving over either q2 or q3 elements, this particular choice works
when either q ≥ 2 d1! ·d2! with reduced sieving space or q2 ≥ 2 (d1 +1)! ·(d2 +1)!
with full sieving space.

After generating the multiplicative identities as above, we transform them
into linear equations involving logarithms of polynomials on the linear side and
“logarithms of ideals” on the other side2. The resulting system of equations is
then solved using a sparse linear algebra algorithm such as Lanczos or Wiede-
man [18, 23, 30, 17]. This linear algebra step is performed modulo (qn−1)/(q−1).
Indeed, the multiplicative identities are defined up to a multiplicative constant
in Fq and the logarithms are computed in the quotient group of F∗

qn by F∗
q . It

is interesting to note that due to the very specific form of the equations we use,
with exactly d1 (or d1 +1) unknowns (potentially counting multiplicities) on the
left-hand side and d2 (or d2 + 1) unknowns on the right-hand side, our system
does not have full rank over the rationals. There is a “parasitic” solution with
all the left-hand side unknowns set to d2 and all right-hand side unknowns set
to d1. This means that after the linear algebra, the resulting solution does not
contain pure discrete logarithms, the result is masked by some additive constant.
However, by considering fractions such as (t+u)/(t+v), the contribution of this
constant can be cancelled. Moreover, if we can find even a single equation with a
different structure, the masking constant can easily be found. The simplest way
to proceed is to find a linear polynomial which completely splits in the function
field defined by f2. This yields a specific kind of equation3 which nicely breaks
the above symmetry and allows us to find and remove the unwanted constant.
An example of this technique is given in section 4.

2.1 Individual Discrete Logarithms

Once the two steps described above, sieving and linear algebra, have been per-
formed, we obtained the logarithms of the elements of the smoothness bases.
This is well and good, but does not fully solve the discrete logarithm problem.
An additional step is required to compute the logarithms of large elements in the
finite field. We propose a classical approach based on “special-q” descent, which
is similar to the approach proposed in [9, 14] for the case of logarithms over an
extension of a small base field. The idea is the following. Given an element y in
the finite field, whose logarithm is wanted, we first build many elements of the
form yi · tj . Each of these elements can be represented as a polynomial in t of de-
gree n. Alternatively, using continued fractions, we can also find representations
2 This notion of logarithms of ideals is described and used in [15, 14]. With the specific

choice of f2 we have given, there is a simpler description, because the function field
is principal and all ideals can be represented by a single element in the finite field.

3 These equations are often used in function field sieve algorithms and are called
systematic equations.

258 A. Joux and R. Lercier

by rational fractions, whose numerators and denominators have degrees near
n/2. From an asymptotic viewpoint, both approaches are equivalent. However,
in practice, the latter is more efficient. Once we obtain such a representation, we
test whether it can be factored in polynomials of degree μ

√
n for a constant μ to

be determined in the sequel. After testing sufficiently many representations, we
find an adequate one and are left with the problem of computing logarithms of
polynomials of degree at most μ

√
n. Let q be such a low degree polynomial. We

can now find its logarithm by sieving again on elements of the form a(t)X −b(t),
where a(t) and b(t) are polynomials of degree at most μ

√
n chosen to ensure

that q divides the linear side (in the function field defined by f1) of the resulting
equations. After finding an element a(t)X − b(t) that factor in both function
fields into polynomials of degree smaller than the degree of q, we iterate the
descent down to degree one, where all logarithms are known. This descent alter-
nates between special-q on the linear and the high degree function fields. Once
the descent reaches degree one, we backtrack and compute the logarithms of
each special-q and finally the logarithms of yi · tj and y. If the special-q values
occurring at the first level are small enough, then the total degree of the objects
to be factored in the next levels are strictly smaller and the bottleneck of this
step is the search for a good representation of yi · tj . In fact, this can be ensured
by choosing μ such that μ

√
n · (d2 +1)+d1 < n. We show that in the complexity

analysis of section 3 and prove that choosing a value of μ between 1/2 and 1
ensures a good behavior of the individual logarithm phase.

2.2 Extension to Smaller Base Fields

From a practical point of view, the above case is probably the most interesting.
However, it is nice to know whether the approach can be extended to different
choices of q and n. We now briefly describe a family of algorithm which neatly
cover all the cases where q is smaller than above. Each algorithm depends on
a main parameter D, which bounds the degree of norms of elements in the
smoothness bases. The previous algorithm corresponds to D = 1. The general
case of D is very similar to the restricted case D = 1. We construct the function
fields in the same manner as above, only changing the choices of d1 and d2. More
precisely, we take d1 ≈ √

Dn and d2 ≈ √
n/D. We sieve over a(t)X −b(t), where

a(t) and b(t) are also degree D polynomials and a(t) is unitary. The total size
of the sieving space is q2D+1. On the linear side, we need to factor a polynomial
of degree at most d1 + D over the smoothness basis. On the other side, we need
to factor a polynomial of degree at most d2D + 1. Dismissing constants and
low order terms, both degrees are near

√
nD. In this context, we need to know

the asymptotic smoothness probability of a degree n polynomial into factors
of degree at most m. This problem has been widely studied and very precise
estimates are given in [24]. However, results are usually given for fixed q, when
both n and m grow. Here, m is fixed and both q and n grow. Yet, the logarithm
of the probability of smoothness is still equivalent to n/m log(m/n). Moreover,
in order to prove our complexity result, a lower bound on the probability is
sufficient. For the sake of completeness, we prove this lower bound in appendix A.

The Function Field Sieve in the Medium Prime Case 259

For simplicity of exposition, in the rest of this section, we work with equivalent
expressions, however, the argument can easily be rewritten to accommodate a
lower bound only.

From these estimates, we deduce that the logarithm of the probability of
smoothness on each side is approximately −√

n/D log
√

n/D. Adding the two,
we obtain a total logarithm of heuristic probability of −√

n/D log(n/D). More-
over, the total size of the two smoothness bases is about 2qD. As with the case
D = 1, we should make sure that we obtain enough equations, this approximately
requires:

(D + 1) log(q) ≥
√

n/D log(n/D).

With this algorithm, the individual logarithms phase remains almost identical.
The only needed change is to use polynomials of degree μ

√
Dn to represent

the element under consideration. We analyze the heuristic complexity of this
extension in section 3 and show that, as in the case D = 1, the right choice is to
take μ between 1/2 and 1.

2.3 Practical Improvements

Large primes variation. In the asymptotic analysis below (section 3), we observe
that when q decreases below some point, we need to increase the parameter D
to successfully compute discrete logarithms. However, this change of algorithm
greatly increases the overall complexity. This happens when the sieving space is
not large enough to get enough equations. However, right at the boundary, the
number of missing equations is quite small. In that case, it is a good idea to use
a large prime variation by allowing a small number of higher degree polynomials
in each decomposition when splitting polynomials over the smoothness bases.
This does not improve the asymptotic complexity, however, in practice, it can
make the difference between a feasible and an infeasible computation. We do not
further discuss this idea, which is classical in implementations of number field
and function field sieves.

Use of Galois Action. In some specific cases, it is possible to use additional
structure of the field Fqn to improve the practicality of our algorithm. The basic
idea is to use the Galois group in order to reduce the size of the smoothness
bases. Assume that there exists an element φ of the Galois group which acts on
both smoothness bases by sending any element to a conjugate also belonging
to the smoothness basis. If we further express φ as a Frobenius power, we can
reduce the number of unknowns in the linear algebra by a factor which is equal
to the order of the action of φ on Fqn . We can also speed up the sieving process
by the same factor, since less equations are needed. However, we should take
care and avoid sieving on values for a(t)X − b(t) yielding conjugate equations.

To make this idea more precise, let us discuss the specific case of F2nk , where
q = 2k and n and k are coprime. In that case, we can view F2nk as a tower of
extensions or alternatively as a compositum. With the latter representation, we
independently define F2n and F2k and put the two representations together to
get Fqn . This means that f1 and f2 can both have their coefficients in F2. In

260 A. Joux and R. Lercier

that case, we take for φ the n-th Frobenius power, i.e., the mapping which sends
x to x2n

in Fqn . Clearly, if t is a root of the irreducible polynomial F (t) defined
by f1 and f2, it is an element of F2n and thus fixed by φ. However, the action
of φ on a(t) and b(t) is not trivial. Indeed, assume that we work with parameter
D = 1, then b(t) = ut+ v with u and v in F2k . Unless u and v are both in F2 the
image of b(t) by φ is a different polynomial. Repeating the application of φ, we
find yet another polynomial, and so on . . . Since k and n are coprime, the order
of the action of φ on F2k is k. As a consequence, the sieving process can be sped
up by a factor4 of k. Moreover, choose t + u an element of the smoothness basis
on the linear side. Clearly, (t + u)2

n

= t + φ(u) is another element of the same
smoothness basis and the logarithms of the two elements say lu and lφ(u) are
related by lφ(u) = 2nlu. This implies that the number of unknowns on the linear
side can be divided by k. A similar argument also applies on the other side. As
a consequence, we gain a speed-up by k on the sieving process and a speed-up
by k2 on the linear algebra.

Clearly, the same construction works for any small characteristic. Use of Galois
action to speed-up the computation is also possible in other cases. In particular,
for all fields of the form Fq2 , it is possible to gain a constant speed-up of two.
In some cases, it is also possible to have a larger speed-up. However, the details
are much more technical and in particular may require to construct f1 and f2 in
a different manner than the construction given at the beginning of the present
section. We only illustrate this by giving an example in section 4.

3 Asymptotic Heuristic Complexity

In this section, given the respective values of q and n, we give the asymptotic
complexity of our algorithm both for D = 1, for other fixed values of D and,
finally, in the general case. It is convenient to let Q denote qn and to assume,
when the parameter D is fixed, that there exists a parameter α such that:

n =
1
α

·
(

log Q

log log Q

)2/3

, q = exp
(

α · 3
√

log Q · log2 log Q

)
.

Using this notation, we can analyze the complexity of each algorithm in the fam-
ily, determined by the parameter D. Since there are two main phases, sieving
and linear algebra, the total complexity expressed by L(1/3, c) is determined
by the maximum of the complexities of each phase. Let L(1/3, c1) be the com-
plexity of the sieving and L(1/3, c2) be the complexity of linear algebra. Then,
recalling from the analysis of section 2 that the smoothness basis has O(qD)
elements and that the logarithm of the heuristic probability of finding a relation
is −√

n/D log(n/D), we find:

c1 =
2

3
√

αD
+ αD and c2 = 2αD.

4 Disregarding the rare cases where both a(t) and b(t) have all their coefficients in F2.

The Function Field Sieve in the Medium Prime Case 261

Moreover, we need to check that we obtain enough equations. We recall that this
approximately requires:

(D + 1) log(q) ≥
√

n/D log(n/D) or (D + 1)α ≥ 2
3
√

αD
.

Whenever this condition is satisfied, we say that the algorithm with parameter
D is applicable. Putting all these conditions together, we find that for each value
of α we should use the lowest possible parameter D yielding an applicable algo-
rithm. Moreover, in the range of applicability the complexity of each algorithm
decreases with α. The optimal case for each algorithm happens when:

(D + 1)α =
2

3
√

αD
.

Just below this threshold, we need to use the next algorithm in the family
and the complexity jumps up to L(1/3, c2(D +1)) = L(1/3, 2α(D+1)). Thus at
each threshold, a discontinuity occurs in the complexity . The largest such gap is
between D = 1 and D = 2, at α = 3−2/3. On both sides of the gap, the respective
complexities are L(1/3, 3

√
3) for D = 1 and L(1/3, 3

√
64/9) for D = 2. All the

other gaps are smaller and the gap size decreases with D and tends to 0 as D
grows. Moreover, the complexity tends to L(1/3, 3

√
32/9). Thus, up to a single

exception, the complexity of our family of algorithms is at worst the complexity of
the number field sieve, is at best even better than the complexity of the function
field sieve with fixed prime and tends to this latter complexity when D grows.
The exception happens when α becomes too large even for D = 1, more precisely
when α > 3

√
8/9. Indeed, in that case, the complexity L(1/3, 2α) is larger than

the complexity of the number field sieve. We summarize this complexity analysis
in figure 1. The three horizontal lines on this graph represents the constants 3

√
3,

3
√

32/9 and 3
√

64/9.

General Values of q. Another interesting question is to study the complexity
of the algorithm when q grows more slowly than LQ(1/3, ε) for all ε. In that
case, we no longer use a fixed parameter D, but let it grow slowly with Q. More
precisely, we choose for D the nearest integer to the solution d of the following
equation:

qd = LQ(1/3, 3
√

4/9).

This choice yields complexity L(1/3, 3
√

32/9) in all the considered cases. Note
that this includes the usual function field sieve, for fixed q, as a special case.
We also remark, that as announced in introduction the L(1/3) boundary on q
corresponds to the range where log q remains smaller than O(

√
n log n).

Individual Logarithms. Concerning individual logarithms, we should choose a
constant μ, both small enough to guarantee that the degrees of polynomials
occurring during the descent are strictly decreasing and large enough to ensure
that the initial good representation is found efficiently. Let m = μ

√
Dn be the

maximal degree of the polynomials appearing in a good representation. Once

262 A. Joux and R. Lercier

1.4

1.5

1.6

1.7

1.8

1.9

2

0 0.2 0.4 0.6 0.8 1

c

α

Fig. 1. Complexity LQ(1/3, c) as a function of q = LQ(1/3, α)

again, we need to use the fact that the logarithm of the probability of smoothness
is still equivalent to n/m log(m/n), even when m, n and q all grow. Moreover, as
before, the argument could be rewritten using only the lower bound given in A.

Replacing n by its expression in term of Q we find that the probability is
equivalent to

1/LQ

(
1/3,

1
3μ

√
αD

)
.

We would like to ensure that the constant in this expression is smaller than the
constant in the complexity of the main phase of the algorithm. This implies:

1
3μ

√
αD

< max(c1, c2), with c1 =
2

3
√

αD
+ αD and c2 = 2αD.

It clearly suffices to have: 1
3μ

√
αD

< 2
3
√

αD
, where the right hand side is the first

summand in c1. This is true whenever μ > 1/2.
Moreover, we need to make sure the special-q descent involves polynomials

of decreasing degree. Since the degrees of a(t) and b(t) during the descent are
at most the degree of the special-q itself, substituting in f1 and f2, we require:
(d2μ

√
Dn + 1) + (d1 + μ

√
Dn) < n. Replacing d1 and d2 by their values and

disregarding low order terms, we get: μn < n. This can be ensured by choosing
μ < 1. As a consequence, we can choose any value of μ in the range]1/2; 1[.

Finally, we need to check that at each step of the special-q descent, there are
sufficiently many pairs (a(t), b(t)) to obtain at least one relation. Potentially, we
might expect to encounter problems for a special-q of degree two, when trying to
relate it to polynomials of degree one. In that case, the natural choice would be

The Function Field Sieve in the Medium Prime Case 263

to select linear polynomials for a(t) and b(t). Since a(t) has the restricted form
wt + 1, there are only q3/q2 = q possible pairs involving the special-q value. As
a consequence, with such a choice for a(t) and b(t), we cannot guarantee that a
relation can be found for this special-q value. Thus, we need to use polynomials
of degree two for a(t) and b(t). Of course, this lowers the smoothness probability
which becomes:

1
((d1 + 2)! · (2d2 + 1)!)

instead of 1/((d1+1)!·(d2+1)!) in the main phase. However, since a single relation
is needed, we keep the good asymptotic complexity. Indeed, in the least favorable
case with respect to this issue, which happens to be the extreme case of the basic
(D = 1) algorithm, the main phase probability is almost equal to 1/q2 and the
main sieving costs q3. Using the same parameters, the smoothness probability
of the individual logarithm phase is asymptocally equivalent to 1/q3. Thus, in
this worst case, the individual logarithm phase has the same asymptotic cost as
the main phase. In all other cases, the main phase dominates the complexity.

4 Numerical Examples

4.1 Basic Example

Our first example is the computation of discrete logarithms over F6553725 . The
cardinality Q of this field is a number of about 400 bits or 120 decimal digits. It
can be factored as:

Q = 65536 · 3571 · 37693451 · 137055701 · 10853705894563968937051 · P247

Since the largest prime factor has 247 bits, Pollard’s rho [25] is not practical for
this example. As far as we know, this sets a new record for the computation over
medium characteristic fields.

We first choose our function fields, fixing the two definition polynomials f1
and f2 as follows:

f1(X, t) = X − t5 − t − 3, f2(X, t) = X5 + X + 1 + t.

Taking the resultant of f1 and f2, thus eliminating X , we find an irreducible
polynomial F (t) over F65537. We let α denote a root of F (t) in the extension
field. We also let β denote α5 + α + 3.

Once this is done, we start the sieving process, using the reduced sieving
space X − (a t + b), with a and b in F65537. When we find a good pair (a, b) we
obtain an equality between smooth objects. Indeed, the two function fields we
are using are principal, thus whenever both norms are smooth, we can write an
explicit identity between generators. For example, replacing X by −2 t + 20496
in f1 and f2 yields smooth polynomials. Writing down explicit generators for the
corresponding ideals, this yields the following equality:

(α + 2445) · (α + 9593) · (α + 31166) · (α + 39260) · (α + 48610) =
λ(β + 43449) · (β + 18727) · (β + 17129) · (β + 1946) · (β + 49823),

264 A. Joux and R. Lercier

where λ = −2 is an element of F65537.
The sieving process itself is extremely fast, we give in appendix B the source

C code of the program we used. This program finds all good (a, b) pairs in two
minutes on a Pentium laptop at 1.6 GHz. Once the sieving is complete, each
good pair yields a linear equation between 5 logarithms of elements α + u and
5 logarithms of β + v. We converted the output of the C program into linear
equations using a short interpreted PARI/GP script. This conversion took an
additional two minutes. It was as long as the sieve itself, however, it did not
seem necessary to write a faster program for this task.

Solving the linear algebra system was the bottleneck of the algorithm. After
some structured gaussian elimination, we had to solve a sparse system of 79 466
equations in 78 465 unknowns and 3.8 million entries. This was done using the
Lanczos algorithm. In order to avoid divisions by non-invertible elements, we
worked modulo q0 = Q/(65536 · 3571). This took a little more than two days on
the same laptop. The resulting solution gave logarithms, up to an additive con-
stant. As explained in section 2, we determined the constant using the following
systematic equation:

β · (β + 16) · (β − 16) · (β + 4096) · (β − 4096) = −(α + 1).

After removing this additive constant and renormalizing the result, we had all
the logarithms of elements α + u and β + v modulo q0. For example,

l = 9580541088009323484229889821453339382943430459454536234824
840375483524017353229706334323184929723853320944439485,

m = 4649571275692520918560124050338108397005057301288170051718
556686238431642289730613529631676496393555258546887691

are the respective logarithms modulo q0 of α + 1 and β in base α. This can be
checked by testing that (α + 1)3571·l/α3571 belongs to F65537, and similarly for
β3571·m/α3571.

The final step was to choose a random looking element of F6553725 and to
compute its complete logarithm. Since, α itself does not generate the full mul-
tiplicative group, we decided to express the logarithm in basis 3α, which is a
generator. We took as challenge the element:

λ =
24∑

i=0

(�π · 65537i+1� mod 65537)αi = 41667α24 + · · · + 9279.

After finding a good representation of λ using polynomials of degree at most
3 and completing the special-q descent, we added the contribution of the loga-
rithm modulo the powers of 2 and modulo 3571. Finally, we concluded that the
logarithm of λ in basis 3α is:

4053736945052440744587988507271545773377910517074639935754736
348185260902857777282008537164926838353644893694741284146999.

The Function Field Sieve in the Medium Prime Case 265

4.2 Galois Action Example

We consider here a discrete logarithm challenge that is defined in Fp30 where
p = 370801: such a finite field has got a 556-bit cardinality and it contains
a 114-bit multiplicative subgroup. A smaller extension Fp18 has been recently
performed by Vercauteren and Lercier [22] at the expense of one week over a
network of 10 AMD’s Athlon(TM) XP 2000+ for the sieving step and 12 hours
for the linear algebra step, using the algorithm of [12]. To solve our T30(Fp)
challenge, we first experimented with the algorithm defined in section 2. It turns
out that, with f1(X, t) = X − (t6 + t+30) and f2(X, t) = X5 +X +1+ t, a three
hours computation for the sieving step and a two days computation for the linear
step5 would have been necessary on a 1.15 GHz 16-processors HP AlphaServer
GS1280.

Thus, it was preferable to make use of the Galois action idea and define

f1(X, t) = X − t5 and f2(X, t) = X6 + X − 17 − t5.

This yields a definition polynomial for Fp30 equal to F (t) = t30 − 17, the Galois
group of which is generated by φ : t �→ tp = 172960 × t. With such a choice,
f1 and f2 have a common root X = t5, which is fixed by φ6 and thus lies in
the subfield Fp6 . As a result, the conjugates by φ6 of places (in both algebraic
function fields) in the smoothness basis reduced modulo p are still elements of
the smoothness basis. Since discrete logarithms of conjugates differ from each
other by a power of p6, we clearly divide by five the size of the smoothness basis:
only 74161 places in the linear side6 and only 74114 places in the other side.

With a sieving program similar to the one given in appendix B, we found
329082 useful divisors of functions X−(at+b) with a and b in Fp, in 45 minutes.
The supports of these divisors contain only degree one places and we restricted
the values of a to avoid conjugate equations. Since, the reduction modulo p of
these degree one places is equal to a suitable power of p6 of one element of the
smoothness basis, we clearly have enough equations.

We skipped the structured Gaussian elimination step, since at this time our
code is not able to handle matrices with so many large coefficients. Of course, we
had to modify our implementation of the Lanczos algorithm to handle this case.
Finally, we were able to solve this sparse system of 150270 equations in 148270
variables (with 11 entries by row equal to powers p6i, i = 0, . . . 4) at the cost of
a 10 hours computation on 8 processors of a 1.15 GHz HP AlphaServer GS1280.
We worked modulo

q0 = 129717983265199170691× 3780896193379818021601×
27084969683231313608318791573698901.

5 This matrix is twice as big as the one used by Vercauteren and Lercier in Fp18 . It is
also twice as heavy.

6 In truth, only 12361 places in the linear side are really necessary because conjugates
by φ itself are again elements of the smoothness basis. Due to the additional coding
work that would have been required, we did not take advantage of this speed-up in
our experiment.

266 A. Joux and R. Lercier

Let us note that the kernel of this matrix has got only one vector (its coeffi-
cients are not all equal to one and thus, we do not have any “parasitic”solution).
After this step, using the Galois action of φ6, we have the logarithms, modulo
q0, of elements t + u ∈ Fp30 for any u ∈ Fp.

In the final step, we took as challenge the element

λ =
29∑

i=0

(�π × pi+1� mod p)ti = 162147t29 + · · · + 52502.

We first write this element as a product of elements of degree at most four and
using a special-q descent, we finally found that the logarithm of λ in basis t−6 is:

83493475831866903958473832166988064644596198972030791927
23664325744787878765540875000760439341325398846364432518
4051550980392237533812685076653542562214928407573371226.

5 Security Implications

In this section, we discuss the applicability of our variation of the function field
sieve to cryptosystems that make use of extension fields. First of all, we remark
that for some systems, our approach is slower than generic algorithms and does
not improve upon known attacks. Let us start by giving examples of such cryp-
tosystems which are immune to our attack. The relevant property is that the
systems make use of extensions of quite small degree over prime fields. Typically,
the security of systems which use extension degree 6 over prime fields are not
affected by this algorithm. In particular, this includes LUC [19], XTR [8, 21],
CEILIDH [27], some pairing-based schemes as the complex multiplication varia-
tion of the short signature scheme of [6, 7] and also torus-based cryptography in
T6. When the extension degree is larger than that, it is important to reassess the
security on a case by case basis. In the rest of this section, we do so for torus-
based cryptography in T30, the short signature scheme of [6, 7] in characteristic
three and some of the supersingular abelian varieties proposed in [26].

For the case T30, the base field is quite large and the bottleneck of the al-
gorithm is the linear algebra whose complexity is (d1 + d2)p2 additions modulo
some factor of p30 − 1. In typical instantiation the relevant factor is a prime q0
between 160 and 256 bits, according to the expected security level. We should
compare our algorithm to a generic algorithm such as Pollard’s rho [25], whose
complexity is

√
q0 operations in the finite field. Since additions modulo q0 are

less expensive than operations in the finite field and since d1 + d2 is small, it
seems fair to proceed by comparing p2 with

√
q0. We conclude that for 80-bit

security, it is necessary to choose for p a prime of 40 bits or more. For 32-bit
primes and 160-bit subgroup, as proposed in [29], the expected security level is
not reached and the effective security level is around 264. On the other hand, the
security of the 64-bit primes examples with 200-bit subgroups proposed in the
same paper is unaffected.

The Function Field Sieve in the Medium Prime Case 267

The short signature scheme of [6, 7] can be instantiated in two different ways.
Either by using complex multiplication technique to build elliptic curves over Fp

with a pairing that outputs numbers in Fp6 . Or by using special supersingular
curves over F3� with a pairing having values in F36� . Note that since the journal
version [7], the characteristic three instantiation is no longer recommended. As
said above, our algorithm does not change the security of the first case. In the
second case, we can restate the problem as discrete logarithm in Fq� , where
q = 36 = 729. From a practical point of view, this opens the possibility to use
our algorithm with a parameter D equal to 2 or 3. With luck, and depending on
the exact value of 	, we may fall in a zone where our algorithm is more efficient
than the regular function field sieve in characteristic 3. Let us consider some
of the usual possibilities. The easiest case is 	 = 121, since the extension field
can even be viewed as a degree 33 extension of F322 , which can be adressed with
parameter D = 1, yielding a complexity near 270, which might be improved using
Galois action. The expected Pollard rho complexity is 278. Similarly for 	 = 97
using D = 2, we find a complexity around 271 instead of the expected 276 and
for 	 = 149, using D = 3 we find a complexity around 2105 instead of 2110.

In fact, when looking at fields of characteristic three, our attack applies even
better with the proposal of [26] which is to work with supersingular abelian
varieties. Indeed, in the most extreme case, this proposal relies on the security
of discrete logarithms in 330�, which due to large choice of possible subfields
is extremely likely to fall in a good case of our algorithm. In the same paper,
the use of fields of the form 212� is also considered. Our algorithm can again
be used here, especially when 	 is composite (the cases 	 = 121 and 	 = 87 for
example).

6 Conclusion

In this paper, we have presented a new variation of the function field sieve
algorithm, which unexpectedly applies to finite field of the form Fqn when both
q and n are of medium sized. This allows us to compute discrete logarithms in
Fqn faster than for discrete logarithms problems in field of a comparable size of
the form Fp (with p prime) or even F2n (with n prime). This shows that despite
former belief, discrete logarithms in some fields Fqn are easier than in Fp or
F2n . As a consequence, we show that the security of some recent cryptosystems
needs to be reassessed to account for this fact. We leave as an open question the
problem of finding an efficient L(1/3) algorithm for solving discrete logarithms
in Fqn when q is larger than Lqn(1/3). Up to q of the form L(1/2), our algorithm
with parameter D = 1 is the fastest known technique and has complexity q2,
beyond that one should turn to the number field based algorithm described
in [1, 2] with complexity L(1/2).

Last Minute News. A recent preprint [16] describes a generalization of the num-
ber field sieve that is applicable to finite finite fields of size Q = qn, whenever
q grows faster than LQ(1/3). Put together with the present paper, this gives
asymptotic complexity LQ(1/3) for discrete logarithms in all finite fields.

268 A. Joux and R. Lercier

References

1. L. Adleman and J. DeMarrais. A subexponential algorithm for discrete logarithms
over all finite fields. In D. Stinson, editor, Proceedings of CRYPTO’93, volume 773
of Lecture Notes in Comput. Sci., pages 147–158. Springer, 1993.

2. L. Adleman and J. DeMarrais. A subexponential algorithm for discrete logarithms
over all finite fields. Math. Comp., 61(203):1–15, 2003.

3. L. M. Adleman. The function field sieve. In Algorithmic Number Theory, Pro-
ceedings of the ANTS-I conference, volume 877 of Lecture Notes in Comput. Sci.,
pages 108–121, 1994.

4. L. M. Adleman and M. A. Huang. Function field sieve method for discrete loga-
rithms over finite fields. In Information and Computation, volume 151, pages 5–16.
Academic Press, 1999.

5. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. In Cryp-
to ’2001, volume 2139 of Lecture Notes in Computer Science, pages 213–229, 2001.

6. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In
C. Boyd, editor, Proceedings of ASIACRYPT’2001, volume 2248 of Lecture Notes
in Comput. Sci., pages 514–532. Springer, 2001.

7. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. J.
of Cryptology, 17(4):297–319, 2004.

8. A.E. Brouwer, R. Pellikaan, and E.R. Verheul. Doing More with Fewer Bits. In
Advances in Cryptology — ASIACRYPT ’99, volume 1716 of Lecture Notes in
Computer Science, pages 321–332. Springer, 1999.

9. D. Coppersmith. Fast evaluation of logarithms in fields of characteristic two. IEEE
transactions on information theory, IT-30(4):587–594, July 1984.

10. D. Gordon. Discrete logarithms in GF(p) using the number field sieve. SIAM J.
Discrete Math, 6:124–138, 1993.

11. R. Granger, A. Holt, D. Page, N. Smart, and F. Vercauteren. Function field sieve in
characteristic three. In D. Buell, editor, Algorithmic Number Theory, Proceedings
of the ANTS-VI conference, volume 3076 of Lecture Notes in Comput. Sci., pages
223–234. Springer, 2004.

12. R. Granger and F. Vercauteren. On the discrete logarithm problem on algebraic
tori. In V. Shoup, editor, Proceedings of CRYPTO’2005, volume 3621 of Lecture
Notes in Comput. Sci., pages 66–85. Springer, 2005.

13. A. Joux. A one round protocol for tripartite diffie-hellman. In Fourth Algorithmic
Number Theory Symposium, volume 1838 of Lecture Notes in Computer Science,
pages 385–394, 2000.

14. A. Joux and R. Lercier. The function field sieve is quite special. In C. Fieker and
D. Kohel, editors, Algorithmic Number Theory, Proceedings of the ANTS-V confer-
ence, volume 2369 of Lecture Notes in Comput. Sci., pages 431–445. Springer, 2002.

15. A. Joux and R. Lercier. Improvements to the general number field sieve for discrete
logarithms in prime fields. A comparison with the gaussian integer method. Math.
Comp., 72:953–967, 2003.

16. A. Joux, R. Lercier, N. Smart, and F. Vercauteren. The number field sieve in the
medium prime case. Preprint.

17. B.A. LaMacchia and A.M. Odlyzko. Solving Large Sparse Linear Systems Over
Finite Fields. In Advances in Cryptology — CRYPTO ’90, volume 537 of Lecture
Notes in Computer Science, pages 109–133. Springer-Verlag, 1991.

18. C. Lanczos. Solutions of systems of linear equations by minimized iterations. In
J. Res. Nat., volume 49, pages 33–53. Bureau of Standards, 1952.

The Function Field Sieve in the Medium Prime Case 269

19. M.J.J. Lennon and P.J. Smith. LUC: A New Public Key System. In IFIP TC11 Ninth
International Conference on Information Security IFIP/Sec, pages 103–117, 1993.

20. A. K. Lenstra and H. W. Lenstra, Jr., editors. The development of the number field
sieve, volume 1554 of Lecture Notes in Mathematics. Springer–Verlag, 1993.

21. A.K. Lenstra and E.R. Verheul. The XTR Public Key System. In Advances in
Cryptology — CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science,
pages 1–19. Springer, 2000.

22. R. Lercier and F. Vercauteren. Discrete logarithms in Fp18 - 101 digits. NM-
BRTHRY mailing list, June 2005.

23. A. M. Odlyzko. Discrete logarithms in finite fields and their cryptographic signif-
icance. In T. Beth, N. Cot, and I. Ingemarsson, editors, Advances in Cryptology
— EUROCRYPT ’84, volume 209 of Lecture Notes in Computer Science, pages
224–314. Springer–Verlag, 1985.

24. D. Panario, X. Gourdon, and P. Flajolet. An analytic approach to smooth polyno-
mials over finite fields. In J. Buhler, editor, Algorithmic Number Theory, Proceed-
ings of the ANTS-III conference, volume 1423, pages 226–236. Springer, 1998.

25. J. M. Pollard. Monte Carlo methods for index computation (mod p). Math. Comp.,
32:918–924, 1978.

26. K. Rubin and A. Silverberg. Supersingular abelian varieties in cryptology. In
M. Yung, editor, Proceedings of CRYPTO’2002, volume 2442 of Lecture Notes in
Comput. Sci., pages 336–353. Springer, 2002.

27. K. Rubin and A. Silverberg. Torus-Based Cryptography. In Advances in Cryptol-
ogy — CRYPTO 2003, volume 2442 of Lecture Notes in Computer Science, pages
349–365. Springer, 2003.

28. O. Schirokauer. Discrete logarithms and local units. Phil. Trans. R. Soc. Lond. A
345, pages 409–423, 1993.

29. M. van Dijk, R. Granger, D. Page, K. Rubin, A. Silverberg, M. Stam, and
D. Woodruff. Practical cryptography in high dimensional tori. In R. Cramer, editor,
Proceedings of EUROCRYPT’2005, volume 3494 of Lecture Notes in Comput. Sci.,
pages 234–250. Springer, 2005.

30. D.H. Wiedemann. Solving Sparse Linear Equations Over Finite Fields. IEEE
Trans. Information Theory, 32:54–62, 1986.

A Lower Bound on the Smoothness Probability

In this appendix, we prove the lower bound of the probability of smoothness of
polynomials of degree n over the basis of monic irreducible polynomials of degree
at most m. As usual, it suffices to work with unitary polynomials of degree
n and we denote by Nq(n, m) the number of m-smooth unitary polynomials.
Before giving our lower bound on Nq(n, m), we recall that the number of monic
irreducible polynomials of degree t is:

Iq(t) =
1
t

∑
d|t

μ(t/d)qt ≥ 1
t

(
qt − �log2 t qt/2

)
,

where μ denotes the Möbius function. We first show the expected lower bound
when n is a multiple of m, n = 	m. In that case, the number of smooth polyno-
mials is greater than the number of possible products of 	 distinct polynomials of
degree m. This number is: 1

�!

∏�−1
i=0 Iq(m) − i. Replacing Iq by its values, letting

	 and q grow and dividing by qn to get a probability, we obtain a lower bound

270 A. Joux and R. Lercier

of: 1
�!(m+ε)� for any value of ε > 0. Taking the logarithm we find 	(log 	 + m + ε)

which is asymptotically equivalent to 	 log 	 as expected.
In the general case, we write n = 	m + r with r < m and proceed similarly

with a product of one irreducible of degree r and 	 distinct irreducibles of degree
m. The lower bounds immediately follows.

B Listing of Sieving C Code for 6553725

#include <stdio.h>
#include <stdlib.h>
#define PRIME 65537
int RootTab[2*PRIME]; int AlphaTab[2*PRIME]; char Count[PRIME];
AddSieveElement(int root, int alpha) { static int count=0;
RootTab[count]=root; AlphaTab[count]=alpha; count++;

}
InitLinearSide() { /* Polynomial X-(t^5+t+3) */
int alpha,root; long long tmp;
for (alpha=0;alpha<PRIME;alpha++) {
tmp=alpha; tmp*=tmp; tmp%=PRIME; tmp*=tmp; tmp%=PRIME;
tmp*=alpha; tmp%=PRIME; tmp+=alpha+3; tmp%=PRIME;
root=tmp; AddSieveElement(root,alpha);

}}
InitOtherSide() { /* Polynomial X^5+X+1+t */
int alpha,root; long long tmp;
for (root=0;root<PRIME;root++) {
tmp=root; tmp*=tmp; tmp%=PRIME; tmp*=tmp; tmp%=PRIME;
tmp*=root; tmp%=PRIME; tmp+=root+1; tmp%=PRIME;
alpha=tmp; if (alpha) alpha=PRIME-alpha;
AddSieveElement(root,alpha);

}}
FindMultiCollisions(int line) { int i,root;
for (i=0;i<PRIME;i++) Count[i]=0;
for (i=0;i<2*PRIME;i++) {root=RootTab[i]; Count[root]++;}
for (i=0;i<PRIME;i++)
if (Count[i]>=9) printf("b(t)=%d*t+%d;\n",-line,i);

}
UpdateTables() { int i,root;
for (i=0;i<2*PRIME;i++) { root=RootTab[i]+AlphaTab[i];
if (root>=PRIME) root-=PRIME;
RootTab[i]=root;

}}
main() { int line; InitLinearSide(); InitOtherSide();
for(line=0;line<PRIME;line++) {
FindMultiCollisions(line); UpdateTables();

}}

Learning a Parallelepiped:
Cryptanalysis of GGH and NTRU Signatures

Phong Q. Nguyen1,� and Oded Regev2,��

1 CNRS & École normale supérieure, DI, 45 rue d’Ulm, 75005 Paris, France
http://www.di.ens.fr/~pnguyen/

2 Department of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel
http://www.cs.tau.ac.il/~odedr/

Abstract. Lattice-based signature schemes following the Goldreich-
Goldwasser-Halevi (GGH) design have the unusual property that each
signature leaks information on the signer’s secret key, but this does
not necessarily imply that such schemes are insecure. At Eurocrypt ’03,
Szydlo proposed a potential attack by showing that the leakage reduces
the key-recovery problem to that of distinguishing integral quadratic
forms. He proposed a heuristic method to solve the latter problem, but
it was unclear whether his method could attack real-life parameters of
GGH and NTRUSign. Here, we propose an alternative method to attack
signature schemes à la GGH, by studying the following learning prob-
lem: given many random points uniformly distributed over an unknown
n-dimensional parallelepiped, recover the parallelepiped or an approxi-
mation thereof. We transform this problem into a multivariate optimiza-
tion problem that can be solved by a gradient descent. Our approach
is very effective in practice: we present the first succesful key-recovery
experiments on NTRUSign-251 without perturbation, as proposed in
half of the parameter choices in NTRU standards under consideration
by IEEE P1363.1. Experimentally, 90,000 signatures are sufficient to re-
cover the NTRUSign-251 secret key. We are also able to recover the
secret key in the signature analogue of all the GGH encryption chal-
lenges, using a number of signatures which is roughly quadratic in the
lattice dimension.

1 Introduction

Inspired by the seminal work of Ajtai [1], Goldreich, Goldwasser and Halevi
(GGH) proposed at Crypto ’97 [9] a lattice analogue of the coding-theory-based
public-key cryptosystem of McEliece [19]. The security of GGH is related to
the hardness of approximating the closest vector problem (CVP) in a lattice.
The GGH article [9] focused on encryption, and five encryption challenges were
� Part of this work is supported by the Commission of the European Communities

through the IST program under contract IST-2002-507932 ECRYPT, and by the
French government through the X-Crypt RNRT project.

�� Supported by an Alon Fellowship, by the Binational Science Foundation, by the
Israel Science Foundation, and by the EU Integrated Project QAP.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 271–288, 2006.
c© International Association for Cryptologic Research 2006

272 P.Q. Nguyen and O. Regev

Fig. 1. The Hidden Parallelepiped Problem in dimension two

issued on the Internet [8]. Two years later, Nguyen [22] found a flaw in the
original GGH encryption scheme, which allowed to solve four out of the five
GGH challenges, and obtain partial information on the last one. Although GGH
might still be secure with an appropriate choice of the parameters, its efficiency
compared to traditional public-key cryptosystems is perhaps debatable: it seems
that a very high lattice dimension is required, while the keysize grows roughly
quadratically in the dimension (even when using the improvement suggested
by Micciancio [20]). The only lattice-based scheme known that can cope with
very high dimension is NTRU [15] (see the survey [23]), which can be viewed
as a very special instantiation of GGH with a “compact” lattice and different
encryption/decryption procedures (see [20, 21]).

In [9], Goldreich et al. described how the underlying principle of their encryp-
tion scheme could also provide a signature scheme. The resulting GGH signature
scheme did not attract much interest in the research literature until the com-
pany NTRU Cryptosystems proposed a relatively efficient signature scheme
called NTRUSign [11], based exactly on the GGH design but using the compact
NTRU lattices. NTRUSign had a predecessor NSS [14] less connected to the
GGH design, and which was broken in [6, 7]. Gentry and Szydlo [7] observed that
the GGH signature scheme has an unusual property (compared to traditional
signature schemes): each signature released leaks information on the secret key,
and once sufficiently many signatures have been obtained, a certain Gram matrix
related to the secret key can be approximated. The fact that GGH signatures are
not zero-knowledge can be explained intuitively as follows: for a given message,
many valid signatures are possible, and the one selected by the secret key says
something about the secret key itself.

This information leakage does not necessarily prove that such schemes are
insecure. Szydlo [25] proposed a potential attack on GGH based on this leakage
(provided that the exact Gram matrix could be obtained), by reducing the key-
recovery problem to that of distinguishing integral quadratic forms. It is however
unknown if the latter problem is easy or not, although Szydlo proposed a heuris-
tic method based on existing lattice reduction algorithms applied to quadratic
forms. As a result, it was unclear if Szydlo’s approach could actually work on
real-life instantiations of GGH and NTRUSign. The paper [12] claims that, for
NTRUSign without perturbation, significant information about the secret key
is leaked after 10,000 signatures. However, it does not identify any attack that
would require less than 100 million signatures (see [11, Sect. 4.5] and [12, Sect.
7.2 and App. C]).

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures 273

Our Results. In this article, we present a new key-recovery attack on lattice-
based signature schemes following the GGH design, including NTRUSign. The
basic observation is that a list of known pairs (message, signature) gives rise
to the following learning problem, which we call the hidden parallelepiped prob-
lem (HPP): given many random points uniformly distributed over an unknown
n-dimensional parallelepiped, recover the parallelepiped or an approximation
thereof. We transform the HPP into a multivariate optimization problem based
on the fourth moment (also known as kurtosis) of one-dimensional projections.
This problem can be solved by a gradient descent. Our approach is very ef-
fective in practice: we present the first succesful key-recovery experiments on
NTRUSign-251 without perturbation, as proposed in half of the parameter
choices in the NTRU standards [4] being considered by IEEE P1363.1 [18]; the
number of required signatures can be as low as 90,000, but the true figure might
even be lower. We have also been able to recover the secret key in the signature
analogue of all five GGH encryption challenges, using a number of signatures
which is roughly quadratic in the lattice dimension. When the number of signa-
tures is sufficiently high, the running time of the attack is only a fraction of the
time required to generate all the signatures.

Related Work. Interestingly, it turns out that the HPP (as well as related
problems) have already been looked at by people dealing with what is known
as Independent Component Analysis (ICA) (see, e.g., the book by Hyvärinen et
al. [16]). ICA is a statistical method whose goal is to find directions of inde-
pendent components, which in our case translates to the n vectors that define
the parallelepiped. It has many applications in statistics, signal processing, and
neural network research. To the best of our knowledge, this is the first time ICA
is used in cryptanalysis.

There are several known algorithms for ICA, and most are based on a gradi-
ent method such as the one we use in our algorithm. Our algorithm is closest
in nature to the FastICA algorithm proposed in [17], who also considered the
fourth moment as a goal function. We are not aware of any rigorous analysis
of these algorithms; the proofs we have seen often ignore the effect of errors in
approximations. Finally, we remark that the ICA literature offers other, more
general, goal functions that are supposed to offer better robustness against noise
etc. We have not tried to experiment with these other functions, since the fourth
moment seems sufficient for our purposes.

Another closely related result is that by Frieze et al. [5], who proposed a
polynomial-time algorithm to solve the HPP (and generalizations thereof). Tech-
nically, their algorithm is slightly different from those present in the ICA litera-
ture as it involves the Hessian, in addition to the usual gradient method. They
also claim to have a fully rigorous analysis of their algorithm, taking into ac-
count the effect of errors in approximations. Unfortunately, most of the analysis
is missing from the preliminary version, and to the best of our knowledge, a full
version of the paper has never appeared.

274 P.Q. Nguyen and O. Regev

Open Problems. It would be interesting to study natural countermeasures against
our attack, such as:

– Perturbation techniques (as suggested by [12, 4, 13]), where the hidden paral-
lelepiped is replaced by a more complicated set. For instance, the second half
of parameter choices in NTRU standards [4] involves exactly a single pertur-
bation. In this case, the attacker now has to solve a hidden parallelepiped
problem for which the parallelepiped is replaced by the Minkowski sum of
two hidden parallelepipeds: the lattice spanned by one of the parallepipeds
is public, but not the other one.

– Using secret bases with much larger entries.

However, such countermeasures have an impact on the effiency of the signature
scheme.

Road map. The paper is organized as follows. In Section 2, we provide nota-
tion and necessary background on lattices, GGH and NTRUSign. In Section 3,
we introduce the hidden parallelepiped problem, and explain its relationship to
GGH-type signature schemes. In Section 4, we present a method to solve the
hidden parallelepiped problem. In Section 5, we present experimental results ob-
tained with the attack on real-life instantiations of GGH and NTRUSign. In
Section 6, we provide a theoretical analysis of the main parts of our attack.

2 Background and Notation

Vectors of Rn will be row vectors denoted by bold lowercase letters such as b, and
we will use row representation for matrices. For any ring R, Mn(R) will denote
the ring of n×n matrices with entries in R. The group of n×n invertible matrices
with real coefficients will be denoted by GLn(R) and On(R) will denote the
subgroup of orthogonal matrices. The transpose of a matrix M will be denoted
by M t, so M−t will mean the inverse of the transpose. The notation �x� denotes
a closest integer to x. Naturally, �b� will denote the operation applied to all
the coordinates of b. If X is a random variable, we will denote by Exp[X] its
expectation. The gradient of a function f from Rn to R will be denoted by
∇f = (∂f

∂x1
, . . . , ∂f

∂xn
).

2.1 Lattices

Let ‖ · ‖ and 〈·, ·〉 be the Euclidean norm and inner product of Rn. We refer to
the survey [23] for a bibliography on lattices. In this paper, by the term lattice,
we mean a full-rank discrete subgroup of Rn. The simplest lattice is Zn. It turns
out that in any lattice L, not just Zn, there must exist linearly independent
vectors b1, . . . ,bn ∈ L such that:

L =

{
n∑

i=1

nibi | ni ∈ Z

}
.

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures 275

Any such n-tuple of vectors [b1, . . . ,bn] is called a basis of L: an n-dimensional
lattice can be represented by a basis, that is, a matrix of GLn(R). Reciprocally,
any matrix B ∈ GLn(R) spans a lattice: the set of all integer linear combinations
of its rows, that is, mB where m ∈ Zn. The closest vector problem (CVP) is the
following: given a basis of L ⊆ Zn and a target t ∈ Qn, find a lattice vector v ∈ L
minimizing the distance ‖v − t‖. If we denote by d that minimal distance, then
approximating CVP to a factor k means finding v ∈ L such that ‖v−t‖ ≤ kd. A
measurable part D of Rn is said to be a fundamental domain of a lattice L ⊆ Rn if
the sets b+D, where b runs over L, cover Rn and have pairwise disjoint interiors.
If B is a basis of L, then the parallelepiped P1/2(B) = {xB,x ∈ [−1/2, 1/2]n}
is a fundamental domain of L. All fundamental domains of L have the same
Lebesgue measure: the volume vol(L) of the lattice L.

2.2 The GGH Signature Scheme

The GGH scheme [9] works with a lattice L in Zn. The secret key is a non-singular
matrix R ∈ Mn(Z), with very short row vectors (their entries are polynomial in
n). Two distributions for the generation of R were suggested in [9]:

– The square distribution (called “random lattice” in [9]), where R is uniformly
distributed over {−	, . . . , 	}n×n for some integer bound 	. Goldreich et al. [9]
suggested 	 = 4 because the value of 	 had almost no effect on the quality of
the bases in their experiments.

– The hypercubic distribution (called “almost rectangular lattice” in [9]), where
R is the sum of kIn and a noise with square distribution for some 	. The GGH
challenges [8] used such a distribution, with parameters k = 4�√n + 1� + 1
and a noise with square distribution {−4, . . . ,+3}n×n. Micciancio [20] no-
ticed that this distribution has the weakness that it discloses the rough
directions of the secret vectors.

The lattice L is the lattice in Zn spanned by the rows of R: the knowledge
of R enables the signer to approximate CVP rather well in L. The basis R is
then transformed to a non-reduced basis B, which will be public. In the original
scheme [9], B is the multiplication of R by sufficiently many small unimodular
matrices. Micciancio [20] suggested to use the Hermite normal form (HNF) of L
instead. As shown in [20], the HNF gives an attacker the least advantage (in a
certain precise sense) and it is therefore a good choice for the public basis. The
messages are hashed onto a “large enough” subset of Zn, for instance a large
hypercube. Let m ∈ Zn be the hash of the message to be signed. The signer
applies Babai’s round-off CVP approximation algorithm [3] to get a lattice vector
close to m:

s = �mR−1 R,

so that s − m ∈ P1/2(R) = {xR,x ∈ [−1/2, 1/2]n}. Of course, any other CVP
approximation algorithm could alternatively be applied, for instance Babai’s
nearest plane CVP approximation algorithm [3]. To verify the signature s of m,
one would first check that s ∈ L using the public basis B, and compute the
distance ‖s − m‖ to check that it is sufficiently small.

276 P.Q. Nguyen and O. Regev

2.3 NTRUSign

NTRUSign [11] is a special instantiation of GGH with the compact lattices from
the NTRU encryption scheme [15], which we briefly recall: we refer to [11, 4] for
more details. In the NTRU standards [4] being considered by IEEE P1363.1 [18],
one selects n = 251 and q = 128. Let R be the ring Z[X]/(Xn − 1) whose
multiplication is denoted by ∗. Using resultants, one computes a quadruplet
(f, g, F, G) ∈ R4 such that f ∗ G − g ∗ F = q in R and f is invertible mod q,
where f and g have 0–1 coefficients (with a prescribed number of 1), while F and
G have slightly larger coefficients, yet much smaller than q. This quadruplet is
the NTRU secret key. Then the secret basis is the following (2n)× (2n) matrix:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f0 f1 · · · fn−1 g0 g1 · · · gn−1
fn−1 f0 · · · fn−2 gn−1 g0 · · · gn−2

...
. . .

. . .
...

...
. . .

. . .
...

f1 · · · fn−1 f0 g1 · · · gn−1 g0
F0 F1 · · · Fn−1 G0 G1 · · · Gn−1

Fn−1 F0 · · · Fn−2 Gn−1 G0 · · · Gn−2

...
. . .

. . .
...

...
. . .

. . .
...

F1 · · · Fn−1 F0 G1 · · · Gn−1 G0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where fi denotes the coefficient of X i of the polynomial f . Due to the special
structure of R, it turns out that a single row of R is sufficient to recover the whole
secret key. Because f is chosen invertible mod q, the polynomial h = g/f (modq)
is well-defined in R: this is the NTRU public key. Its fundamental property is
that f ∗ h ≡ g (mod q) in R. The polynomial h defines a natural public basis of
L, which we omit (see [11]).

The messages are assumed to be hashed in {0, . . . , q−1}2n. Let m ∈ {0, . . . , q−
1}2n be such a hash. We write m = (m1,m2) with mi ∈ {0, . . . , q − 1}n. It is
shown in [11] that the vector (s, t) ∈ Z2n which we would obtain by applying
Babai’s round-off CVP approximation algorithm to m using the secret basis R
can be alternatively computed using convolution products involving m1, m2 and
the NTRU secret key (f, g, F, G). In practice, the signature is simply s and not
(s, t), as t can be recovered from s thanks to h. Besides, s might be further
reduced mod q, but its initial value can still be recovered because it is such
that s − m1 ranges over a small interval (this is the same trick used in NTRU
decryption). This gives rise for standard parameter choices to a signature length
of 251 × 7 = 1757 bits. While this signature length is much smaller than other
lattice-based signature schemes such as GGH, it is still significantly larger than
more traditional signature schemes such as DSA.

This is the basic NTRUSign scheme [11]. In order to strengthen the secu-
rity of NTRUSign, perturbation techniques have been proposed in [12, 4, 13].
Roughly speaking, such techniques perturb the hashed message m before signing
with the NTRU secret basis. However, it is worth noting that there is no per-
turbation in half of the parameter choices recommended in NTRU standards [4]
under consideration by IEEE P1363.1. Namely, this is the case for the parameter
choices ees251sp2, ees251sp3, ees251sp4 and ees251sp5 in [4]. For the other

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures 277

half, only a single perturbation is recommended. But NTRU has stated that the
parameter sets presented in [13] are intended to supersede these parameter sets.

3 The Hidden Parallelepiped Problem

Consider the signature generation in the GGH scheme described in Section 2.
Let R ∈ Mn(Z) be the secret basis used to approximate CVP in the lattice
L. Let m ∈ Zn be the message digest. Babai’s round-off CVP approximation
algorithm [3] computes the signature s = �mR−1 R, so that s − m belongs to
the parallelepiped P1/2(R) = {xR,x ∈ [−1/2, 1/2]n}, which is a fundamental
domain of L. In other words, the signature generation is simply a reduction of the
message m modulo the parallelepiped spanned by the secret basis R. If we were
using Babai’s nearest plane CVP approximation algorithm [3], we would have
another fundamental parallelepiped (spanned by the Gram-Schmidt vectors of
the secret basis) instead: we will not further discuss this case in this paper, since
it does not create any significant difference and since this is not the procedure
chosen in NTRUSign.

GGH [9] suggested to hash messages into a set much bigger than the fun-
damental domain of L. This is for instance the case in NTRUSign where the
cardinality of {0, . . . , q − 1}2n is much bigger than the lattice volume qn. What-
ever the distribution of the message digest m might be, it would be reasonable
to assume that the distribution s−m is uniform (or very close to uniform) in the
secret parallelepiped P1/2(R). This is because the parallelepiped is a fundamen-
tal domain, and we would expect the output distribution of the hash function to
be random in a natural sense. In other words, it seems reasonable to make the
following assumption:

Assumption 1 (The Uniformity Assumption). Let R be the secret basis of
the lattice L ⊆ Zn. When the GGH scheme signs polynomially many “randomly
chosen” message digests m1, . . . ,mk ∈ Zn using Babai’s round-off algorithm,
the signatures s1, . . . , sk are such that the vectors si − mi are independent and
uniformly distributed over P1/2(R) = {xR,x ∈ [−1/2, 1/2]n}.
Note that this is only an idealized assumption: in practice, the signatures and
the message digests are integer vectors, so the distribution of si −mi is discrete
rather than continuous, but this should not be a problem if the lattice volume is
sufficiently large, as is the case in NTRUSign. Similar assumptions have been
used in previous attacks [7, 25] on lattice-based signature schemes. We emphasize
that all our experiments on NTRUSign do not use this assumption and work
with real-life signatures.

We thus arrive at the following geometric learning problem (see Fig.1):

Problem 2 (The Hidden Parallelepiped Problem or HPP). Let V =
[v1, . . . ,vn] ∈ GLn(R). Define the parallelepiped spanned by V as P(V) =
{∑n

i=1 xivi, xi ∈ [−1, 1]}. Denote by U(P) the uniform distribution on a par-
allelepiped P. Given poly(n) samples from U(P(V)), find a good approximation
of the rows of ±V .

278 P.Q. Nguyen and O. Regev

Algorithm 1. Solving the Hidden Parallelepiped Problem
Input: A polynomial number of samples uniformly distributed over a parallelepiped

P(V).
Output: Approximations of rows of ±V .
1: Compute an approximation G of the Gram matrix V tV of V t (see Section 4.1).
2: Compute the Cholesky factor L of G−1, so that G−1 = LLt.
3: Multiply the samples of P(V) by L to the right to obtain samples of P(C) where

C = V L.
4: Compute approximations of rows of ±C by Algorithm 2 from Section 4.3.
5: Multiply each approximation by L−1 to the right to derive an approximation of a

row of ±V .

In the definition of the HPP, we chose [−1, 1] rather than [−1/2, 1/2] like in
Assumption 1 to simplify subsequent calculations. Clearly, if one could solve the
HPP, then one would be able to approximate the secret basis in GGH by col-
lecting random pairs (message, signature). If the approximation was sufficiently
good, one would recover the secret vectors simply by rounding the coordinates
to their closest integer. If simple rounding failed, one could apply approximate
CVP algorithms to try to recover the secret lattice vectors, as one knows a
lattice basis from the GGH public key. The experiments of [22] on the GGH-
challenges [8] show that in practice, one does not need to be extremely close to
the lattice to recover the closest lattice vector, even in high dimension. But only
experiments can tell if the approximation will be sufficiently good for existing
lattice reduction algorithms, if simple rounding failed.

4 Learning a Parallelepiped

In this section, we propose a method to solve the Hidden Parallelepiped Problem
(HPP), based on the following steps. First, we approximate the covariance matrix
of the given distribution. This covariance matrix is essentially V tV (where V
defines the given parallelepiped). We then exploit this approximation in order
to transform our hidden parallelepiped P(V) into a unit hypercube: in other
words, we reduce the HPP to the case where the hidden parallelepiped is a
hypercube. Finally, we show how hypercubic instances of the HPP are related
to a multivariate optimization problem based on the fourth moment, which we
solve by a gradient descent.

We remark that the idea of approximating the covariance matrix was already
present in the work of Gentry and Szydlo [25, 7]; however, after this basic step,
our strategy differs completely from theirs. We now describe our algorithm in
more detail.

4.1 The Gram Matrix/Covariance Leakage

It was first observed by Gentry and Szydlo [7, 25] that GGH signatures leak an
approximation of the Gram matrix of the transpose of the secret basis. Here, we
simply translate this observation to the HPP setting:

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures 279

Lemma 1 (Gram Leakage). Let V ∈ GLn(R). Let v be chosen uniformly at
random over the parallelepiped P(V). Then:

Exp[vtv] = V tV/3.

Proof. We can write v = xV where x has uniform distribution over [−1, 1]n.
Hence,

vtv = V txtxV.

An elementary computation shows that Exp[xtx] = In/3 where In is the n × n
identity matrix, and the lemma follows. ��
Hence, by multiplying by 3 the average of vtv over all the samples v of the hidden
parallelepiped P(V), we obtain an approximation of V tV , which is the Gram
matrix of V t. Note that V tV/3 is simply the covariance matrix of U(P(V)).

4.2 Morphing a Parallelepiped into a Hypercube

The second stage is explained by the following result:

Lemma 2 (Hypercube Transformation). Let V ∈ GLn(R). Denote by G ∈
GLn(R) the symmetric positive definite matrix V tV . Denote by L ∈ GLn(R) the
Cholesky factor1 of G−1, that is, L is the unique lower-triangular matrix such
that G−1 = LLt. Then the matrix C = V L ∈ GLn(R) satisfies the following:

1. The rows of C are unit vectors which are pairwise orthogonal. In other words,
C is an orthogonal matrix in On(R) and P(C) is a unit hypercube.

2. If v is chosen uniformly at random over the parallelepiped P(V), then c = vL
is uniformly distributed over the hypercube P(C).

Proof. The Gram matrix G = V tV is clearly symmetric positive definite. Then
G−1 = V −1V −t is also symmetric positive definite: it has a Cholesky factoriza-
tion G−1 = LLt where L is lower-triangular matrix. Hence, V −1V −t = LLt. Let
C = V L ∈ GLn(R). Then:

CCt = V LLtV t = V V −1V −tV t = I.

For the second claim, let v have the uniform distribution U(P(V)), then v = xV
where x has uniform distribution over [−1, 1]n. It follows that vL = xV L = xC
has uniform distribution over P(C). ��
Lemma 2 says that by applying the transform L, we can map our parallelepiped
samples uniformly distributed over P(V) into hypercube samples uniformly dis-
tributed over P(C). If we could approximate the rows of ±C, we could also
approximate the rows of ±V thanks to L−1. In other words, we have reduced
the Hidden Parallelepiped Problem into what one might call the Hidden Hyper-
cube Problem (see Fig. 2). From an implementation point of view, we note that
1 Instead of the Cholesky factor, one can take any matrix L such that G−1 = LLt.

We work with Cholesky factorization as this turns out to be more convenient in our
experiments.

280 P.Q. Nguyen and O. Regev

Fig. 2. The Hidden Hypercube Problem in dimension two

the Cholesky factorization (required for obtaining L) can easily be computed
by a process close to the Gram-Schmidt orthogonalization process (see [10]).
Lemma 2 assumes that we know the Gram matrix G = V tV exactly. If we only
have an approximation of the Gram matrix G, then C will only be close to
some orthogonal matrix in On(R): the Gram matrix CCt of C will be close to
the identity matrix, and the images of our parallelepiped samples will have a
distribution close to the uniform distribution of some unit hypercube.

4.3 Learning a Hypercube

For any V = [v1, . . . ,vn] ∈ GLn(R) and any integer k ≥ 1, we define the k-th
moment over a vector w ∈ Rn as:

momV,k(w) = Exp[〈u,w〉k],

where u is uniformly distributed over the parallelepiped P(V). Clearly, momV,k

(w) can be approximated thanks to the samples of P(V). We stress that our
moments are different from the moments previously considered in [11, 13]: our
moments are functions, rather than fixed values. We are interested in the second
and fourth moments. A straightforward calculation shows that for any w ∈ Rn,
they are given by

momV,2(w) =
1
3

n∑
i=1

〈vi,w〉2

momV,4(w) =
1
5

n∑
i=1

〈vi,w〉4 +
1
3

∑
i	=j

〈vi,w〉2〈vj ,w〉2

Note that the second moment is related to the Gram matrix/covariance men-
tioned in Section 4.1. When V ∈ On(R), the second moment becomes ‖w‖2/3
while the fourth moment becomes

momV,4(w) =
1
3
‖w‖4 − 2

15

n∑
i=1

〈vi,w〉4.

The gradient of the latter is therefore

∇momV,4(w) =
n∑

i=1

⎛⎝4
3

⎛⎝ n∑
j=1

〈vj ,w〉2
⎞⎠ 〈vi,w〉 − 8

15
〈vi,w〉3

⎞⎠vi.

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures 281

For w on the unit sphere the second moment is constantly 1/3, and

momV,4(w) =
1
3
− 2

15

n∑
i=1

〈vi,w〉4

∇momV,4(w) =
4
3
w − 8

15

n∑
i=1

〈vi,w〉3vi. (1)

Lemma 3. Let V = [v1, . . . ,vn] ∈ On(R). Then the global minimum of
momV,4(w) over the unit sphere of Rn is 1/5 and this minimum is obtained
at ±v1, . . . ,±vn. There are no other local minima.

Proof. The method of Lagrange multipliers shows that for w to be an extremum
point of momV,4 on the unit sphere, it must be proportional to ∇momV,4(w).
By writing w =

∑n
i=1〈vi,w〉vi and using Eq. (1), we see that there must exist

some α such that 〈vi,w〉3 = α〈vi,w〉 for i = 1, . . . , n. In other words, each
〈vi,w〉 is either zero or ±√

α. It is easy to check that among all such points,
only ±v1, . . . ,±vn form local minima. ��

Fig. 3. The fourth moment for n = 2. The dotted line shows the restriction to the unit
circle.

In other words, the hidden hypercube problem can be reduced to a minimiza-
tion problem of the fourth moment over the unit sphere. A classical technique to
solve such minimization problems is the gradient descent described in
Algorithm 2. The gradient descent typically depends on a parameter δ, which
has to be carefully chosen. Since we want to minimize the function here, we go
in the opposite direction of the gradient. To approximate the gradient in Step 2
of Algorithm 2, we notice that

∇momV,4(w) = Exp[∇(〈u,w〉4)] = 4Exp[〈u,w〉3u].

This allows to approximate the gradient ∇momV,4(w) using averages over sam-
ples, like for the fourth moment itself.

282 P.Q. Nguyen and O. Regev

Algorithm 2. Solving the Hidden Hypercube Problem by Gradient Descent
Parameters: A descent parameter δ.
Input: A polynomial number of samples uniformly distributed over a unit hypercube

P(V).
Output: An approximation of some row of ±V .

1: Let w be chosen uniformly at random from the unit sphere of Rn.
2: Compute an approximation g of the gradient ∇mom4(w) (see Section 4.3).
3: Let wnew = w − δg.
4: Divide wnew by its Euclidean norm ‖wnew‖.
if momV,4(wnew) ≥ momV,4(w) where the moments are approximated by sampling
then

return the vector w.
else

Replace w by wnew and go back to Step 2.
end if

5 Experimental Results

As usual in cryptanalysis, perhaps the most important question is whether or
not the attack works in practice. We therefore implemented the attack in C++
and ran it on a 2GHz PC/Opteron. The critical parts of the code were written
in plain C++ using double arithmetic, while the rest used Shoup’s NTL library
version 5.4 [24]. Based on early experiments, we chose δ = 0.7 in the gradient
descent (Algorithm 2), for all the experiments mentioned here. The choice of δ
has a big impact on the behaviour of the gradient descent. We stress that our
choices of the parameters may not be optimal, so the experimental results should
be taken with caution. When doing several descents in a row, it is useful to relax
the halting condition 5 in Algorithm 2 to abort descents which seem to make
very little progress.

5.1 NTRUSign

We applied Algorithm 1 to real-life parameters of NTRUSign. More precisely,
we ran the attack on NTRUSign-251 without perturbation, corresponding to
the parameter choices ees251sp2, ees251sp3, ees251sp4 and ees251sp5 in the
NTRU standards [4] under consideration by IEEE P1363.1 [18]. This corresponds
to a lattice dimension of 502. We did not rely on the uniformity assumption: we
generated genuine NTRUSign signatures of messages generated uniformly at
random over {0, . . . , q − 1}n. The results of the experiments are summarized
in Figure 4. For each given number of signatures, we generated a new set of
signatures, and applied Algorithm 1: from the set of samples, we derived an
approximation of the Gram matrix, and used it to transform the parallelepiped
into a hypercube, and finally, we ran a series of random descents, starting with
random points. The curve shows the average number of random descents needed
to recover the secret key, based on the number of signatures: the average was

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures 283

Fig. 4. Experiments on NTRUSign-251 without perturbation. The curve shows the
average number of random descents required to recover the secret key, depending on
the number of signatures, which is in the range 80,000–300,000.

computed using roughly a thousand descents. A success is counted when the sim-
ple rounding of the approximation obtained discloses exactly one of the vectors
of the secret basis (which is sufficient to recover the whole secret basis in the
case of NTRUSign): no additional approximate CVP stage is required here.
Typically, a single random descent does not take much time: for instance, a
usual descent for 150,000 signatures takes roughly ten minutes. When success-
ful, a gradient descent may take as little as a few seconds. The minimal number
of signatures to make the attack successful in our experiments was 90,000, in
which case the required number of random descents to run was about 400. With
80,000 signatures, we tried 5,000 descents without any success, but maybe a
substantially larger (yet realistic) number of descents would disclose the secret
key: our experiments should not be considered as optimal. The curve given in
Fig. 4 may vary a little bit, depending on the secret basis: for instance, for the
basis used in the experiments of Fig. 4, the average number of random descents
was 15 with 140,000 signatures, but it was 23 for another basis generated with
the same NTRU parameters. It seems that the exact geometry of the secret basis
has an influence, as will be seen in the analysis of Section 6. It is now clear that
perturbation techniques are really mandatory for the security of NTRUSign,
though it is currently unknown if such techniques are sufficient to prevent this
kind of attacks.

5.2 The GGH Challenges

We also did a few experiments on the GGH-challenges [8], which range from
dimension 200 to 400. Because there is actually no GGH signature challenge, we
simply generated secret bases like in the GGH encryption challenges. This time,
we relied on the uniformity assumption: we created samples uniformly distrib-
uted over the secret parallelepiped, and tried to recover the secret basis. Because
the secret vectors are significantly longer than in the NTRUSign case, we never
recovered directly the secret vector by simple rounding when the descent was
successful, but the approximation obtained was sufficiently good to disclose the

284 P.Q. Nguyen and O. Regev

secret vector after applying Babai’s CVP nearest plane algorithm [3], provided
that the number of samples was large enough. When starting the descent, rather
than starting with a random point on the unit sphere, we took advantage of the
fact that we knew the rough directions of the secret vectors, due to the hyper-
cubic distribution. As a result, the gradient descent takes very few iterations
compared to the general case. For instance, in dimension 400, with 360,000 sig-
natures, the gradient descent required only 6 iterations. The difference between
the rounded vector found and the closest lattice vector was a 400-dimensional
integer vector with only four ±1 coefficients, the rest being zero. By applying
Babai’s CVP nearest plane algorithm [3] on an LLL-reduced basis (obtained
by LLL reduction of the public HNF basis), we obtained immediately an ex-
act vector of the secret basis: no strong reduction algorithm was needed (note
that the error vector was much smaller than in the experiments of [22]). From
our limited experiments ranging from dimension 200 to 400, it seemed that the
number of required signatures was roughly quadratic in the dimension, if one
wished for a very good success rate. To thwart such attacks, it seems that the
GGH scheme would need to use secret bases with much bigger entries, unlike in
the GGH challenges. This would certainly impact the efficiency of the signature
scheme, notably the size of the signature, which is already not negligible even
for NTRUSign.

6 Theoretical Analysis

Our goal in this section is to give a rigorous theoretical justification to the success
of the attack. We will not try to give a tight estimate on the performance of the
attack. Instead, we will show that given a large enough polynomial number of
samples, Algorithm 1 succeeds in finding a good approximation to a row of V
with some constant probability. Let us remark that it is possible that a rigorous
analysis already exists in the ICA literature, although we were unable to find
any (an analysis under some simplifying assumptions can be found in [17]). Also,
Frieze et al. [5] sketch a rigorous analysis of a similar algorithm.

In order to approximate the covariance matrix, the fourth moment, and its
gradient, our attack computes averages over samples. Mainly because the sam-
ples are independent (and identically distributed), we can use known bounds on
large deviations such as the Chernoff bound (see, e.g., [2]) to obtain that with
extremely high probability the approximations are very close to the true values.
In our analysis below we omit the explicit calculations, as these are relatively
standard.

6.1 Analysis of Algorithm 2

We start by analyzing Algorithm 2. For simplicity, we consider only the case in
which the descent parameter δ equals 3/4. A similar analysis holds for 0 < δ <
3/4. Another simplifying assumption we make is that instead of the stopping
rule in Step 5 we simply repeat the descent step some small number r of times
(which will be specified later).

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures 285

For now, let us assume that the matrix V is an orthogonal matrix, so our
samples are drawn from a unit hypercube P(V). We will later show that the
actual matrix V , as obtained from Algorithm 1, is very close to orthogonal, and
that this approximation does not affect the success of Algorithm 2.

Let us first analyze the behavior of Algorithm 2 under the assumption that
all gradients are computed exactly without any error. Let v1, . . . ,vn be n or-
thonormal vectors that define the parallelepiped P(V), and write any w ∈ Rn

as w =
∑n

i=1 wivi. Then, using Eq. (1), we see that for w on the unit sphere,

∇momV,4(w) =
4
3
w − 8

15

n∑
i=1

w3
i vi.

Since we took δ = 3/4, Step 3 in Algorithm 2 performs

wnew =
2
5

n∑
i=1

w3
i vi.

The vector is then normalized in Step 4. So we see that each step in the gradi-
ent descent takes a vector (w1, . . . , wn) to the vector α · (w3

1 , . . . , w
3
n) for some

normalization factor α (where both vectors are written in the vi basis). Hence,
after r iterations, a vector (w1, . . . , wn) is transformed to the vector

α · (w3r

1 , . . . , w3r

n)

for some normalization factor α.
Recall now that the original vector (w1, . . . , wn) is chosen uniformly from the

unit sphere. It can be shown that with some constant probability, one of its
coordinates is greater in absolute value than all other coordinates by a factor
of at least 1 + Ω(1/ log n) (first prove this for a vector distributed according to
the standard multivariate Gaussian distribution, and then note that by normal-
izing we obtain a uniform vector from the unit sphere). For such a vector, after
only r = O(log log n) iterations, this gap is amplified to more than, say, nlog n,
which means that we have one coordinate very close to ±1 and all others are at
most n− log n in absolute value. This establishes that if all gradients are known
precisely, Algorithm 2 succeeds with some constant probability.

To complete the analysis of Algorithm 2, we now argue that it succeeds with
good probability even in the presence of noise in the approximation of the gradi-
ents. First, it can be shown that for any c > 0, given a large enough polynomial
number of samples, with very high probability all our gradient approximations
are accurate to within an additive error of n−c in the 	2 norm (we have r such
approximations during the course of the algorithm). This follows by a stan-
dard application of the Chernoff bound followed by a union bound. Now let
w = (w1, . . . , wn) be a unit vector in which one coordinate, say the jth, is greater
in absolute value than all other coordinates by some factor η ≥ 1 + Ω(1/ log n).
Since w is a unit vector, this in particular means that wj > 1/

√
n. As we saw

before, in the vector w̃new := w − δ∇mom4(w), this factor increases to η3. We

286 P.Q. Nguyen and O. Regev

also have that w̃new,j = 2
5w3

j > 2
5n−1.5 > n−2. By our assumption on the ap-

proximation g, we have that for each i, |w̃new,i−wnew,i| ≤ n−c. So for any k �= j,

|wnew,k|
|wnew,j | ≤

|w̃new,k| + n−c

|w̃new,j| − n−c
≤ |w̃new,k| + n−c

|w̃new,j |(1 − n−c+2)
≤(1− n−c+2)−1η−3 + 2n−c+2.

So we see that a gap of η turns into a gap of ((1−n−c+2)−1η−3 +2n−c+2)−1. A
straightforward calculation shows that after O(log log n) steps, this gap becomes
Ω(nc−2). Hence, by choosing a large enough c, we can make the output vector
very close to one of the ±vis. This completes our analysis of Algorithm 2.

6.2 Analysis of Algorithm 1

We now complete the analysis of the attack by analyzing Algorithm 1. Recall
that a sample v from P(V) can be written as xV where x is chosen uniformly
from [−1, 1]n. So let vi = xiV for i = 1, . . . , N be the input samples. Then
our approximation G to the Gram matrix V tV is given by G = V tĨV where
Ĩ = 3

N

∑
xt

ixi. We claim that with high probability, Ĩ is very close to the identity
matrix. Indeed, for x chosen randomly from [−1, 1]n, each diagonal entry of xtx
has expectation 1/3 and each off-diagonal entry has expectation 0. Moreover,
these entries take values in [−1, 1]. By the Chernoff bound we obtain that for
any approximation parameter c > 0, if we choose, say, N = n2c+1 then with
very high probability each entry in Ĩ − I is at most n−c in absolute value. In
particular, this implies that all eigenvalues of the symmetric matrix Ĩ are in the
range 1 ± n−c+1.

Recall that we define L to be the Cholesky factor of G−1 = V −1Ĩ−1V −t

and that C = V L. Now CCt = V LLtV t = Ĩ−1, which implies that C is close
to an orthogonal matrix. Let us make this precise. Consider the singular value
decomposition of C, given by C = U1DU2 where U1, U2 are orthogonal matrices
and D is diagonal. Then CCt = U1D

2U t
1 and hence D2 = U t

1Ĩ
−1U1. From this

it follows that the diagonal of D consists of the square roots of the reciprocals of
the eigenvalues of Ĩ, which in particular means that all values on the diagonal
of D are also in the range 1 ± n−c+1.

Consider the orthogonal matrix C̃ = U1U2. We will show below that with
some constant probability, Step 4 yields a good approximation of a row of ±C̃,
call it c̃. The output of Algorithm 1 is therefore

c̃L−1 = c̃C−1V = (c̃C̃−1)(C̃C−1)V = (c̃C̃−1)(U1D
−1U t

1)V.

As we have seen before, all eigenvalues of U1D
−1U t

1 are close to 1, and therefore
the above is a good approximation to a row of ±V , given that c̃ is a good
approximation to a row of ±C̃.

To complete the analysis, we will show that for large enough c, samples from
P(C) ‘look like’ samples from P(C̃). More precisely, assume that c is chosen such
that the number of samples required by Algorithm 2 is less than, say, nc−4. Then,
it follows from Lemma 4 below that the statistical distance between a set of nc−4

samples from P(C) and a set of nc−4 samples from P(C̃) is at most O(n−1).

Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures 287

By our analysis of Algorithm 2, we know that when given samples from P(C̃),
it outputs an approximation of a row of ±C̃ with some constant probability.
Hence, when given samples from P(C), it must still output an approximation
of a row of ±C̃ with a probability that is smaller by at most O(n−1) and in
particular, constant.

Lemma 4. The statistical distance between the uniform distribution on P(C)
and that on P(C̃) is at most O(n−c+3).

Proof. We first show that the parallelepiped P(C) is almost contained and almost
contains the cube P(C̃):

(1 − n−c+2)P(C̃) ⊆ P(C) ⊆ (1 + n−c+2)P(C̃).

To show this, take any vector y ∈ [−1, 1]n. The second containment is equivalent
to showing that all the coordinates of yU1DU t

1 are at most 1+n−c+2 in absolute
value. Indeed, by the triangle inequality,

‖yU1DU t
1‖∞ ≤ ‖y‖∞ + ‖yU1(D − I)U t

1‖∞ ≤ 1 + ‖yU1(D − I)U t
1‖2

≤ 1 + n−c+1√n < 1 + n−c+2.

The first containment is proved similarly. On the other hand, the ratio of volumes
between the two cubes is ((1+n−c+2)/(1−n−c+2))n = 1+O(n−c+3). From this
it follows that the statistical distance between the uniform distribution on P(C)
and that on P(C̃) is at most O(n−c+3). ��

References

1. M. Ajtai. Generating hard instances of lattice problems. In Proc. of 28th STOC,
pages 99–108. ACM, 1996.

2. N. Alon and J. H. Spencer. The probabilistic method. Wiley-Interscience [John
Wiley & Sons], New York, second edition, 2000.

3. L. Babai. On Lovász lattice reduction and the nearest lattice point problem.
Combinatorica, 6:1–13, 1986.

4. Consortium for Efficient Embedded Security. Efficient embedded security stan-
dards #1: Implementation aspects of NTRUEncrypt and NTRUSign. Version 2.0
available available at [18], June 2003.

5. A. Frieze, M. Jerrum, and R. Kannan. Learning linear transformations. In 37th
Annual Symposium on Foundations of Computer Science (Burlington, VT, 1996),
pages 359–368. IEEE Comput. Soc. Press, Los Alamitos, CA, 1996.

6. C. Gentry, J. Jonsson, J. Stern, and M. Szydlo. Cryptanalysis of the NTRU signa-
ture scheme (NSS) from Eurocrypt 2001. In Proc. of Asiacrypt ’01, volume 2248
of LNCS. Springer-Verlag, 2001.

7. C. Gentry and M. Szydlo. Cryptanalysis of the revised NTRU signature scheme.
In Proc. of Eurocrypt ’02, volume 2332 of LNCS. Springer-Verlag, 2002.

8. O. Goldreich, S. Goldwasser, and S. Halevi. Challenges for the GGH cryptosystem.
Available at http://theory.lcs.mit.edu/~shaih/challenge.html.

288 P.Q. Nguyen and O. Regev

9. O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from lattice
reduction problems. In Proc. of Crypto ’97, volume 1294 of LNCS, pages 112–131.
IACR, Springer-Verlag, 1997. Full version vailable at ECCC as TR96-056.

10. G. Golub and C. van Loan. Matrix Computations. Johns Hopkins Univ. Press,
1996.

11. J. Hoffstein, N. A. Howgrave Graham, J. Pipher, J. H. Silverman, and W. Whyte.
NTRUSIGN: Digital signatures using the NTRU lattice. Full version of [12]. Draft
of April 2, 2002, available on NTRU’s website.

12. J. Hoffstein, N. A. Howgrave Graham, J. Pipher, J. H. Silverman, and W. Whyte.
NTRUSIGN: Digital signatures using the NTRU lattice. In Proc. of CT-RSA,
volume 2612 of LNCS, pages 122–140. Springer-Verlag, 2003.

13. J. Hoffstein, N. A. Howgrave Graham, J. Pipher, J. H. Silverman, and W. Whyte.
Performances improvements and a baseline parameter generation algorithm for
NTRUsign. In Proc. of Workshop on Mathematical Problems and Techniques in
Cryptology, pages 99–126. CRM, 2005.

14. J. Hoffstein, J. Pipher, and J. H. Silverman. NSS: An NTRU lattice-based signature
scheme. In Proc. of Eurocrypt ’01, volume 2045 of LNCS. Springer-Verlag, 2001.

15. J. Hoffstein, J. Pipher, and J.H. Silverman. NTRU: a ring based public key cryp-
tosystem. In Proc. of ANTS III, volume 1423 of LNCS, pages 267–288. Springer-
Verlag, 1998. First presented at the rump session of Crypto ’96.

16. A. Hyvärinen, J. Karhunen, and E. Oja. Independent Component Analysis. John
Wiley & Sons, 2001.

17. A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent component
analysis. Neural Computation, 9(7):1483–1492, 1997.

18. IEEE P1363.1. Public-key cryptographic techniques based on hard problems over
lattices. http://grouper.ieee.org/groups/1363/lattPK/, June 2003.

19. R.J. McEliece. A public-key cryptosystem based on algebraic number theory. Tech-
nical report, Jet Propulsion Laboratory, 1978. DSN Progress Report 42-44.

20. D. Micciancio. Improving lattice-based cryptosystems using the Hermite normal
form. In Proc. of CALC ’01, volume 2146 of LNCS. Springer-Verlag, 2001.

21. D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: A Cryptographic
Perspective, volume 671 of The Kluwer International Series in Engineering and
Computer Science. Kluwer Academic Publishers, Boston, Massachusetts, 2002.

22. P. Q. Nguyen. Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem
from Crypto ’97. In Proc. of Crypto ’99, volume 1666 of LNCS, pages 288–304.
IACR, Springer-Verlag, 1999.

23. P. Q. Nguyen and J. Stern. The two faces of lattices in cryptology. In Proc. of
CALC ’01, volume 2146 of LNCS. Springer-Verlag, 2001.

24. V. Shoup. NTL: A library for doing number theory. Available at http://
www.shoup.net/ntl/.

25. M. Szydlo. Hypercubic lattice reduction and analysis of GGH and NTRU signa-
tures. In Proc. of Eurocrypt ’03, volume 2656 of LNCS. Springer-Verlag, 2003.

The Cramer-Shoup Encryption Scheme Is
Plaintext Aware in the Standard Model

Alexander W. Dent

Royal Holloway, University of London,
Egham, Surrey, TW20 0EX, U.K.

a.dent@rhul.ac.uk

Abstract. In this paper we examine the notion of plaintext awareness
as it applies to hybrid encryption schemes. We apply this theory to the
Cramer-Shoup hybrid scheme acting on fixed length messages and deduce
that the Cramer-Shoup scheme is plaintext-aware in the standard model.
This answers a previously open conjecture of Bellare and Palacio on the
existence of fully plaintext-aware encryption schemes.

1 Introduction

Plaintext awareness is a simple concept with a difficult explanation. An encryp-
tion scheme is plaintext aware if it is practically impossible for any entity to
produce a ciphertext without knowing the associated message. This effectively
renders a decryption oracle useless to an attacker, as any ciphertext submitted
for decryption must either be invalid or the attacker must already know the
decryption of that ciphertext and so does not gain any information by querying
the oracle. Thus a scheme that is plaintext aware and semantically secure should
be secure against adaptive attacks.

There are two problems with this simplistic approach. Firstly, if we wish to
achieve the IND-CCA2 definition of security for an encryption scheme, then we
have to be careful about how we define plaintext awareness, because, in this
model, the attacker is always given one ciphertext for which he does not know
the corresponding decryption (the challenge ciphertext). It is usually compara-
tively simple to achieve plaintext awareness when you do not have to consider
the attacker as able to get hold of ciphertexts for which he does not know the
corresponding decryption. We will follow the notation of Bellare and Palacio
[4] and term this PA1 plaintext-awareness. A scheme that is IND-CPA and
PA1 plaintext aware is only IND-CCA1 secure [4]. It is a lot harder to prove
plaintext-awareness in full generality, when the attacker has access to an oracle
that will return ciphertexts for which the attacker does not know the corre-
sponding decryption, especially if the attacker has some measure of control over
the probability distribution that the oracle uses to select the messages that it
encrypts. This is termed PA2 plaintext awareness.

The second problem is that it is difficult to formally define plaintext awareness.
The obvious way to define it is to say that for every attacker A that outputs a

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 289–307, 2006.
c© International Association for Cryptologic Research 2006

290 A.W. Dent

challenge ciphertext C, there exists a plaintext extractor A∗ for A that outputs
the decryption of C when given C as input. However, any encryption scheme
that satisfies this definition of plaintext awareness in the standard model must
necessarily fail to be IND-CPA secure. Hence, such a definition is not useful. For a
satisfactory definition of plaintext awareness to be proposed, it is imperative that
the plaintext extractor A∗ be given some extra information about the actions
that the attacker A took in order to compute the challenge ciphertext.

The original definition of plaintext awareness [2] was only given in the random
oracle model and the plaintext extractor was given access to the oracle queries
that the attacker made when constructing ciphertexts. This definition works well,
but can only prove the security of a scheme in the random oracle model. Re-
cently, a definition of plaintext awareness has been given in the standard model
[4], where the plaintext extractor is also given access to the random coins that
the attacker used in constructing the challenge ciphertext; thus the plaintext
extractor can examine every action that the attacker took in its execution. Un-
fortunately, Bellare and Palacio were unable to prove that any scheme met their
strongest (PA2) definition of plaintext awareness, although they suggested that
the Cramer-Shoup scheme [5] was a very likely candidate.

This paper proves that the Cramer-Shoup scheme is plaintext aware in the
standard model, thus proving the conjecture of Bellare and Palacio. The proof
uses two new techniques: encryption simulation and PA1+ plaintext awareness.
An encryption scheme that is simulatable is necessarily IND-CCA2 secure, and
so the concept has limited use. However, the concept of PA1+ plaintext aware-
ness may have further scope. The proof is obtained under several computational
assumptions, including the controversial Diffie-Hellman Knowledge (DHK) as-
sumption. We also assume the existence of groups on which the DDH problem
is hard and the existence of suitably secure hash functions.

2 Preliminaries

2.1 Asymmetric Encryption Schemes

We briefly recap the notion of an asymmetric cipher and of a KEM-DEM hybrid
cipher [5]. We will assume that the reader is familiar with the general theory of
hybrid ciphers and will concentrate on introducing notation that will be used in
this paper. An asymmetric encryption scheme is a triple of algorithms:

1. A probabilistic polynomial-time key generation algorithm, G, which takes as
input a security parameter 1k and outputs a public/private key pair (pk, sk).
The public key defines the message space M, which is the set of all possi-
ble messages that can be submitted to the encryption algorithm, and the
ciphertext space C, which is the set of all possible ciphertexts that can be
submitted to the decryption algorithm (and may be larger than the range of
the encryption algorithm).

2. A (possibly) probabilistic polynomial-time encryption algorithm, E , which
takes as input a message m ∈ M and a public key pk, and outputs a cipher-
text C ∈ C. We will denote this as C = E(pk, m).

The Cramer-Shoup Encryption Scheme Is Plaintext Aware 291

3. A deterministic polynomial-time decryption algorithm, D, which takes as
input a ciphertext C ∈ C and a secret key sk, and outputs either a message
m ∈ M or the error symbol ⊥. We denote this as m = D(sk, C).

The accepted notion of security for an asymmetric encryption scheme is assessed
via the following game played between a two-stage attacker A = (A1,A2) and a
hypothetical challenger:

1. The challenger generates a valid public/private key pair (pk, sk) by running
G(1k).

2. The attacker runs A1 on the input pk. It terminates by outputting two equal-
length messages m0 and m1, as well as some state information state. During
its execution A1 may query a decryption oracle that, when given C ∈ C will
return D(sk, C) .

3. The challenger picks a bit b ∈ {0, 1} uniformly at random and computes the
challenge ciphertext C∗ = E(pk, mb).

4. The attacker runs A2 on C∗ and state. It terminates by outputting a guess b′

for b. Again, during its execution, A2 may query a decryption oracle, subject
to the restriction that it may not query the oracle on the input C∗.

The attacker wins the game if b = b′. The attacker’s advantage is defined to be:

|Pr[b = b′] − 1/2| . (1)

Definition 1. If, for all polynomial-time attackers A, the advantage that A has
in winning the above game for an encryption scheme (G, E ,D) is negligible as a
function of the security parameter k, then that encryption scheme is said to be
IND-CCA2 secure.

For more information on the basic security models for an asymmetric encryption
scheme, the reader is referred to [2].

A hybrid cipher is an asymmetric cipher which uses a keyed symmetric algo-
rithm, such as an encryption algorithm or a MAC, as a subroutine. Most hybrid
ciphers can be presented as the combination of an asymmetric key encapsulation
method (KEM) and a symmetric data encapsulation method (DEM). A KEM
is a triple of algorithms consisting of:

1. A probabilistic, polynomial-time key generation algorithm, Gen , which takes
as input a security parameter 1k and outputs a public/private key pair
(pk, sk).

2. A probabilistic, polynomial-time encapsulation algorithm, Encap, which takes
as input a public key pk, and outputs a key K and an encapsulation of that
key C. We denote this as (C, K) = Encap(pk).

3. A deterministic, polynomial-time decapsulation algorithm, Decap, which
takes as inputs the private key sk and an encapsulation C, and outputs a
symmetric key K or the error symbol ⊥. We denote this as K = Decap(sk, C).

292 A.W. Dent

A DEM is a pair of algorithms consisting of:

1. A deterministic, polynomial-time encryption algorithm, Enc, which takes as
input a message m ∈ {0, 1}∗ of any length and a symmetric key K of some
pre-determined length. It outputs an encryption C = EncK(m).

2. A deterministic, polynomial-time decryption algorithm, Dec, which takes
as input an encryption C ∈ {0, 1}∗ and a symmetric key K of some pre-
determined length, and outputs either a message m ∈ {0, 1}∗ or the error
symbol ⊥.

A KEM and a DEM can be composed in the obvious way in create a hybrid
encryption algorithm. The greatest advantage of designing a hybrid encryption
scheme in terms of KEMs and DEMs is that Cramer and Shoup [5] were able to
propose independent security criteria for the KEM and the DEM that guarantee
that a secure KEM and a secure DEM combine to give a secure (IND-CCA2)
encryption scheme. However, since our focus is on plaintext awareness, we will
not need to discuss these security notions here.

2.2 Plaintext Awareness

We use the notions and notations given by Bellare and Palacio [4]. The notion
of plaintext awareness in the standard model states that an encryption scheme
(G, E ,D) is plaintext aware in the standard model if, for all ciphertext creators
(attackers) A, there exists a plaintext extractor A∗ which takes as input the
random coins of A and can answer the decryption queries of A in a manner
that A cannot distinguish from a real decryption oracle. In order that A can
be given access to ciphertexts for which it does not know the corresponding
decryption, A will be allowed to query a plaintext creation oracle P with some
query information aux . The plaintext creation oracle will pick a message at
random (possibly from a distribution partially defined by aux) and returns the
encryption of that message to the attacker1. Note that both A∗ and P retain
their state and their ability to access the same random tape between invocations.

We will assume that all the algorithms described are polynomial-time, prob-
abilistic, state-based Turing machines, and that the random coins of the Turing
machine A are denoted R[A]. Plaintext awareness is formally defined using two
games. First we define the REAL game:

1. The challenger generates a random key pair (pk, sk) = G(1k) and creates an
empty list of ciphertexts CList.

2. The attacker executes A on pk.
– If the attacker queries the encryption oracle with query information aux ,

then the challenger generates a random message m = P(aux) and com-
putes its encryption C = E(pk, m). It adds C to CList and returns C
to the attacker.

1 Technically, the plaintext creator will only generate a random message, and it will
be left to the challenge to compute the encryption of that message. However, since
the ciphertext creator and the plaintext extractor receive exactly the same inputs
regardless of whether the challenger or the plaintext creator encrypts the message,
we do not distinguish between the two cases.

The Cramer-Shoup Encryption Scheme Is Plaintext Aware 293

– If the attacker queries the decryption oracle with a ciphertext C, then
the decryption oracle returns D(sk, C). The attacker may not query the
decryption oracle with any ciphertext appearing on CList.

The attacker terminates by outputting a bitstring x.

The FAKE game is defined as:

1. The challenger generates a random key pair (pk, sk) = G(1k) and creates an
empty list of ciphertexts CList.

2. The attacker executes A on pk.
– If the attacker queries the encryption oracle with query information aux ,

then the challenger generates a random message m = P(aux) and com-
putes its encryption C = E(pk, m). It adds C to CList and returns C
to the attacker.

– If the attacker queries the decryption oracle with a ciphertext C, then
the decryption oracle returns A∗(C, pk, R[A],CList). The attacker may
not query the decryption oracle with any ciphertext appearing on CList.

The attacker terminates by outputting a bitstring x.

Definition 2 (Plaintext awareness). An asymmetric encryption scheme is
said to be plaintext aware (PA2) if for all ciphertext creators A, there exists a
plaintext extractor A∗ such that for all plaintext creators P and polynomial time
algorithms Dist the advantage

|Pr[Dist(x) = 1|A plays REAL] − |Pr[Dist(x) = 1|A plays FAKE]| (2)

that Dist has in distinguishing whether A interacts with the REAL game or the
FAKE game is negligible as a function of the security parameter.

An asymmetric encryption scheme is said to be PA1 if for all ciphertext cre-
ators A that make no encryption oracle queries, there exists a plaintext extractor
A∗ such that for all polynomial time algorithms Dist the advantage

|Pr[Dist(x) = 1|A plays REAL] − |Pr[Dist(x) = 1|A plays FAKE]| (3)

is negligible as a function of the security parameter.

3 Simulatable Encryption Schemes

The aim of this paper is to show that the Cramer-Shoup scheme is plaintext-
aware. In order to do this we take advantage of a very useful property that
it possess: when instantiated with a suitable DEM, no attacker can distinguish
valid ciphertexts from completely random bit strings. By this we mean that there
exists a function f , which is in some sense invertible, that takes random bits as
input and outputs bit strings that look like ciphertexts to an attacker. These bit
strings are very unlikely to actually be valid ciphertexts (as we believe that the
Cramer-Shoup scheme is plaintext aware) but no attacker can distinguish them
from valid ciphertexts. We call this encryption simulation. For a simulatable

294 A.W. Dent

encryption scheme, an attacker’s ability to get hold of new ciphertexts in the
PA2 model is roughly equivalent to an ability to get hold of blocks of random
data. A scheme that remains plaintext-aware even when the attacker can get hold
new fixed-length random strings on demand is said to be PA1+ plaintext aware.
This notion is stronger than PA1, but conceptually weaker than PA2 plaintext
awareness. In this section we will formally define simulation and PA1+ plaintext
awareness, and show that any scheme that is both PA1+ and simulatable is PA2.

3.1 Simulatable Encryption

We will wish to work with encryption schemes that are simulatable, by which
we mean that there exists a Turing machine f which take a string of random
bits as input and produces an output that cannot be distinguished from real
ciphertexts. The difference between f and the real encryption function is that f
must be in some sense invertible. We envisage f taking long strings of random
bits as input and producing a shorter output, and so we insist on the existence
of a Turing machine f−1 which acts as a perfect inverse for f when used on the
right, i.e.

f(f−1(C)) = C for all C ∈ C . (4)

However, since f−1 cannot act as a perfect inverse for f when used on the left,
we merely require that f−1(f(r)) looks like a randomly generated bit string, i.e.
it is computationally infeasible to tell the difference between a random string
r of the appropriate length and f−1(f(r)). Hence, f−1 must be a probabilis-
tic polynomial-time Turing machine; while, for technical reasons, f must be a
deterministic polynomial-time Turing machine.

Definition 3 (Simulatable Encryption Scheme). An asymmetric encryp-
tion scheme (G, E ,D) is simulatable if there exist two polynomial-time Turing
machines (f, f−1) such that:

– f is a deterministic Turing machine that takes the public key pk and an
element r ∈ {0, 1}l as input, and outputs elements of C. For simplicity’s
sake, we shall often represent f as a function from {0, 1}l to C and suppress
the public key input.

– f−1 is a probabilistic Turing machine that takes the public key pk and an
element C ∈ C as input, and outputs elements of {0, 1}l. Again, we will
often represent f−1 as a function from C to {0, 1}l and suppress the public
key input.

– f(f−1(C)) = C for all C ∈ C.
– There exists no polynomial-time attacker A that has a non-negligible advan-

tage in winning the following game:
1. The challenger generates a key pair (pk, sk) = G(1k) and randomly

chooses a bit b ∈ {0, 1}.
2. The attacker executes A on the input pk. The attacker has access to an

oracle Of that takes no input, generates a random element r ∈ {0, 1}l,
and returns r if b = 0 and f−1(f(r)) if b = 1. The attacker terminates
by outputting a guess b′ for b.

The Cramer-Shoup Encryption Scheme Is Plaintext Aware 295

The attacker wins if b = b′ and its advantage is defined in the usual way.
– There exists no polynomial-time attacker A that has a non-negligible advan-

tage in winning the following game:
1. The challenger generates a key pair (pk, sk) = G(1k), an empty list

CList, and a bit b chosen randomly from {0, 1}.
2. The attacker executes A on the input pk. The attacker has access to two

oracles:
* An encryption oracle that takes a message m ∈ M as input and

returns an encryption C. If b = 0, then the oracle returns C =
E(pk, m). If b = 1, then the oracle returns C = f(r), for some ran-
domly chosen r ∈ {0, 1}l. In either case C is added to CList.

* A decryption oracle that takes an encryption C ∈ C as input and
returns D(sk, C). The attacker may not query the decryption oracle
on any C ∈ CList.

The attacker terminates by outputting a guess b′ for b.
The attacker wins if b = b′ and its advantage is defined in the usual way.

At this stage, and for technical reasons that will become apparent in the next
section, we will restrict ourselves to encryption schemes that have fixed-length
ciphertext spaces, i.e. the ciphertext space C = {0, 1}n for some n. Normally, the
simplest way of producing a cipher with fixed-length ciphertexts is to restrict
the message space to fixed-length messages.

Theorem 1. If (G, E ,D) is a simulatable encryption scheme then it is IND-
CCA2 secure.

Sketch Proof. Let A be an IND-CCA2 attacker for the scheme, and let Game 1
be the game in which A interacts with the IND-CCA2 game properly. Let
Game 2 be similar to Game 1 except that the challenge ciphertext is computed
by applying f to a randomly generated string r ∈ {0, 1}l, rather than using the
proper encryption algorithm. Let Wi be the event that A wins Game i.

Consider the following algorithm B against the simulatability of the encryption
scheme:

1. The challenger generates a key pair (pk, sk) = G(1k), an empty list CList,
and a bit b chosen randomly from {0, 1}.

2. B executes A1 on the input pk. If A1 makes a decryption oracle query, then
this is passed directly to B’s decryption oracle and the result returned to
A1. A1 terminates by outputting two equal-length messages m0 and m1,
and some state information state.

3. B randomly chooses a bit d ∈ {0, 1} and queries its encryption oracle with
the message md. B receives back a ciphertext C∗.

4. B executes A2 on the input (C∗, state). If A2 makes a decryption oracle
query, then this is passed directly to B’s decryption oracle and the result
returned to A2. Note that A2 will never force B to make a decryption or-
acle query on C∗ ∈ CList due to the nature of the IND-CCA2 game. A2
terminates by outputting a guess d′ for d.

5. If d = d′, then B outputs 1. Otherwise B outputs 0.

296 A.W. Dent

If b = 0 then B perfectly simulates Game 1 for A. If b = 1 then B perfectly
simulates Game 2 for A. In both cases B outputs 1 if and only if A wins. It is
well known that we may express B’s advantage as:

1
2
|Pr[B outputs 1|b = 0] − Pr[B outputs 1|b = 1]| . (5)

However,

|Pr[B outputs 1|b = 0] − Pr[B outputs 1|b = 1]| = |Pr[W0] − Pr[W1]| . (6)

Hence, |Pr[W1] − Pr[W2]| is negligible, as the encryption algorithm is simulat-
able. In Game 2, though, the challenge ciphertext is completely independent of
the messages supplied by the attacker. Therefore, Pr[W2] = 1/2 and (G, E ,D) is
IND-CCA2 secure. ��
Therefore, in some sense, the notion of encryption simulation is less useful than
one might hope. It should be easier to prove that a scheme is IND-CCA2 secure,
than to show that it is simulatable; and if we can show that a scheme is sim-
ulatable, then there is no need to consider whether it is plaintext aware, as we
have already shown that it is IND-CCA2. However, since our goal in this paper
is to show that PA2 schemes can exist, this notion will prove useful.

3.2 PA1+ Plaintext Awareness

For a simulatable encryption algorithm, a ciphertext creator’s ability to get hold
of new, randomly generated ciphertexts C (that are the encryption of messages
drawn from some distribution) is roughly equivalent to being able to get hold of
randomly generated strings r = f−1(C) ∈ {0, 1}l. We define the PA1+ model
as the extension of the PA1 model in which a ciphertext creator has access to
an oracle which provides it with randomly generated bit strings of length l, and
show that, for a simulatable encryption algorithm, this is enough to imply that
the scheme is PA2 plaintext-aware.

We define the PA1+ model using the REAL and FAKE games as before.
For an attacker A the REAL game works as follows:

1. The challenger generates a random key pair (pk, sk) = G(1k).
2. The attacker executes A on pk. The attacker has access to a decryption

oracle and to a randomness oracle.
– If the attacker queries the randomness oracle, then the challenger gen-

erates a random strong r ∈ {0, 1}l, and returns r to the attacker.
– If the attacker queries the decryption oracle with a ciphertext C, then

the decryption oracle returns D(sk, C).
The attacker terminates by outputting a bitstring x.

The FAKE game is defined in the obvious way:

1. The challenger generates a random key pair (pk, sk) = G(1k) and creates an
(empty) list RList of the random blocks that the attacker has been given.

The Cramer-Shoup Encryption Scheme Is Plaintext Aware 297

2. The attacker executes A on pk. The attacker has access to a decryption
oracle and to a randomness oracle.
– If the attacker queries the randomness oracle, then the challenger gener-

ates a random strong r ∈ {0, 1}l, adds r to RList and returns r to the
attacker.

– If the attacker queries the decryption oracle with a ciphertext C, then
the decryption oracle returns A∗(C, pk, R[A],RList).

The attacker terminates by outputting a bitstring x.

Definition 4 (PA1+ Plaintext Awareness). An asymmetric encryption
scheme is said to be PA1+ plaintext aware if for all polynomial-time cipher-
text creators A, there exists a polynomial-time plaintext extractor A∗ such that
for all polynomial-time distinguishing algorithms Dist the advantage

|Pr[Dist(x) = 1|A plays REAL] − |Pr[Dist(x) = 1|A plays FAKE]| (7)

that Dist has in distinguishing whether A interacts with the REAL game or the
FAKE game is negligible as a function of the security parameter.

Intuitively, the difference between PA1 and PA1+ is in the ability for the cipher-
text creator to act in a manner that is unpredictable by the plaintext extractor
after the plaintext extractor has returned a message. For a scheme that is PA1,
the plaintext extractor, when attempting to provide some sort of decryption of
a ciphertext, knows exactly what the ciphertext creator is going to do with the
ciphertext (as it has access to the ciphertext creator’s random tape). Hence,
the plaintext creator can tailor its response to make sure that that particular
execution of the ciphertext creator cannot differentiate between the plaintext
extractor’s response and the response of a real decryption oracle. However, a
PA1+ ciphertext creator has the ability to acquire random bits that could affect
its execution after it has received the plaintext extractor’s response, and so the
plaintext extractor cannot tailor its response in the same way.

Theorem 2. Let (G, E ,D) be a simulatable encryption algorithm. If (G, E ,D) is
PA1+ then it is PA2.

Proof. This proof works in several stages. We wish to show that for any PA2
ciphertext creator for the encryption scheme A, there exists a plaintext extractor
A∗. First we show that any PA2 ciphertext creator A for the encryption scheme
can be used to create a PA1+ ciphertext creator Ā. Since the encryption scheme
is PA1+ plaintext aware, there exist a plaintext extractor Ā∗ for Ā. We then
show that we can use the plaintext extractor Ā∗ for Ā to build a plaintext
extractor A∗ for A. We will use this technique liberally throughout this paper.

Let A be any PA2 ciphertext creator and let Ā be the PA1+ ciphertext creator
that runs as follows.

1. Execute A.
– If A makes a decryption oracle query, then Ā passes this query directly

on to its own decryption oracle.

298 A.W. Dent

– If A makes an encryption oracle query (with query information aux),
then Ā queries its randomness oracle, receives back an l-bit block of
randomness r, and returns f(r) to A.

2. A terminates by outputting a bitstring x. Output x.

Let W0,Dist be the event that Dist(x) = 1 when A interacts with the PA2 model
and a real decryption oracle. Let W1,Dist be the event that Dist(x) = 1 when
Ā interacts with the PA1+ model and a real decryption oracle. It is clear that
any non-negligible difference between Pr[W0,Dist] and Pr[W1,Dist] can be used
to create an algorithm that can distinguish between ciphertexts and simulated
ciphertexts, contravening Definition 3. Thus,

|Pr[W0,Dist] − Pr[W1,Dist]|
is negligible as a function of the security parameter.

Since Ā is PA1+ ciphertext creator, there exists a plaintext extractor Ā∗ for
Ā. Let W2,Dist be the event that Dist(x) = 1 when Ā interacts with the PA1+
model and Ā∗ is used to simulate the decryption oracle. Since Ā∗ is a successful
plaintext extractor for Ā, we have that

|Pr[W1,Dist] − Pr[W2,Dist]|
is negligible as a function of the security parameter.

We now alter slightly the way that the randomness oracle works. Instead of
randomly generated a block of randomness r and returning this to Ā, consider
an oracle that randomly generates a block of randomness r ∈ {0, 1}l and returns
f−1(f(r)) to the ciphertext creator. Let W3,Dist be the event that Dist(x) = 1
when the randomness oracle behaves in this way. Clearly, any significant differ-
ence between Pr[W2,Dist] and Pr[W3,Dist] can be used to create an algorithm
that can distinguish between random blocks r and f−1(f(r)), thus contravening
the properties of f given in Definition 3. Hence,

|Pr[W2,Dist] − Pr[W3,Dist]|
is negligible as a function of the security parameter.

If we examine the architecture now, we notice that RList contains elements
of the form f−1(f(r)), and A (being run as a subroutine of Ā) is given elements
of the form f(f−1(f(r))) = f(r). Consider now a situation where

– the randomness oracle returns f(r) instead of f−1(f(r))
– to the ciphertext creator A (instead of Ā),
– and decryption queries are answered using a plaintext extractor A∗. A∗ works

by executing Ā∗ on the input (pk, C, R[A],RList), where C is the ciphertext
to be decrypted and RList is the list of l-bit random blocks given by taking
the responses C′ returned the randomness oracle and computing f−1(C′).

Let W4,Dist be the event that Dist(x) = 1 in this model. Clearly, the functionality
of this model is identical to the previous model. Hence,

Pr[W3,Dist] = Pr[W4,Dist] .

The Cramer-Shoup Encryption Scheme Is Plaintext Aware 299

We may now consider the model in which the randomness oracle reverts to
being an encryption oracle. I.e. instead of returning f(r) for some randomly
chosen l-bit block r, it returns the encryption E(m, pk) for message m = P(aux).
Let W5,Dist(x) be the event that Dist(x) = 1 in this model. As before, if there
is any significant difference between Pr[W4,Dist(x)] and Pr[W5,Dist(x)], then we
may build an algorithm that distinguishes between ciphertexts and simulated
ciphertexts, contravening Definition 3. Therefore,

|Pr[W4,Dist(x)] − Pr[W5,Dist(x)]|

is negligible. However, this means that

|Pr[W0,Dist(x)] − Pr[W5,Dist(x)]|

is negligible as a function of the security parameter, and so that A has a suc-
cessful plaintext extractor A∗. Therefore, (G, E ,D) is PA2 plaintext aware. ��

3.3 PA1+ Plaintext-Aware KEMs

It will be convenient for us to work with the hybrid version of the Cramer-
Shoup encryption scheme. In this section we will show that a KEM-DEM scheme
composed of a PA1+ KEM and an arbitrary DEM is PA1+.

We start by defining what we mean by a PA1+ KEM. The PA1+ model for
a KEM is the obvious extension of the PA1+ model for an encryption scheme.
Formally, we define the REAL game as:

1. The challenger generates a random key pair (pk, sk) = Gen(1k).
2. The attacker executes A on pk.

– If the attacker queries the randomness oracle, then the oracle generates a
fixed-length random string r ∈ {0, 1}l uniformly at random and returns
r to the attacker.

– If the attacker queries the decapsulation oracle with a ciphertext C, then
the decapsulation oracle returns Decap(sk, C).

The attacker terminates by outputting a bitstring x.

The FAKE game is defined as follows:

1. The challenger generates a random key pair (pk, sk) = Gen(1k).
2. The attacker executes A on pk.

– If the attacker queries the randomness oracle, then the oracle generates
a fixed-length random string r ∈ {0, 1}l uniformly at random, adds r to
RList and returns r to the attacker.

– If the attacker queries the decapsulation oracle with a ciphertext C, then
the decapsulation oracle returns A∗(C, pk, R[A],RList).

The attacker terminates by outputting a bitstring x.

300 A.W. Dent

Definition 5. A KEM is said to be PA1+ if, for all ciphertext creators A, there
exists a plaintext extractor A∗ such that for all polynomial time distinguishers
Dist the advantage

|Pr[Dist(x) = 1|A plays REAL] − |Pr[Dist(x) = 1|A plays FAKE]| (8)

that Dist has in distinguishing whether A interacts with the REAL game or the
FAKE game is negligible as a function of the security parameter.

Theorem 3. A hybrid encryption scheme composed of a PA1+ KEM and an
arbitrary DEM is PA1+.

Proof. We show that any ciphertext creator A for the encryption scheme can be
used to create a ciphertext creator Ā for the KEM. Since the KEM is plaintext
aware, there exists a plaintext extractor Ā∗ for Ā. We then use Ā∗ to construct
a plaintext extractor A∗ for A.

Let A be a ciphertext creator for the hybrid encryption scheme. We define
the ciphertext creator Ā for the KEM as the algorithm that executes A. If A
queries the decryption oracle with a ciphertext (C1, C2), then Ā queries the de-
capsulation oracle with encapsulation C1. If the oracle returns ⊥ then Ā returns
⊥ to A. Otherwise the oracle returns a key K and Ā returns DecK(C2) to A.
Any queries that A makes to the randomness oracle are passed directly on to
Ā’s randomness oracle, and the results returned to A.

Since Ā is a valid ciphertext creator for the KEM, there exists a plaintext
extractor Ā∗. We define a plaintext extractor A∗ for A as follows. On the sub-
mission of a ciphertext (C1, C2), A∗ executes Ā∗ on C1. If Ā∗ returns ⊥, then
A∗ returns ⊥ to A. Otherwise Ā∗ returns a key K, and Ā∗ returns DecK(C2).
It is easy to see that the system in which A interacts with its decryption oracle
(in the REAL or FAKE game) is the same as Ā interacting with its decryption
oracle in the same game. Hence, the outputs of A must be indistinguishable
regardless of the game which A is playing. ��

4 The Cramer-Shoup Scheme

In this section we will show that the Cramer-Shoup scheme, when applied to fixed
length messages, is fully plaintext aware (PA2). This will prove a conjecture
of Bellare and Palacio [4] by showing PA2 schemes can exist in the standard
model. For our purposes, the Cramer-Shoup scheme will consist of the Cramer-
Shoup KEM and an Encrypt-then-MAC DEM using a suitably secure encryption
algorithm and MAC algorithm. Note that this is slightly different to the Cramer-
Shoup scheme proven PA1 plaintext aware by Bellare and Palacio [4], but that
similar techniques could have been used to prove that this scheme is PA1. We
will define the Cramer-Shoup KEM as working over an arbitrary group G: this
will make it easier to separate the properties required from the scheme from
those that are required from the group.

Definition 6 (Cramer-Shoup KEM). The Cramer-Shoup KEM is defined
by the following three algorithms:

The Cramer-Shoup Encryption Scheme Is Plaintext Aware 301

– The key generation algorithm which runs as follows:
1. Generate a cyclic group G of order q and a generator g for G.
2. Randomly select w ∈ Z∗

q and set W = gw.
3. Randomly select elements x, y and z from Zq, and set X = gx, Y = gy,

and Z = gz.
4. The public key consists of (g, q, W, X, Y, Z). The private key consists of

(g, q, w, x, y, z). Note that both the encapsulation and decapsulation al-
gorithms also make use of a hash function Hash : G × G → Zq and a
key derivation function KDF : G × G → {0, 1}n, where n is the (fixed)
length of the required symmetric key.

– The encapsulation algorithm which runs as follows:
1. Randomly select u ∈ Zq and set A = gu, Â = Wu and B = Zu.
2. Set K = KDF (A, B).
3. Set v = Hash(A, Â).
4. Set D = XuY uv.
5. Output the key K and the encapsulation (A, Â, D).

– The decapsulation algorithm which runs as follows:
1. Set v = Hash(A, Â).
2. Check that D = Ax+yv and that Â = Aw. If not, output ⊥ and halt.
3. Otherwise, set B = Az.
4. Output K = KDF (A, B).

4.1 Cramer-Shoup Is Simulatable

In order to show that the Cramer-Shoup scheme is PA2, we need to show two
separate things: that it is PA1+ and that it is simulatable. In this section we will
show that the Cramer-Shoup scheme is simulatable. In order to do this we have
to show that we can find Turing machines f and f−1 that satisfy Definition 3. It
is enough to show that there exists Turing machines (Kf ,Kf −1) and (Df ,Df −1)
that simulate the KEM and DEM respectively. The function Df must accurately
simulate the encryption of a fixed-length message by the DEM under a random
key. The function Kf should produce encapsulations for which it is impossible to
distinguish a correct encapsulation pair (C, K) from a simulated encapsulation
pair (Kf (r), K ′), where r is a randomly generated bitstring of length l and K ′ is a
randomly generated symmetric key of the appropriate length. Formal treatments
are given in the full version of the paper.

We construct our DEM from a suitably secure block cipher running in counter
mode and from the EMAC MAC algorithm. Details of both of these schemes can
be found in, for example, [7].

Theorem 4. An Encrypt-then-MAC DEM composed of the counter mode en-
cryption scheme and the EMAC MAC algorithm is simulatable if the underlying
block cipher is indistinguishable from random.

Sketch Proof. First, we note that the decryption oracle to which the attacker has
access is of no use due to the unforgeability of the MAC. Hence, we remove it.

302 A.W. Dent

The result then follows from the indistinguishability of the MAC code [11] and
the indistinguishability of the counter mode encryption [1]. ��
We will now show that the Cramer-Shoup KEM is simulatable providing that
it is instantiated on a group that is simulatable. Again, we only provide a loose
description of a simulatable group here, leaving the formal description to the
full version of this paper. A group is simulatable if there exists Turing machines
(Gf ,Gf −1) analogous to those in Definition 3 for which it is impossible to distin-
guish between a randomly chosen group element h ∈ G and a simulated group
element Gf (r), where r is chosen randomly from the set {0, 1}l.

Theorem 5. The Cramer-Shoup KEM is simulatable if it is instantiated on a
simulatable group G on which the DDH problem is hard, and under the assump-
tions that the hash function Hash is target collision resistant and that the key
derivation function KDF is unpredictable with random inputs.

These assumptions are formally defined as follows. The notation is taken from
the Cramer and Shoup paper [5].

Definition 7 (DDH). For any polynomial-time algorithm A that outputs a
single bit, we define AdvDDH to be

|Pr[A(p, q, g, gx, gy, gxy) = 1|x, y chosen randomly from Zq]
−Pr[A(p, q, g, gx, gy, gz) = 1|x, y, z chosen randomly from Zq]| (9)

The DDH assumption is that, for all polynomial-time algorithms A, AdvDDH
is negligible as a function of the security parameter.

Definition 8 (TCR). Let Hash be the hash function used within the Cramer-
Shoup scheme. For any polynomial-time algorithm A, we define AdvTCR to be

Pr[A(φ∗) �= φ∗ ∧ Hash(A(φ∗)) = Hash(φ∗)
|φ∗ chosen randomly from 〈g〉 × 〈g〉] (10)

The target collision resistance (TCR) assumption is that, for all polynomial-time
algorithms A, AdvTCR is negligible as a function of the security parameter.

Definition 9 (KDF). Let KDF be the key derivation function used within the
Cramer-Shoup scheme and l be the length of symmetric keys that the scheme is
required to produce. Let E1 be the event that A and B are chosen randomly from
〈g〉 and E2 be the event that A is chosen randomly from 〈g〉 and K is chosen
randomly from {0, 1}n. For any polynomial time algorithm A that outputs a
single bit, we define AdvDist(KDF) to be

|Pr[A(p, q, g, A, KDF (A, B)) = 1|E1] − Pr[A(p, q, g, A, K) = 1|E2]| (11)

The distribution assumption for KDF is that, for all polynomial-time algorithms
A, AdvDist(KDF) is negligible as a function of the security parameter.

The Cramer-Shoup Encryption Scheme Is Plaintext Aware 303

Proof of Theorem 5. Let A be any attacker that is attempting to distinguish a
real encapsulation pair (C, K) from a simulated encapsulation (f(r), K ′) where
r is a randomly generated bitstring of length l and K ′ is a randomly chosen
symmetric key of the appropriate length. We will assume A makes at most qE

encapsulation oracle queries and qD decapsulation oracle queries. Let Game 1
be the game in which interacts with correct encryption and decryption oracles.
Let Game 2 be the game in which, for its first query to the encapsulation
oracle, the attacker is interacting with the following algorithm rather than the
true encapsulation algorithm:

1. Randomly select u ∈ Zq and set A = gu.
2. Randomly select û ∈ Zq \ {u} and set Â = gû.
3. Randomly select K ∈ {0, 1}n.
4. Set v = Hash(A, Â) and D = XuY uv.
5. Output the encapsulation (A, Â, D) and the symmetric key K.

Let Wi be the event that the attacker A wins Game i. We use a result of Cramer-
Shoup [5] to take us most of the way towards our goal.

Lemma 1 (Cramer-Shoup).

|Pr[W1]−Pr[W2]| ≤ AdvDDH + AdvTCR + AdvDist(KDF) + (qE + 3)/q (12)

Let Game 3 be the game in which Â is computed as follows:

2. Randomly select û ∈ Zq and set Â = gû.

Clearly the two games are identical unless û = u, hence:

|Pr[W2] − Pr[W3]| ≤ 1/q . (13)

Let Game 4 be the game in which D is computed as follows:

4. Randomly select r′ ∈ Zq and set D = gr′
Y uv.

Clearly, any difference in behaviour of the attacker between Game 3 and Game 4
means that he has distinguished between the Diffie-Hellman triple (A, X, Xu)
and (A, X, gr′

). [Note that the proof makes use of the fact that we may compute
Y uv as Avy in the case that we know y but do not know the discrete logarithm
of A.] Hence,

|Pr[W3] − Pr[W4]| ≤ AdvDDH . (14)

Let Game 5 be the game in which D is computed as follows:

4. Randomly select r′ ∈ Zq and set D = gr′
.

This difference is pure conceptual, and so Pr[W4] = Pr[W5]. However, now each
of the elements of the ciphertext, and the symmetric key, are randomly generated
from their appropriate ranges. At this stage, and merely through altering the
way we respond to the first encryption oracle query, we have

|Pr[W1]−Pr[W5]| ≤ 2·AdvDDH +AdvTCR+AdvDist(KDF)+(qE+4)/q . (15)

304 A.W. Dent

Let Game 6 be the game in which each of the encapsulation oracle queries is
answered using the algorithm in Game 5, and not just the first one. By repeated
application of the previous results we have that:

|Pr[W1]−Pr[W6]| ≤ qE

{
2·AdvDDH +AdvTCR+AdvDist(KDF))+(qE +4)/q

}
.

(16)
Lastly, suppose the group G can be simulated by the pair of Turing machines

(Gf ,Gf −1), and let Game 7 be the game in which the encapsulation oracle
computes the ciphertexts as follows.

1. Randomly select r1 ∈ {0, 1}l and set A = Gf (r1).
2. Randomly select r2 ∈ {0, 1}l and set Â = Gf (r2).
3. Randomly select r3 ∈ {0, 1}l and set D = Gf (r3).
4. Randomly select K ∈ {0, 1}n.
5. Output the encapsulation (A, Â, D) and the symmetric key K.

Since the group is simulatable, the difference between success probabilities when
the encapsulation is provided as in Game 6 is negligible. However this means
that the difference between Pr[W1] and Pr[W7] is negligible, and so the KEM
is simulatable. ��
Lastly, we need to show that simulatable groups exist. The obvious method to
attempt to simulate a cyclic group G of order q with generator g is to define

f : {0, 1}l → G by setting f(r) = gr (17)

where l - q. This provides a perfectly adequate definition of f , but leaves us
know way of computing a machine f−1 (without solving the discrete logarithm
problem in G). We are therefore required to use sneakier techniques.

Theorem 6. If q and p are primes such that p = 2q + 1, and G is the subgroup
of Z∗

p of order q, then G is simulatable.

Sketch Proof. To show that G is simulatable, we are required to find Turing
machines Gf and Gf −1 that are analogous to those given in Definition 3 but
for which the output of Gf is a group element. Let k be an integer much larger
than log2(q) and let α be an integer. We consider a map Gf : {0, 1}αk → G as
follows. First, split the input r into α k-bit substrings r = r1||r2|| . . . ||rα. Next,
consider r1 as an integer modulo p and test whether it is in G. If so, output
r1 mod p; otherwise consider the next substring of r in the same way. Since the
distribution of ri mod p is almost uniform, we have that the probability that
this algorithm fails to return a random element of G is approximately 1/2α.

The inverse machine Gf −1 works similarly. Given a group element g, first
chooses a random bit b ∈ {0, 1}. If b = 0 then construct a random string r1
of length k such that r1 mod p ≡ g, append random data to r1 so that it is
αk-bits long and output the result. If b=1, then construct a random element r1
such that r1 mod p /∈ G and choose a new random bit for the block r2. This
process continues until either we choose a bit b = 0 or we have constructed α
blocks of data (at which point the algorithm fails). Again, the probability that
this happens is approximately 1/2α. ��

The Cramer-Shoup Encryption Scheme Is Plaintext Aware 305

4.2 Cramer-Shoup Is PA1+

Now we are only require to show that the Cramer-Shoup scheme is PA1+ to
complete our proof that it is PA2. In this section we show that Cramer-Shoup
is PA1+ on a simulatable group under the DHK assumption.

The DHK assumption states that any attacker given a random element W in
a group generated by g, can only compute a Diffie-Hellman triple (W, gu, Wu) if
they know u.

Definition 10 (DHK). Let G be a cyclic group G of order q and a generator
g for G. The DHK assumption for G is that for any polynomial-time algorithm
A there exists a polynomial-time extractor A∗ such that the probability that A
wins the following game is negligible.

1. The challenger randomly chooses an element W ∈ G.
2. The attacker executes A on the input W . The attacker has access to an oracle

which, when given a triple (W, A, Â) ∈ G3, executes A∗(W, A, Â, R[A]) and
returns the result.

The attacker wins the game if it submits a triple of the form (W, gu, Wu) to
the oracle and the oracle fails to return u. The challenger wins the game if A
terminates without this event occurring.

The DHK assumption is certainly a very strong one. It was essentially introduced
by Damg̊ard in 1991 [6] and has been used in a number of applications [3, 4, 8, 9].
However, it is unclear if the assumption holds true or not. Opponents of the
assumption point out that it is not falsifiable (and so demonstrations that it
is false must be complex) [10] and that variants of the assumption have been
proven false [3]. Nevertheless, it is used to prove that a version of the Cramer-
Shoup scheme is PA1 [4] and so we consider it a reasonable assumption under
which to prove that the Cramer-Shoup scheme is PA2. The question of whether
plaintext awareness can be demonstrated under weaker assumptions is a major
open problem.

Theorem 7. The Cramer-Shoup KEM is PA1+ in a simulatable group under
the DHK assumption

Sketch Proof Let A be any PA1+ ciphertext creator. We use the assumption
that we can find algorithms that solve the DHK problem to build a plaintext
extractor A∗ for A.

Consider the following plaintext extractor A∗ for A that makes use of a DHK
oracle. When it is first invoked, A∗ receives the public key (W, X, Y, Z) and
the random coins R[A] of A. It first simulates the random coins of an attacker
that only received W from the challenger and computed X , Y and Z. This is
necessary because the DHK assumption is only valid when the challenger gives
the attacker a single group element W . The simulated random coins string is
given by:

R = Gf −1(X)||Gf −1(Y)||Gf −1(Z)||R[A] (18)

306 A.W. Dent

where Gf −1 is the inverse function associated with the simulatable group. If A
makes a decryption oracle query on the ciphertext (A, Â, D) then A∗ proceeds
as follows:

1. Query the DHK oracle with the triple (W, A, Â) and the coins (R,RList).
The oracle will return a value u ∈ Zq or the error symbol ⊥. If the oracle
returns ⊥, then return ⊥ and terminate.

2. Set v = Hash(A, Â).
3. Check that A = gu, Â = Wu and D = XuY uv . If not, return ⊥.
4. Set B = Zu.
5. Set K = KDF (A, B).
6. Return K.

It is clear that A∗ correctly simulates the decapsulation algorithm providing that
it obtains correct solutions to the DHK problem from the DHK oracle. The DHK
assumption states that there exists an algorithm A′ that can answer the queries
of the DHK oracle given the randomness that A used in creating these queries. It
is important to note that because the DHK oracle must give back answers which
are completely correct, and not answers that are merely indistinguishable from
correct by A, it is sufficient to give A′ access to the random coins that A used
in creating its challenge. In other words, it is sufficient for A′ to take as input
the random coins R and all the random blocks RList that have been received
by A up to the point at which the DHK oracle query was made. Hence, by the
DHK assumption, there exists an algorithm A′ that correctly responds to the
DHK oracles queries, and so there exists a plaintext extractor A∗ for A. Hence,
the Cramer-Shoup KEM is PA1+. ��

5 Conclusion

We have shown that the Cramer-Shoup scheme is PA2 plaintext aware and there-
fore demonstrated the existence of fully plaintext aware encryption algorithms.
However, in order to do this, we have had to use results which demonstrate
that the Cramer-Shoup scheme is IND-CCA2 secure already. Therefore, if the
primary goal of plaintext awareness is to make proving the security of an en-
cryption scheme easier, then the results of this paper are of little use. We present
these results not as a practical tool, but as a proof that PA2 plaintext aware
schemes can be shown to exist.

Acknowledgements

The author would like to thank Martijn Stam for his detailed and insightful
comments on the several drafts of this paper. Thanks should also be given to
both Nigel Smart and the anonymous referees for their helpful comments. The
author gratefully acknowledges the financial support of the EPSRC.

The Cramer-Shoup Encryption Scheme Is Plaintext Aware 307

References

1. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment
of symmetric encryption. In Proceedings of the 38th Symposium on Foundations of
Computer Science, IEEE, 1997.

2. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions
of security for public-key encryption schemes. In H. Krawczyk, editor, Advances
in Cryptology – Crypto ’98, volume 1462 of Lecture Notes in Computer Science,
pages 26–45. Springer-Verlag, 1998.

3. M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In M. Franklin, editor, Advances in Cryptology – Crypto
2004, volume 3152 of Lecture Notes in Computer Science, pages 273–289. Springer-
Verlag, 2004.

4. M. Bellare and A. Palacio. Towards plaintext-aware public-key encryption without
random oracles. In P. J. Lee, editor, Advances in Cryptology – Asiacrypt 2004,
volume 3329 of Lecture Notes in Computer Science, pages 48–62. Springer-Verlag,
2004.

5. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2004.

6. I. B. Dam̊ard. Towards practical public key systems secure against chosen ci-
phertext attacks. In J. Feigenbaum, editor, Advances in Cryptology – Crypto ’91,
volume 576 of Lecture Notes in Computer Science, pages 445–456. Springer-Verlarg,
1991.

7. A. W. Dent and C. J. Mitchell. User’s Guide to Cryptography and Standards.
Artech House, 2005.

8. S. Hada and T. Tanaka. On the existence of 3-round zero-knowledge protocols. In
H. Krawcyzk, editor, Advances in Cryptology – Crypto ’98, volume 1462 of Lecture
Notes in Computer Science, pages 408–423. Springer-Verlag, 1998.

9. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In
V. Shoup, editor, Advances in Cryptology – Crypto 2005, volume 3621 of Lecture
Notes in Computer Science, pages 546–566. Springer-Verlag, 2005.

10. M. Naor. On cryptographic assumptions and challenges. In D. Boneh, editor,
Advances in Cryptology – Crypto 2003, volume 2729 of Lecture Notes in Computer
Science, pages 96–109. Springer-Verlag, 2003.

11. E. Petrank and C. Rackoff. CBC MAC for real-time data sources. Journal of
Cryptography, 13(3):315–339, 2000.

Private Circuits II:
Keeping Secrets in Tamperable Circuits

Yuval Ishai�, Manoj Prabhakaran��, Amit Sahai���, and David Wagner†

Abstract. Motivated by the problem of protecting cryptographic hard-
ware, we continue the investigation of private circuits initiated in [16]. In
this work, our aim is to construct circuits that should protect the secrecy
of their internal state against an adversary who may modify the values
of an unbounded number of wires, anywhere in the circuit. In contrast,
all previous works on protecting cryptographic hardware relied on an
assumption that some portion of the circuit must remain completely free
from tampering.

We obtain the first feasibility results for such private circuits. Our
main result is an efficient transformation of a circuit C, realizing an arbi-
trary (reactive) functionality, into a private circuit C′ realizing the same
functionality. The transformed circuit can successfully detect any serious
tampering and erase all data in the memory. In terms of the information
available to the adversary, even in the presence of an unbounded number
of adaptive wire faults, the circuit C′ emulates a black-box access to C.

1 Introduction

Can you keep a secret when your brain is being tampered with? In this paper we
study the seemingly paradoxical problem of constructing a circuit such that all
parts of the circuit are open to tampering at the level of logic gates and wires,
and yet the circuit can maintain the secrecy of contents of memory. We construct
private circuits which, even as they are being tampered with, can detect such
tampering and, if necessary, “self-destruct” to prevent leaking their secrets. We
consider security against a powerful inquisitor who may adaptively query the
circuit while tampering with an arbitrary subset of wires within the circuit,
including the part of the circuit that is designed to detect tampering.

The above question is motivated by the goal of designing secure cryptographic
hardware. While the traditional focus of cryptography is on analyzing algorithms,
in recent years there have been growing concerns about physical attacks that

� Technion. This research was supported by grant 2004361 from the United States-
Israel Binational Science Foundation (BSF) and grant 36/03 from the Israel Science
Foundation.

�� U.I.U.C.
��� U.C.L.A. This research was supported by grants from the NSF ITR and Cybertrust

programs, a grant from BSF, an Alfred P. Sloan Foundation Fellowship, and a
generous equipment grant from Intel.

† U.C. Berkeley.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 308–327, 2006.
c© International Association for Cryptologic Research 2006

Private Circuits II: Keeping Secrets in Tamperable Circuits 309

exploit the implementations (rather than the functionality) of cryptographic
primitives. For instance, it is in some cases possible to learn the secret key of
an encryption scheme by measuring the power consumed during an encryption
operation or the time it takes for the operation to complete [19, 20]. Other types
of physical attacks rely on inducing faults [6, 5, 20], electromagnetic radiation
[28, 11, 29], magnetic fields [27], cache hit ratios [18, 24], probing wires using a
metal needle [1], and others [17, 31, 32, 30, 2, 30]. In general, attacks of this type
have proven to be a significant threat to the practical security of embedded
cryptographic devices.

One possible approach for defeating the above type of attacks is by design-
ing specific hardware countermeasures, such as adding large capacitors to hide
the power consumption. Many such countermeasures have been proposed in the
literature. An inherent limitation of these approaches is that each such counter-
measure must be specially tailored for the set of specific physical attacks it is
intended to defeat. For example, one might design physical protection against
attacks based on electro-magnetic radiation, but still be vulnerable to attacks
based on physical probes.

A different approach is to tackle the problem at the logical level, namely by
designing algorithms that, when implemented, will be robust against a wide class
of physical attacks. Here, we would want to classify attacks not based on the
physical mechanism of the attack, but rather on the logical effect of the attack –
for instance, can we defend against all physical attacks that toggle the value on
a wire? Several ad-hoc approaches have been suggested (e.g., [10, 21, 15]) with
some subsequently broken [7, 9]. Recently, a more general and theoretically sound
study of physical security has been initiated in [16, 22, 12] (see Section 1.4 for an
account of this related work).

The current paper continues this line of work, but departs from all previous
work in the following fundamental way. All types of attacks that were previously
considered from a theoretical perspective are either (1) in some sense spatially
limited, and in particular cannot be applied to the entire circuitry on which
they are mounted [12]; or (2) deal with observation rather than faults [16, 22].
The question that motivates our work is the intriguing possibility of offering
protection even against adversaries that can tamper with the entire circuit. This
goal might sound too ambitious. For instance, the adversary can easily modify
the functionality of the circuit by simply destroying it completely. However, this
does not rule out the possibility of preventing the adversary from learning the
secret information, say a cryptographic key, stored in the circuit. Once the device
is already in the hands of the adversary, secrecy is the primary relevant concern.

The above question is captured by our notion of a private circuit, which we
also call a self-destructing circuit. Informally, such a circuit should carry out
some specified functionality (say, encryption) while protecting the secrecy of its
internal state (a key) even against an unbounded number of adversarial faults.
A natural way for achieving this goal is to build a tamper detection mechanism
which can detect faults and trigger a “self-destruction” mechanism to erase all
internal state. (This is akin to a prisoner of war taking a suicide pill.) The

310 Y. Ishai et al.

central problem with implementing this approach in our setting is that such a
tamper detection circuitry as well as the self-destruction mechanism itself can be
attacked and disabled by the adversary. Thus, it is tempting to conjecture that
such self-destructing circuits simply cannot exist.

In this paper, we obtain the first positive results establishing the feasibility
of private circuits in the presence of adversarial faults that can affect any wire
inside the circuit. Before describing our results, we give some further motivating
discussion, and a more detailed account of the types of circuits and the fault
model we consider.

1.1 Discussion of Difficulties

We briefly discuss some natural ideas to prevent loss of privacy due to faults
and why they don’t appear to work, as well as some inherent limitations to our
model.

Natural Approaches. First, one can consider standard techniques for fault-
tolerant circuits based on error-correcting codes or redundancy (see [26] and
references therein). However, such approaches are limited to tolerating only a
bounded number of total adversarial faults, whereas we are interested in the
case where the adversary can induce, over time, an unbounded number of faults,
eventually even faulting every wire in the circuit!

Next, one may think of using signature schemes or related techniques, which
would work as follows at a high level: hard-wire into the circuit a signature on
the circuit, and then verify the correctness of the signature before executing the
original functionality, otherwise cause a “self-destruct” (c.f. [12]). In our con-
text, this fails for a simple reason: the adversary can fault the wire in the circuit
that contains the “Correct”/“Incorrect” output of the signature verification al-
gorithm, so that this wire always reads “Correct”, regardless of whether the
signature verification succeeded or not.

Similarly, one may think of directly applying multi-party computing tech-
niques [14, 4, 8] providing security against mobile Byzantine faults [23]. However,
here we cannot rely on an “honest majority”, since there is an unbounded num-
ber of faults, and every part of the circuit is susceptible to attacks. In protocols
for multi-party computation with no honest majority, each party executes a large
set of instructions, which invariably includes a verification step. In our model,
the adversary can fault just this verification portion of each party’s computa-
tion in order to fool the party into thinking that the verification always succeeds.
Thus, whatever approach we take, we must somehow prevent this kind of attack.

Another idea that seems to immediately help is to use randomization: perhaps
if we randomly encode “Correct” or “Incorrect” as 0 or 1, then we can prevent
the above problems. But even this is problematic, because the adversary can, as
its first set of actions, create faults that set all wires that should contain random
values to 0, thereby eliminating the randomization. (In our approach, we are
able to combine randomization ideas with other redundant encodings in order
to fault-tolerantly detect such behavior.)

Private Circuits II: Keeping Secrets in Tamperable Circuits 311

Limitations. To motivate the type of fault model we consider, it is instruc-
tive to address some inherent limitations on the type of adversarial behavior
one could hope to resist, and still obtain a general transformation result that
holds for all circuits. These limitations follow from the impossibility of program
obfuscation [3]: The most immediate limitation is observed in [16], that it is im-
possible to protect against an attacker which can simultaneously read the values
of all wires in the circuit. However, a number of natural fault models are also
equivalent to program obfuscation. For instance, allowing the adversary to cause
arbitrary immediate changes to the entire circuit trivially allows it to replace the
entire circuit with one that outputs the contents of all memory, thus making the
problem equivalent to program obfuscation. Similarly, if the adversary is allowed
to insert or replace wires it can mount the same type of attack by undetectably
adding wires from all memory cells to the output.

These limitations mean that we must consider attack models in which the ad-
versary is more restricted. We concentrate on models in which the adversary can
cause an unbounded number of faults over time, where these faults are localized
to individual wires anywhere in the circuit.

1.2 The Model

We consider reactive functionalities, i.e., functions with an internal state that
may be updated at each invocation. Such a functionality can be realized by a
stateful boolean circuit C that, given an external input and its current internal
state, produces an external output and a new internal state. (The state corre-
sponds to some secret data stored in the circuit’s memory.) We think of the
interaction of such a circuit with the environment as being paced by clock cy-
cles, where in each cycle the circuit receives an input, produces an output, and
updates its internal state.1 We would like to protect the secrecy of the inter-
nal state against an adversary that can induce faults in an unbounded number
of wires. That is, in each clock cycle (or epoch) the adversary can adaptively
choose t wires and permanently “set” (to 1), “reset” (to 0), or “toggle” the value
of each wire. Then, the adversary can feed a new input to the modified circuit
and observe the resulting output. By inducing such faults, the adversary’s hope
is to extract more information about the circuit’s internal state than is possible
via black-box access to the circuit. For instance, if the circuit implements an en-
cryption or a signature scheme, the adversary may try to learn some nontrivial
information about the secret key.

Our goal is to prevent the adversary from gaining any advantage by mounting
the above type of attack. We formalize this requirement via a simulation-based

1 An attacker may also try to tamper with the clock. To counter such attacks, we
envision the use of volatile memory, such as DRAM, to implement memory cells
whose contents fade over time if not refreshed regularly. In our main result, we need
to assume that the attacker cannot induce too many faults within a single “epoch”
defined by the amount of time it takes for the volatile memory to lose its value. If
the adversary is tampering with the clock, then we define a clock cycle to the lesser
of the actual clock cycle and one epoch.

312 Y. Ishai et al.

definition (in the spirit of similar definitions from [16, 12]). Specifically, we say
that a stateful circuit C′ is a secure private (or self-destructing) implementation
of C if there is a (randomized, efficient) transformation from an initial state s0
and circuit C to an initial state s′0 and circuit C′ such that:

1. C′[s′0] realizes the same functionality as C[s0].
2. Whatever the adversary can observe by interacting with C′[s′0] and adap-

tively inducing an unbounded number of wire faults, can be simulated by
only making a black-box use of C[s0], without inducing any faults.

1.3 Our Contribution

We present general feasibility results, showing how to efficiently transform an
arbitrary (reactive, stateful) circuit C into an equivalent self-destructing circuit
C′. Specifically:

1. In the case of reset only wire faults (set wires or memory cells to 0), the circuit
C′ is secure against an unbounded number of adaptive faults. Security is
either statistical, if C′ is allowed to produce fresh randomness in each cycle,
or is computational otherwise.

2. In the case of arbitrary wire faults (set wires or memory cells to 1, set to
0, or toggle the value), we can get the same results as above except that
we limit the adversary to performing only a bounded number of faults per
clock cycle.2 Since the adversary can choose the faults to be permanent, the
overall number of faults is still unbounded.

In all cases, the circuit C′ is proven secure under the conservative simulation-
based definition outlined above. Our techniques in both constructions can also
yield privacy against a bounded number of probing attacks per cycle as per [16].

Our Techniques. A central high-level idea behind our constructions is the
following. Given a circuit C, we compile it into a similar circuit C′ which can
be viewed as a “randomized minefield”. As long as C′ is not tampered with, it
has the same functionality as C. However, any tampering with C′ will lead with
high probability to “exploding a mine”, triggering an automatic self-destruction
and rendering C′ useless to the adversary.

Implementing the above approach is far from being straightforward. One prob-
lem that needs to be dealt with is preventing the adversary from learning some
useful partial information by merely getting “lucky” enough to not land on a
mine. This problem is aggravated by the fact that the adversary may possess
partial information about the values of internal circuit wires, implied by the ob-
served inputs and outputs. Another problem, already discussed above, is that of
2 The complexity of the constructions depends linearly on the parameter t bounding

the number of faults. In fact, our constructions resist attacks that can involve an
arbitrary number of simultaneous faults, provided that no more than t faults are
(simultaneously) concentrated in the same area. Thus, the task of mounting such a
coordinated attack within a single clock cycle does not become easier as the size of
the circuit grows.

Private Circuits II: Keeping Secrets in Tamperable Circuits 313

protecting the self-destruction mechanism itself from being destroyed. This dif-
ficulty is overcome through a novel distributed and randomized self-destruction
mechanism.

Combining the techniques in this paper with the results in [16], one can con-
struct self-destructing circuits which simultaneously resist probing attacks in
addition to fault attacks. (As in [16], and as discussed above, we need to con-
sider a limited number of probes in each clock cycle.)

1.4 Related Work

As noted above, negative results for program obfuscation [3] rule out the pos-
sibility of defeating adversaries who can observe all values propagating through
the circuit, for all circuits. This observation motivated the study of “private cir-
cuits”, withstanding a limited number of such probing attacks [16]. The results
of [16] do not consider active faults of the type considered here, yet are used as
an essential building block in our main constructions.

A more general study of security against passive attacks was taken in [22] un-
der an elegant framework of “physically observable cryptography”. In contrast
to [16], the focus of [22] is on obtaining model-independent reductions between
physically secure primitives rather than implement them with respect to a spe-
cific attack model.

Most relevant to our work is the work of Gennaro et al. [12], who considered
the problem of achieving security when an adversary can tamper with hardware.
In contrast to the current work, they make the (seemingly necessary) assumption
that there are parts of the circuitry that are totally tamper-proof. Indeed, as
discussed above, the typical use in [12] is to have a signature stored in memory
that is verified by the tamper-proof hardware. We stress that in our model, no
part of the circuitry is free from tampering. In particular, all wires and internal
memory cells can be affected. Thus, if an approach like the above is attempted,
the adversary can tamper with the signature-checking portion of the circuitry
(e.g., permanently fixing the output bit of the signature checker to indicate
success). To the best of our knowledge, our work is the first that allows every
portion of the hardware to be tampered with, at the level of individual wires
between logical gates.

We note that [12] consider a more general type of tampering attack, albeit
in a more restricted setting, in which the adversary can apply an arbitrary
polynomial-time computable function to the contents of the memory. Defend-
ing against this general type of attacks is, in general, impossible in our setting
(where no wire is free from tampering). Indeed, if the attacker could simply
set the value of a wire to some arbitrary function of the other wires, then the
impossibility result based on program obfuscation [3] would still hold.

Finally, it is instructive to contrast the positive results we achieve with a
negative result from [12]. In the model of [12] it is shown that an attacker can
recover the secret information stored in the memory, say a signature key, by
sequentially setting or resetting bits of the memory and observing the effects
of these changes on the output. Our model gets around this impossibility by

314 Y. Ishai et al.

allowing to feed values back into the memory. This form of feedback, which
prevails in real-world computing devices, is essential for realizing the strong
notion of privacy considered in this work.

1.5 Future Work

In this work we initiate the study of a fascinating question — can a circuit keep
a secret even when all parts of the circuit are open to tampering? We give the
first positive results, for an unbounded number of individual wire faults to any
set of wires in the circuit. We believe the theory of private circuits, and private
cryptographic implementations more generally, is still in its infancy and there are
many more questions to address. Most notably, what other fault models allow for
general positive results? As discussed above, negative results on obfuscation [3]
give rise to severe restrictions on such fault models.

2 Preliminaries

Physical Model. We consider clocked circuits with memory gates. Specifically,
our model is as follows:

– A memory gate has one input wire and one output wire: in each clock cycle,
the output value of the memory gate becomes the input value from the
previous clock cycle. The memory can be initialized with some data, which
gets updated in each clock cycle. We shall denote a circuit C initialized with
data D by C[D].

– In addition to the memory gates, the circuit can have AND, OR and NOT
gates, as well as input wires and output wires.

– The adversary can set each input wire to 0 or 1, and can read output wires.
– The adversary can also cause faults in the circuit. We consider the following

kinds of faults: (1) setting a wire to 1 (which we call a “set” attack), (2)
setting a wire to 0 (which we call a “reset” attack), or (3) toggling the value
on a wire.

– We assume that wires are conducting: that is, with a single fault on a wire
the adversary simultaneously causes faults everywhere that wire goes. In
our construction in Section 5 we use NOT gates which are reversible (see
e.g. [33]), so that faults on the output side of a NOT gate propagate to
the input side. For AND and OR gates (as well as NOT gates in the con-
struction in Section 4), faults can be introduced on input and output wires
independently of each other.

Circuit Transformations. We shall refer to transformations which take a (cir-
cuit, data) pair to another (circuit, data) pair. It will always be the case that
these are two separate transformations carried out independently of each other,
one for the circuit and one for the data. However, for convenience and brevity
we shall use a single transformation to denote these two transformations.

Private Circuits II: Keeping Secrets in Tamperable Circuits 315

Definition 1. A transformation between (circuit, data) pairs T (k) is called func-
tionality preserving if for any pair (C, D), if T (k)(C, D) �→ (C1, D1) then C[D]
and C1[D1] have the same input-output behavior.

ISW Transformation and Security Definition. The starting point for our
constructions is a transformation T

(k)
isw from [16]. The transformation yields a

circuit which uses standard gates and some randomness gates (which output fresh
random bits in each clock cycle). T

(k)
isw ensures that reading (but not tampering

with) “a few wires” of the circuit in each clock cycle does not leak any information
about the initial data in the memory (beyond what the output reveals). This is
achieved using a (proactive) secret-sharing scheme, which shares each bit among
k or more wires. Here we will not need any particulars of that construction,
beyond the properties summarized below.

T
(k)
isw (C, D) �→ (C′, D′), is a functionality preserving transformation where

each wire in C′ is assigned at most two indices from [k]. To define the security
guarantees of T

(k)
isw we define two adversaries: an “ideal” adversary which has

only black-box access to C and a “real” adversary which can probe the internals
of C′. For future reference we define these classes of adversaries Aideal and A

(k)
isw

more formally, below.

– If A ∈ Aideal is given a circuit C[D], then in every clock cycle A can feed
inputs to the circuit and observe the outputs. This kind of access to the
circuit is considered legitimate (ideal).

– If A ∈ A
(k)
isw is given a circuit C′[D′] with wires indexed from [k], then in

each cycle it can feed inputs to the circuit, read the outputs and probe wires
in the circuit such that no more than k − 1 indices are covered by the wires
probed in that clock cycle.3

Without loss of generality, all adversaries are considered to output a single bit
at the end of the interaction with the circuit.

Lemma 1 (Properties of the ISW Transformation). [16] There exists a
functionality preserving transformation T

(k)
isw (C, D) �→ (C′, D′), where C′ uses

AND gates, XOR gates, NOT gates and “randomness gates,” and each wire is
assigned at most two indices from [k], such that the following hold:

1. Values on any k − 1 wires in C′ (excluding wires in the input and output
phases), such that no two wires share an index, are distributed so that the
following condition holds (distribution being as determined by the distribution
of the outputs of the randomness gates during that clock cycle): any bit, even
conditioned on all other k− 2 bits and all other information obtained by any
A′ ∈ A

(k)
isw in previous clock cycles, has entropy at least c for a fixed c > 0.

3 To be precise about the counting, we should consider the values on the wires that go
into the memory at a clock cycle same as the values that come out of the memory
at the next clock cycle. Thus probing one of these wires in one clock cycle counts
towards probes in both clock cycles.

316 Y. Ishai et al.

2. ∀C, ∃Sisw (a universal simulator), such that ∀D, ∀A′ ∈ A
(k)
isw, we have S′ =

SA′
isw ∈ Aideal, and S′ after interacting with C[D] outputs 1 with almost the

same probability as A′ outputs 1 after interacting with C′ [D′] (the difference
in probabilities being negligible in the security parameter k).

We remark that in [16] these properties are not explicitly stated in this form.
In particular in the second property above, [16] is interested only in restricting
A′ to probing at most (k − 1)/2 wires. However to employ T

(k)
isw within our

transformations we shall use the fact that the construction allows A′ to probe
any number of wires as long as they cover at most k − 1 indices.

3 Security When Circuits Are Completely Tamperable

In the next two sections we present our constructions which do not require any
untamperable components (except the topology of the circuit and the atomic
gates (AND, NOT, OR)). The adversary is allowed to change the values in any
of the wires in the circuit. We give constructions for two scenarios:

1. Tamper-resistance against “reset” attacks: In this case the only kind
of faults that the adversary can introduce into the circuit are “resets.” That
is, it can change the value of any wire to zero (but not to one). In each clock
cycle, the adversary can set the input values, reset any number of wires of
its choice and observe the outputs. We call this class of adversaries Areset.

2. Tamper-resistance against “set, reset and toggle” attacks: Here the
adversary is allowed to set or reset the wires. That is, it can change the
value of any wire to one or zero. Also, it can toggle the value in a wire (if
the value prior to attack is zero, change it to one, and vice versa). There is
an a priori bound on the number of new wires it can attack (set, reset or
toggle) at each clock cycle. However, it is allowed to introduce persistent (or
permanent) faults to any wire it attacks (such a fault will not be counted as
a new fault in every cycle). Hence, after multiple clock cycles, the adversary
can potentially have faults in all the wires in the circuit simultaneously. We
call this class of adversaries A

(t)
tamper, where t is the bound on the number of

wires the adversary can attack in each clock cycle.

The two constructions use similar techniques. First we introduce our basic
construction techniques and proof ideas for the reset-only case, and then explain
the extensions used to make the construction work for the general case.

4 Tamper-Resistance Against Reset Attacks

We present our construction as two transformations T
(k)
1 and T

(k)
2 . The com-

plete transformation consists of applying T
(k)
1 followed by T

(k)
2 . The first trans-

formation converts any given circuit to a private circuit which uses “encoded
randomness gates” (which output fresh random bits in every cycle, but each

Private Circuits II: Keeping Secrets in Tamperable Circuits 317

bit of the output is encoded into a pair of bits as explained later). The second
transformation converts the resulting circuit to a standard deterministic circuit
(using only AND, NOT and OR gates), while preserving the security property.
The formal security statements for T

(k)
1 and T

(k)
2 follow.

Lemma 2. There is a polynomial time (in input size and security parameter k)
functionality preserving transformation T

(k)
1 (C, D) �→ (C1, D1), where C1 uses

“encoded randomness gates,” such that ∀C, ∃S1 (a universal simulator), such
that ∀D, ∀A1 ∈ Areset, we have S = SA1

1 ∈ Aideal and the following two
experiments output 1 one with almost the same probability (the difference in
probabilities being negligible in the security parameter k):

– Experiment A: S outputs a bit after interacting with C[D].
– Experiment B: A1 outputs a bit after interacting with C1[D1].

Lemma 3. There is a polynomial time (in input size and security parameter
k) functionality preserving transformation T

(k)
2 (C1, D1) �→ (C2, D2), where C1

may use encoded randomness gates, such that ∀C1, ∃S2 (a universal simulator),
such that ∀D1, ∀A ∈ Areset, we have A1 = SA

2 ∈ Areset and the following
two experiments output 1 with almost the same probability (the difference in
probabilities being negligible in the security parameter k):

– Experiment B: A1 outputs a bit after interacting with C1[D1].
– Experiment C: A outputs a bit after interacting with C2[D2].

Theorem 1. There is a polynomial time (in input size and security parameter
k) functionality preserving transformation T

(k)
reset(C, D) �→ (C2, D2), such that

∀C, ∃S0 (a universal simulator), such that ∀D, ∀A ∈ Areset, we have S =
SA

0 ∈ Aideal and experiment A and experiment C output 1 with almost the
same probability (the difference in probabilities being negligible in the security
parameter k).

Proof. This follows from the above two lemmas, by setting T
(k)
reset(C, D) =

T
(k)
2 (T (k)

1 (C, D)) and SA
0 = SSA

2
1 .

4.1 Proof of Lemma 2

As proof of Lemma 2 we first present the transformation T
(k)
1 . We then will

demonstrate a universal simulator as required in the Lemma and show the cor-
rectness of simulation.

The Transformation T
(k)

1
. The transformation T

(k)
1 is carried out in two

stages. In the first step, we apply the transformation T
(k)
isw from [16] to (C, D) to

obtain (C′, D′).
Next we shall transform (C′, D′) further so that the following “encoding” gets

applied to all the data: the bit 0 is mapped to a pair of bits 01 and the bit 1
is mapped to 10. We shall refer to this encoding as the Manchester encoding.

318 Y. Ishai et al.

Encoding D′ to get D1 is straight-forward: we simply replace 0 and 1 by 01
and 10 respectively (thereby doubling the size of the memory and doubling the
number of wires connecting the memory to the circuit). C′ is transformed to get
C1 as follows:

1. The input data is passed through a simple encoding gadget, which converts
0 to 01 and 1 to 10. The encoding simply involves fanning out the signal into
two: the first output wire and an input to a NOT gate whose output is the
second output wire.

2. The “core” of the circuit C1 is derived from C′ as follows: every wire in C′

is replaced by a pair of wires. Then the input wire pairs are connected to
the outputs from the encoding gates (described above), and the output wire
pairs are fed into the decoding phase (below). The gates to which the wires
are connected are modified as follows:
(a) Each randomness gate is replaced by an encoded randomness gate.
(b) XOR and AND gates in C′ are replaced by the gadgets shown in Figure 1.

NOT gates are replaced by a gadget which simply swaps the two wires
in the pair.

3. An “error cascade” stage (described below) is added before the output stage
(including the output from the circuit to the memory).

4. A simple decoding stage is added just before the final output wires (excluding
the wires going into the memory): the decoding is done by simply ignoring
the second wire in the encoding of each signal.

Error Cascading. The circuit will be designed to “detect” reset attacks, and if
an attack is detected, to erase all the data in the memory. (Such self-destruction
is not required by Lemma 2, but it is a desirable property that is achieved by
our construction.) The basic step in this is to ensure that if a detectable error is
produced at some point in the circuit, it is propagated all the way to an “error
cascading stage” (such an error propagation will be ensured by the gadgets in
Figure 1). Then, the cascading stage will ensure that all the data in the memory
and output is erased.

Fig. 1. XOR and AND Gadgets used by T
(k)
1 . Note that the outputs of the gadgets

are implemented as OR of ANDs of input wires and their NOTs. It is important that
the gadgets do not have NOT gates except at the input side (to maintain the invariant
that the encoding 11 does not appear in the circuit).

Private Circuits II: Keeping Secrets in Tamperable Circuits 319

Fig. 2. The error-cascade phase and the truth table of the cascade gadget used by T
(k)
1

The detectable error referred to above is the invalid encoding 00 in a pair of
wires corresponding to a single wire in C′. Recall that the only valid encodings
are 01 and 10. We shall denote the encoding 00 by the symbolic value ⊥. (We will
show that the transformed circuit is so designed that the other invalid encoding,
namely 11, will never occur in the circuit, even after any number of reset attacks.)
As sketched in Figure 2, the error cascading phase is built using small cascade
gadgets which take two encoded inputs and convert them both to ⊥ if either of
them is ⊥. (These gadgets are implemented similar to the gadgets in Figure 1,
with NOT gates only at the input side.) It is easy to see that if any of the
input pairs has the value ⊥, then after the cascade phase all output pairs will
encode ⊥.

All the wire pairs going to the output or back to the memory are passed
through the cascade phase. In addition, for simplicity, we shall have all the wire
pairs coming from the input and from the memory also go into the cascade phase.
This will ensure that if a ⊥ value appears anywhere in the memory or input,
the entire memory is erased in the next round (even if the wire pair where ⊥
originally appears does not influence the output or memory otherwise).

Note that in Figure 2 the inputs to the cascade stage are ordered top to
bottom. The wire pairs corresponding to the output signals are fed into the
cascade phase first and the other signals are fed into the cascade phase below
them. This will ensure that even if a ⊥ is introduced within the cascade phase,
but in one of the wires going into the memory, the entire output is erased in
the same clock cycle (and the memory contents will get erased in the next clock
cycle). We shall use the convention that the wires within the cascade phase,
except those corresponding to the output wires, are considered as part of the
core of the circuit.

The Simulator for T
(k)

1
. The universal simulator S1 is constructed as follows:

S1 runs A1, simulating to it C1[D1]. This means A1 can request a particular
input value for C1, and expect to be provided the output from C1 for that input.
Further A1 can request that a particular reset attack be applied to C1. The

320 Y. Ishai et al.

output of the simulated C1 that S1 provides to A1 should be indistinguishable
from what A1 would have seen had it been actually working with C1[D1]. How-
ever, S1 has to do this with only black-box access to (the functionally equivalent)
C[D].

S1 internally runs the simulator Sisw corresponding to the transformation T
(k)
isw

which takes C to C′. It gives Sisw blackbox access to C, which can then simulate
(non-blackbox, probing) access to C′. So S1 can work as if it had (probing) access
to C′. It then requests Sisw to set the inputs to (the simulated) C′ to the same
as the input A1 requests for C1. It provides A1 with the output values of the
simulated C1 which are the same as that given by Sisw. We need to describe how
the reset attacks launched by A1 on C1 are translated by S1 to probing attacks
on C′.

Recall that C1 is composed of an encoding of C′, and a few extra phases
(input encoding, error cascading and output decoding phases). S1 maintains a
flag called destroyed which is initially set to false. While the flag remains set
to false, at each clock cycle, S1 receives an attack pattern (i.e., a collection of
reset attacks) from A1 and applies it to the simulated circuit as follows.

1. For attacked wires that belong to the core of the circuit: S1 will determine a
set of indices I ⊂ [k], as follows. I is initialized to the empty set. Then each
attacked wire is considered as below:
(a) If the attacked wire is outside of the gadgets in Figure 1: Then the wire

is one of a wire pair in C1 which encodes a single a wire in C′. Recall
that all the wires in C′ are indexed by values in [k]. S1 will add the index
of the wire corresponding to the wire that is reset, to I. (If the wire has
two index values, both are added to I.)4

(b) If the attacked wire is inside a gadget in Figure 1: The gadget corresponds
to a gate (AND, XOR or NOT) in C′. For each input wire to this gate in
C′, S1 checks if that wire has an influence on whether the attack creates
a ⊥ value or not. A wire is said to have such an influence if there are two
settings of the values of the input to the gate such that in one a ⊥ value
is created and in the other it is not. S1 adds the indices of the wires with
influence to I.

Once I is determined by considering all attacks in the core of the circuit,
S1 (acting as the adversary A′) will make probes into the circuit simulated
by Sisw on all wires with indices in I. From the values obtained from this
probe, it can check if the reset attacks produce a ⊥. If they do, then S1 will
set the flag destroyed.
Note that Sisw allows I to have at most k − 1 indices. If I is of size k (i.e.,
I = [k]), then S1 sets the flag destroyed (without querying Sisw).

2. For attacked wires that belong to the encoding phase: Such a wire is an input
to an encoding gate (the outputs from an encoding gate are considered part

4 C′ has input encoding and output decoding phases. Recall that the wires in these
phases are not indexed by values in [k] and the Manchester encodings of these wires
are not considered to belong to the core of the transformed circuit.

Private Circuits II: Keeping Secrets in Tamperable Circuits 321

of the core of the circuit), or equivalently an input to the simulated C1. In
this case the corresponding input to C′ is set to zero.

3. For attacked wires that belong to the cascade phase: The cascade phase con-
sists of pairs of wire which correspond to wires going to the output phase in
C′. (The wires in the cascade phase that correspond to the wires going to
the memory are considered part of the core of the circuit). S1 obtains the
values on these from the simulated C1 and determines how the attack affects
the output from the cascade phase.

4. For attacked wires is in the decode phase: A reset attack on the second wire
in a pair does not have any influence on the output while a reset attack on
the first wire causes the corresponding output to be reset.

Once the flag destroyed is set S1 simply produces the all zero output in every
round.

The Proof. We start by observing what reset attacks can do in C1. An invariant
maintained in C1 is that no wire pair carries the value 11: this is true for the data
in the memory and also for the inputs coming out of the encoding stage; a reset
attack on a wire which is 00, 10 or 01 cannot generate 11; further each gadget
ensures that the invariant is maintained from inputs to outputs even when the
internal wires of the gadget are attacked. (This follows from an analysis of the
gadgets of the form of “OR of ANDs of signals and their NOTs.”) Not having
11 in the wires has the following consequences:

– Impossibility of changing a signal to a non-⊥ value: Reset attacks can either
leave a wire pair unchanged, or convert it to a ⊥, but not generate a new
non-⊥ value.

– ⊥ Propagation and Self-destruction: The gadgets shown in Figure 1 are “⊥-
propagating.” That is, if any input wire pair encodes ⊥ the output will be
⊥ too. Thus any ⊥ introduced by an attack in the core of the circuit will
reach the cascade stage, which will ensure that even a single ⊥ will result in
the entire memory being erased and the outputs zeroed out.
Thus, the output of the circuit will either be correct (or contain resets intro-
duced after the cascade stage), or will be all zeroes. If a ⊥ is introduced it
will result in the entire memory being erased as well. If the ⊥ is introduced
after the cascade phase, this will happen in the next round.

Now we turn to the simulation by S1. S1 simply uses Sisw to get the outputs
and also to check if a ⊥ is created by the resets.

First, suppose that the set of indices I determined by S1 is of size at most
k − 1 in each round. In this case we observe the simulation by S1 is perfect.
This is because, in the simulation, C1 as simulated by S1 can be considered to
encode the values in C′ as simulated by Sisw. Since in this case for each reset
Sisw allows all the indices to be queried, S1 can precisely determine if a ⊥ value
is created or not in the core of C1. When ⊥ is not created, the output is simply
the correct output (with any modifications caused by reset attacks in or after
the cascade phase). When ⊥ is created in the core, the output will be all zeroes

322 Y. Ishai et al.

in all subsequent clock cycles. Note that if a ⊥ is created in the cascade phase
in a signal going to the memory (which is considered part of the core), though
the output is zeroed out in the same clock cycle, the memory may be zeroed out
only in the next clock cycle.

Now we consider the case when I = [k] in some round. S1 sets the flag
destroyed but it is possible that in C1 corresponding to C′ as simulated by Sisw,
⊥ is not produced. However the probability of the latter happening is negligible
in k. To see this, note that in building I, whenever a reset attack causes new
indices to be added to I, there is a constant probability (independent of values of
wires of indices already added to I) that a ⊥ is produced by that attack. Further
for each attack at most four indices are added (at most two inputs to a gate,
each with at most two indices). Thus having added indices for Ω(k) attacks, the
probability that none of the attacks produce a ⊥ is exponentially small in k.

Thus in either case the simulation is good.

4.2 Proof of Lemma 3

The transformation T
(k)
2 removes the “encoded randomness gates” from a circuit.

If (C2, D2) = T
(k)
2 (C1, D1) we need to show that an adversary A cannot gain

any advantage in Experiment C in Lemma 3 than it will when employed by a
simulator S2 in Experiment B.

The plan is to replace the encoded randomness gates with some sort of a
pseudorandom generator (PRG) circuit, with an initial seed built into the mem-
ory. However, since the PRG circuit itself is open to attack from the adversary, it
needs to be somehow protected. First we introduce a transformation which gives
a weak protection. Then we show how multiple PRG units protected by such a
transformation can be put together to obtain a PRG implementation which will
also be secure against the reset attacks.

Lemma 4. Weak Protection Against Reset Attacks: There is a polyno-
mial time (in input size and security parameter k) transformation T

(k)
weak(CP , DP)

�→ (CQ, DQ), such that the following properties hold for all CP and DP :

– CQ[DQ] is functionally equivalent to CP [DP], except that the output of CQ

is Manchester encoded.
– Consider any adversary A ∈ Areset interacting with CQ[DQ]. If it resets

even one wire inside CQ (not an input or output wire), with probability at
least q (for some constant q > 0), at least one of the output signals of CQ

becomes ⊥.

T
(k)
weak differs from T

(k)
1 in that the resulting circuit (CQ, above) does not contain

any encoded randomness gates. It is just a conventional deterministic circuit. On
the other hand, the guarantee given by the transformation is much weaker: it
guarantees introducing a ⊥ into the output only with some positive probability.

The basic idea behind the construction is to randomize all the signals in the
circuit, so that a reset attack has a constant probability of causing a ⊥. The
construction is essentially the same as T

(2)
1 (i.e., with security parameter 2), but

Private Circuits II: Keeping Secrets in Tamperable Circuits 323

without using randomness gates. Instead we use built-in randomness (i.e., it is
stored in the memory). This will be sufficient to guarantee that the first time
the circuit is attacked, there is a constant probability of producing a ⊥. Also for
this transformation we do not need the cascade stage and the output decoding
stage of T

(2)
1 .

Transformation T
(k)
2 . Now we are ready to describe T

(k)
2 . Suppose the in-

put circuit requires n encoded random bits. Let CP be a PRG circuit, which
at every round, outputs n freshly generated pseudorandom bits, as well as re-
freshes its seed (kept in the memory). Consider k such circuits CP [Di

P], Di
P

being a uniformly and independently drawn seed for the PRG. Let (CQ, Di
Q) =

T
(k)
weak(CP , Di

P). T
(k)
2 replaces the collection of all n encoded randomness gates

by the following: the outputs of CQ[Di
Q] (i = 1, . . . , k), are XOR-ed together

using k − 1 encoded XOR gadgets (from Figure 1).
The proof that the above transformation indeed satisfies the properties re-

quired in Lemma 3 is included in the full version of this paper. The proof depends
on the fact that as long as the adversary has attacked fewer than k of CQ[Di

Q]
in C2, a careful simulation can reproduce the effect of this attack in C1. On
the other hand, if the adversary attacks all k of CQ[Di

Q], then due to constant
probability of each attack resulting in a ⊥, except with negligible probability at
least one ⊥ value will indeed be generated which will propagate to the cascade
stage and the output of the circuit (and hence can be easily simulated).

5 General Attacks on Wires

Next we turn to more general attacks in which the adversary can set the values
in the wires to 1 or 0, as well as toggle the values in the wires. We shall impose a
bound on the number of wires it can attack at each cycle, but allow the attacks
to be persistent. That is, the wires set or reset in any one cycle are stuck at that
value until explicitly released by the adversary; similarly toggled wires retain
the toggling fault until released. There is no limit on the number of wires the
adversary can release at any cycle.

Theorem 2. There is a polynomial time (in input size and security parameter
k) functionality preserving transformation T

(k)
full(C, D) �→ (C∗, D∗), such that

∀C, ∃S0 (a universal simulator), such that ∀D, ∀A ∈ A
(t)
tamper, we have SA

0 ∈
Aideal and the following two experiments output 1 with almost the same proba-
bility (the difference in probabilities being negligible in the security parameter k):

– Experiment A: SA
0 outputs a bit after interacting with C.

– Experiment B: A outputs a bit after interacting with C∗.

5.1 Proof Sketch of Theorem 2

The construction of T
(k)
full, the simulation and proof of simulation roughly follow

that in the reset-only case. The construction first applies the transformation

324 Y. Ishai et al.

T
(k)
isw , then changes the circuit to use some sort of encoding for each bit, adds

an error cascade stage, and finally replaces all encoded randomness gates by a
psuedo-randomness generator (PRG) circuit.

In the construction for reset attacks, it was crucial that the adversary cannot
set a wire to 1, thereby being unable to change an encoded wire pair to anything
but ⊥. Here, however, the adversary is allowed to set as well as reset the wires.
Nevertheless, using the fact that it can launch only t attacks per cycle, and using
a longer encoding (instead of using a pair of wires) to encode each bit, we can
ensure that if the adversary attacks any encoding, it will either leave it unchanged
or change it to an invalid encoding. Below we sketch the details of this.

Encoding. Each bit is encoded by 2kt wires, where k is the security parameter
and t is the bound on the number of attacks that the adversary can make per
cycle. 0 is encoded as 02kt and 1 as 12kt. All other values are invalid (⊥); a special
value ⊥∗ is defined as 0kt1kt.

Transformation. First T
(k)
isw is applied to get a circuit using randomness gates.

Then the circuit is modified to use the encoded values. The core of the circuit
is derived by replacing each wire by 2kt wires, and each of the atomic gates
(AND, XOR and NOT) by gates shown in Figure 3. Input encoding and output
decoding are straightforward. The error cascading stage is the same as shown
in Figure 2, but using the cascade gadget from Figure 3. In implementing these
gadgets, each bit of the output is generated by a circuit of the form OR of ANDs

0
2kt

 0
2kt

 0
2kt

0
2kt

 1
2kt

 0
2kt

1
2kt

 0
2kt

 0
2kt

1
2kt

 1
2kt

 1
2kt

 * * 0
kt

1
kt

AND Gadget

0
2kt

 0
2kt

 0
2kt

0
2kt

 1
2kt

 1
2kt

1
2kt

 0
2kt

 1
2kt

1
2kt

 1
2kt

 0
2kt

 * * 0
kt

1
kt

XOR Gadget

0
2kt

 1
2kt

1
2kt

 0
2kt

 * 0
kt

1
kt

NOT Gadget

0
2kt

 0
2kt

 0
2kt

0
2kt

0
2kt

 1
2kt

 0
2kt

1
2kt

1
2kt

 0
2kt

 1
2kt

 0
2kt

1
2kt

 1
2kt

 1
2kt

 1
2kt

 * * 0
kt

1
kt

 0
kt

1
kt

Cascade Gadget

Fig. 3. Truthtables for the gadgets used by T
(k)
full. The gadgets can be implemented

using atomic gates: AND, OR and NOT gates. The AND gates used have 4kt input
wires and the NOT gates are reversible (see below).

Private Circuits II: Keeping Secrets in Tamperable Circuits 325

of input wires or their NOTs, or NOT of such a circuit. The AND gates involved
have 4kt input wires. (These AND gates are the only components in this work
which are not of constant size.) Note that to keep the circuit size polynomial
it is important to allow the output to be of the form NOT of OR of ANDs, as
well as OR of ANDs. In contrast, in the reset-only case it was important that
the gadgets did not have NOT gates except at the input side. However, with
general faults such a restriction is not helpful, nor used. The NOT gates used
are reversible, so that faults on the output side of a NOT gate propagate to the
input side. (This has the effect that NOT gates appearing immediately before
the input to the AND gates can be considered part of the atomic AND gates.)

Finally, the encoded randomness gates can be replaced by a PRG circuit
similar to that in Section 4.2.

Simulation. We sketch the simulator S1 (analogous to the simulator described
in Section 4.1) for the part of the transformation before replacing the randomness
gates by the PRG circuit. (The details of the simulation for the latter part can be
found in the full version.) As in Section 4.1, S1 will internally run the simulator
Sisw corresponding to the transformation T

(k)
isw and translates attacks on C1 to

probing attacks on C′. However now the attacks are not just reset attacks but
set, reset or toggle attacks. Further, each wire in C′ is represented by a bundle of
2kt wires in C1 (instead of just a pair of wires). S1 maintains the flag destroyed
and calculates the set of indices I as before. The one additional action now is
that at any clock cycle if kt or more wires in any bundle are subject to attack,
then the flag destroyed is set. Here, attacking a wire inside any of the gadgets
of Figure 3 (i.e., output of any of the AND or OR gates inside a gadget) is
considered as an attack on the unique wire in the output of the gadget affected
by the attack. Another difference is that, even after the flag destroyed is set,
the simulator here continues to output non-zero values, but these values can be
determined just from the attacks (in the cascade and output phases).

To analyze this new simulator we follow the same arguments as in Section 4.1,
but with the following modifications.

– Impossibility of changing a signal to a non-⊥ value: We claim that as long
as the flag destroyed is not set, an attack can either leave the values in a
bundle corresponding to a signal in C′ unchanged or convert it to a ⊥. To
see this note that to produce a new non-⊥ signal the adversary must have
attacked at least kt wires in a bundle. (These attacks may be direct attacks
on the wires or attacks inside a gadget from which the wire emanates.)
This is because the minimum distance between the signals that occur in an
unattacked circuit (namely 02kt, 12kt and ⊥∗ = 0kt1kt), and each valid signal
is kt. But when the adversary attacks kt or more wires in a single bundle
(directly or by attacking a wire inside a gadget), then the simulator sets the
flag destroyed.

– ⊥ Propagation and Self-destruction: If a ⊥ (an encoding which is not 02kt

or 12kt) is produced in any input signal to (the gadget corresponding to) a
gate, it results in a ⊥∗ being generated by the gate. Since ⊥∗ is far from a
valid encoding, the adversary cannot change it to a valid signal in the same

326 Y. Ishai et al.

cycle. So the ⊥ value will reach the cascade stage, which ensures that all
information in the circuit is lost. (If the ⊥ is introduced after the cascade
phase, this will happen in the next round.)

Now to prove that the simulation is good, first we observe that the probability
that destroyed is set due to at least kt wires in a bundle being under attack
is negligible. This is because at any cycle, the adversary can set/reset at most
t wires, and so it will need at least k cycles to attack kt wires in a bundle. But
during these cycles if the signal value in that bundle changes, then a ⊥ is nec-
essarily produced (resulting in the flag destroyed being set). Since each signal
value is randomized by T

(k)
isw (Lemma 1), except with probability 2−Ω(k) this will

indeed happen. The argument extends to the case when some of the attacks are
on wires inside the gadgets as well, by observing that all the internal wires have
influence on the output of the gadget, and the randomization ensures that with
constant probability the input signals to the gadget will take values causing the
attack to influence the output wire of the gadget.Here by internal wires in a
gadget we refer to the outputs of the AND gates used in the gadgets; the only
other wires inside a gadget are all connected to wires external to the gadget
either directly or through a reversible NOT gate, and as such are accounted for
by attacks on the wires external to the gadget. (This is where we require that
the NOT gates be reversible; attacks on either side of a NOT gate propagates
to the other side as well.)

Given this, the rest of the analysis of this simulator follows that in Section 5.1.

References

1. R. Anderson, M. Kuhn, “Tamper Resistance—A Cautionary Note,” USENIX E-
Commerce Workshop, USENIX Press, 1996, pp.1–11.

2. R. Anderson, M. Kuhn, “Soft Tempest: Hidden Data Transmission Using Electro-
magnetic Emanations,” Proc. 2nd Workshop on Information Hiding, Springer, 1998.

3. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K.
Yang. On the (im)possibility of obfuscating programs. CRYPTO 2001, 2001.

4. M. Ben-Or, S. Goldwasser, and A. Widgerson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proc. of 20th STOC, 1988.

5. E. Biham and A. Shamir, “Differential fault analysis of secret key cryptosystems,”
CRYPTO ’97.

6. D. Boneh, R.A. Demillo, R.J. Lipton, “On the Importance of Checking Crypto-
graphic Protocols for Faults,” EUROCRYPT’97, Springer-Verlag, 1997, pp.37–51.

7. S. Chari, C.S. Jutla, J.R. Rao, P. Rohatgi, “Towards Sound Approaches to Coun-
teract Power-Analysis Attacks,” CRYPTO’99, Springer-Verlag, 1999, pp.398–412.

8. D. Chaum, C. Crepeau, and I. Damg̊ard. Multiparty unconditional secure proto-
cols. In Proc. of 20th STOC, 1988.

9. J.-S. Coron, L. Goubin, “On Boolean and Arithmetic Masking against Differential
Power Analysis,” CHES’00, Springer-Verlag, pp.231–237.

10. J. Daemen, V. Rijmen, “Resistance Against Implementation Attacks: A Compar-
ative Study of the AES Proposals,” AES’99, Mar. 1999.

11. K. Gandolfi, C. Mourtel, F. Olivier, “Electromagnetic Analysis: Concrete Results,”
CHES’01, LNCS 2162, Springer-Verlag, 2001.

Private Circuits II: Keeping Secrets in Tamperable Circuits 327

12. R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin. Algorithmic
Tamper-Proof (ATP) Security: Theoretical Foundations for Security against Hard-
ware Tampering. Proceedings of Theory of Cryptography Conference, 2004.

13. O. Goldreich. Foundations of Cryptography: Basic Applications. Cambridge Uni-
versity Press, 2004.

14. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game (extended
abstract). In Proc. of 19th STOC, 1987.

15. L. Goubin, J. Patarin, “DES and Differential Power Analysis—The Duplication
Method,” CHES’99, Springer-Verlag, 1999, pp.158–172.

16. Y. Ishai, A. Sahai, and D. Wagner, “Private Circuits: Protecting Hardware against
Probing Attacks,” Proceedings of Crypto ’03, pages 462-479, 2003.

17. D. Kahn, The Codebreakers, The MacMillan Company, 1967.
18. J. Kelsey, B. Schneier, D. Wagner, “Side Channel Cryptanalysis of Product Ci-

phers,” ESORICS’98, LNCS 1485, Springer-Verlag, 1998.
19. P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and

Other Systems,” CRYPTO’96, Springer-Verlag, 1996, pp.104–113.
20. P. Kocher, J. Jaffe, B. Jun, “Differential Power Analysis,” CRYPTO’99, Springer-

Verlag, 1999, pp.388–397.
21. T.S. Messerges, “Securing the AES Finalists Against Power Analysis Attacks,”

FSE’00, Springer-Verlag, 2000.
22. S. Micali and L. Reyzin. Physically Observable Cryptography. In Proc. of TCC

’04, pages 278-286, 2004.
23. R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks (Extended

Abstract). In Proc. of PODC ’91, pages 51-59, 1991.
24. D. Page, “Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel,”

Tech. report CSTR-02-003, Computer Science Dept., Univ. of Bristol, June 2002.
25. B. Pfitzmann, M. Schunter and M. Waidner, “Secure Reactive Systems”, IBM

Technical report RZ 3206 (93252), May 2000.
26. N. Pippenger, “On Networks of Noisy Gates,” in Proc. of FOCS ’85, pages 30-38.
27. J.-J. Quisquater, D. Samyde, “Eddy current for Magnetic Analysis with Active

Sensor,” Esmart 2002, Sept. 2002.
28. J.-J. Quisquater, D. Samyde, “ElectroMagnetic Analysis (EMA): Measures and

Counter-Measures for Smart Cards,” Esmart 2001, LNCS 2140, Springer-Verlag,
2001.

29. J.R. Rao, P. Rohatgi, “EMpowering Side-Channel Attacks,” IACR ePrint 2001/037.
30. US Air Force, Air Force Systems Security Memorandum 7011—Emission Security

Countermeasures Review, May 1, 1998.
31. W. van Eck, “Electromagnetic Radiation from Video Display Units: An Eavesdrop-

ping Risk,” Computers & Security, v.4, 1985, pp.269–286.
32. D. Wright, Spycatcher, Viking Penguin Inc., 1987.
33. S.G. Younis and T. F. Knight, Jr. Asymptotically Zero Energy Split-Level Charge

Recovery Logic. Proceedings of 1994 International Workshop on Low Power De-
sign, Napa, CA, 1994.

Composition Implies Adaptive Security in
Minicrypt

Krzysztof Pietrzak�

Département d’informatique, Ecole Normale Supérieure, Paris, France
pietrzak@di.ens.fr

Abstract. To prove that a secure key-agreement protocol exists one
must at least show P �= NP . Moreover any proof that the sequential
composition of two non-adaptively secure pseudorandom functions is se-
cure against at least two adaptive queries must falsify the decisional
Diffie-Hellman assumption, a standard assumption from public-key cryp-
tography. Hence proving any of this two seemingly unrelated statements
would require a significant breakthrough. We show that at least one of
the two statements is true.

To our knowledge this gives the first positive cryptographic result
(namely that composition implies some weak adaptive security) which
holds in Minicrypt, but not in Cryptomania, i.e. under the assumption
that one-way functions exist, but public-key cryptography does not.

1 Introduction

A pseudorandom function (PRF) is a function which cannot be distinguished
from a uniformly random function by any efficient adversary. One can give dif-
ferent security definitions for PRFs depending on how the attacker can access
the function: a non-adaptive adversary must choose all his queries to the func-
tion at once, whereas a (more powerful) adaptive adversary must only decide on
the i’th query after receiving the i − 1’th output. As a generalisation we define
k-adaptive adversaries which can choose k blocks of queries to be made, where
the k’th block must be chosen at once but only after receiving the outputs to
the k−1’th block (in particular 1-adaptive means non-adaptive, and ∞-adaptive
means adaptive). Consider the following two statements:

Kk: There exists a secure k-pass key-agreement protocol.
Ck: The sequential composition of two (k − 1)-adaptively secure PRFs is k-

adaptively secure.

The main result of this paper is that either composition of PRFs always increases
the security in the sense that the cascade is k-adaptive secure whenever the
components are k − 1 secure OR that key agreement exists.
� Most of this work was done while the author was a PhD student at ETH where he was

supported by the Swiss National Science Foundation, project No. 200020-103847/1.
Part of this work is supported by the Commission of the European Communities
through the IST program under contract IST-2002-507932 ECRYPT.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 328–338, 2006.
c© International Association for Cryptologic Research 2006

Composition Implies Adaptive Security in Minicrypt 329

Theorem 1. For any k ≥ 2: Ck ∨ K2k−1

This theorem has a nice interpretation in terms of Impagliazzo’s five possible
worlds as described in the survey paper “A Personal View of Average-Case Com-
plexity” [8]. Here “possible world” means that with our current knowledge we
cannot rule out it as being reality. As each world does exists relative to an ora-
cle, showing equivalence of two worlds would require non-relativizing techniques,
and in the ten years that passed since this survey none has been resolved.1 This
five worlds are Algorithmica (where P = NP), Heuristica (NP �= P but NP is
tractable on average), Pessiland (NP is hard on average but one-way functions
do not exist), Minicrypt (one-way functions exist) and Cryptomania (Public-key
cryptography exists, this is probably the real world). In this view, the theorem
states that for any k ≥ 2 the statement Ck holds in Minicrypt but not in Cryp-
tomania. As the naming suggests, Cryptomania is cryptographers paradise, but
our result somewhat challenges this viewpoint, as cryptographers interested only
in symmetric cryptography might well prefer to live in Minicrypt rather than in
Cryptomania, as some results (in particular Ck) only can be found there.

But let us stress that there are known (black-box) constructions of adaptively
secure PRFs from non-adaptively secure PRFs [4], but these constructions are
inefficient as they need a linear (in the security parameter) number of calls to the
underlying primitive on each invocation. Thus we do not show that adaptively
secure PRF exists in Minicrypt (as this is known), but rather that here adap-
tive security can be achieved by probably most straight forward and efficient
construction: cascading two functions.

We prove Theorem 1 by constructing a 2k − 1-pass key-agreement proto-
col from any pseudorandom functions which provides a counterexample for Ck,
i.e. from any (k − 1)-adaptively secure pseudorandom functions F(·) and G(·)
where there exists an efficient k-adaptive D which can distinguish G(F(·)) from a
random function.

There is a gap between what is generally considered a successful distinguisher
(or any other kind of an adversary) and what one expects from a protocol:
a system is usually considered broken even if only a non-uniform advantage
exists, whereas a protocol should be uniform and achieve its task with over-
whelming2 probability to be considered useful. The key-agreement protocol we
construct uses D as a black-box, and only if D is uniform and has noticeable ad-
vantage in distinguishing G(F(·)) from random, we will get a useful (as described
above) key-agreement protocol. But if D in non-uniform, also the key-agreement
protocol will be non-uniform. Furthermore if D has only non-negligible (but
not noticeable) advantage, then our key-agreement protocol will only work (i.e.
have overwhelming success probability) for infinitely many values of the security
parameter (and not as usually for all).

1 But several new worlds, in particular between Minicrypt and Cryptomania [3], have
been added. Recently Harnik and Naor [5] proposed an interesting approach to show
Minicrypt=Cryptomania. Wee investigates Pessiland in [17]. A classical result due to
Rudich [15] oracle separates Kk from Kk+1 for every k.

2 τ (·) is overwhelming if 1 − τ (·) is negligible.

330 K. Pietrzak

1.1 What Is Known?

It is known that under the decisional Diffie-Hellman (DDH) assumption two-pass
key-agreement (i.e. public-key encryption) exists [1, 2], and in [13] it is shown
that under the same assumption ¬C2 holds, i.e. that composition does not imply
adaptive security.3 Thus [13] shows a negative result for private-key systems
under a standard assumption from public-key cryptography. By Theorem 1 this
is not just an artificial property of the counterexample given in [13], but in fact
any falsification of C2 implies (and thus must either assume or unconditionally
prove) the existence of the central public-key primitive key-agreement.

Interestingly the equivalent of C2 in the information theoretic setting is true:
the cascade of two functions, each having security ε against non-adaptive (com-
putationally unbounded) distinguishers making at most q queries, has security
2ε against any adaptive distinguisher making q queries [11]. Therefore the rea-
son why composition does imply adaptive security in the information-theoretic
but probably not in the computational setting is closely related to the fact
that public-key cryptography cannot exist in the information theoretic setting
[16, 10] but is believed to exist in the real world [1]. We’ll muse further on the
implications of Theorem 1 in Section 4.

2 Basic Definitions

Throughout we denote by n ∈ N a security parameter. An algorithm is efficient if
it can be implemented by a probabilistic Turing machine whose expected running
time is polynomial in the input length (which for us will always mean polynomial
in n). We use a SANS-SERIF font for efficient entities and a CALLIGRAPHIC
font for idealised systems like uniform random functions.

Negligible. A function μ : N → [0, 1] is negligible if for any c > 0 there is an
n0 such that μ(n) ≤ 1/nc for all n ≥ n0. And contrarily μ is non-negligible if for
any c > 0 we have μ(n) ≥ 1/nc for infinitely many n.

Noticeable. A function φ : N → [0, 1] is noticeable if for some c > 0 there is
an n0 such that φ(n) ≥ 1/nc for all n ≥ n0.

Note that non-negligible is not the same as noticeable, for example μ(n) def=
n mod 2 is non-negligible but not noticeable.

Unless stated otherwise, all characters that appear below are probabilistic
efficient Turing machines.

Bit-Agreement. Bit-agreement is a protocol between two efficient parties,
let’s call them Amélie and Benôıt . They get as a common input the security
3 In [13] a F(·) and G(·) are constructed which are non-adaptively secure under the

DDH assumption, but where three (and not two as required for ¬C2) adaptive queries
are enough to learn the whole key when querying G(F(·)). But after two adaptive
queries one already learns the key of G and thus can distinguish G(F(·)) from random,
and this is all we need to get ¬C2. Previous to [13] is was already known that there
is no black-box proof for C2 as Myers [12] has constructed an oracle relative to
which ¬C2.

Composition Implies Adaptive Security in Minicrypt 331

parameter n in unary (denoted 1n) and can communicate over an authentic
channel. Finally Amélie and Benôıt output a bit bA and bB respectively. The
protocol has correlation ε if for all n

Pr[bA = bB] ≥ 1 + ε(n)
2

and the protocol is δ-secure if for any efficient adversary E which can observe
the whole communication C we have for all n

Pr[E(1n, C) → bA] ≤ 1 − δ(n)
2

Key-Agreement. If ε(·) and δ(·) are overwhelming then such a protocol
achieves key-agreement. Any protocol which achieves bit-agreement with a no-
ticeable correlation ε(·) and overwhelming security δ(·) can be turned into a
key-agreement protocol by sequential composition, and using parallel repetition
this can even be done without increasing the number of rounds [6, 7].

If ε(·) is only non-negligible (i.e. for any c > 0 : ε(n) ≥ 1/nc for all n ∈ Sc ⊂ Z

where |Sc| is infinite), then also the key-agreement protocol will only achieve
correctness for security parameters n ∈ Sc (one can choose any constant c here,
the running time of the key-agreement protocol will then basically grows as n2c).

Distinguisher. By a k-adaptive distinguisher we denote an efficient oracle
algorithm which at the end of the computation outputs a decision bit. He may
query the oracle an arbitrary number of times, but the queries must come in
k blocks where he must settle for a whole block before reading any outputs on
queries from that block.

This definition is not standard, but note that a 1-adaptive distinguisher is
just a standard non-adaptive distinguisher and a ∞-adaptive distinguisher is a
standard adaptive distinguisher.

As we only consider stateless systems (which always give the same answer on
the same query) w.l.o.g we always can and will assume that a distinguisher never
makes the same query twice. Moreover we require the distinguishers themselves to
be stateless. This can be done w.l.o.g. if we always provide the previous outputs
of the system queried as an input to the distinguisher when he must come up
with the next query or the final decision bit (note that we need not to provide
the previous inputs to the system as the distinguisher can compute this inputs
himself).

Pseudorandom Function/Permutation. A pseudorandom function (PRF)
is a pair of efficient algorithms F and KeyGenF where for any n ∈ N we have
KeyGenF : 1n → Kn and F : Kn × {0, 1}n → {0, 1}n. Let Fk(·) def= F(k, ·). Let
Rn : {0, 1}n → {0, 1}n be a uniform random function, then F is 	-adaptive secure
if for any efficient 	-adaptive distinguisher D

|Pr[DFk(·)(1n) → 1|k ← KeyGenF(1n)] − Pr[DRn(·)(1n) → 1]| = τ(n).

for some negligible τ . Pseudorandom permutations (PRP) are defined similarly,
but here one additionally requires that for any k, Fk(·) is a permutation.

332 K. Pietrzak

Sequential Composition. For two functions F and G we denote by G◦F their
sequential composition.

G◦F(x) def= G(F(x)).

For a set S we denote by x
$← S that x is assigned a value from S uniformly at

random.

3 The Reduction

In this section we prove the statement ¬Ck ⇒ K2k−1 of Theorem 1. Actually, we
only show that ¬Ck implies a (2k−1)-pass bitagreement protocol with noticeable
correlation and overwhelming security, but as said in the previous section, this
is equivalent to K2k−1.

For the clarity of exposition we prove only the special case k = 2 and we
assume that ¬C2 holds in a strong sense, namely that the cascade considered
can be distinguished by an adversary which makes only two adaptive queries,
this is a special case of a general 2-adaptive distinguisher which can make two
blocks of arbitrary many queries (where he must settle for whole blocks at once).
At the end of this section we will show how the reduction must be extended to
cover the general case (and thus to prove Theorem 1).

Let F, KeyGenF and G, KeyGenG be two pseudorandom functions, each secure
against non-adaptive distinguishers, but which can be distinguished with two
adaptive queries. This means that there exists an efficient D and a non-negligible
φ such that

Pr[b2 = 1] − Pr[b1 = 1] ≥ φ(n) (1)

where b1 and b2 are bits whose distribution is defined by Games 1 and 2 below
where D either queries the sequential composition (Game 1) or a random function
(Game 2) with two adaptive queries.

Game 1
k1 ← KeyGenF(1n)
k2 ← KeyGenG(1n)
x1 ← D(1n)
y1 ← Gk2 ◦Fk1(x1)
x2 ← D(y1)
y2 ← Gk2 ◦Fk1(x2)
b1 ← D(y1, y2)

Game 2

x1 ← D(1n)
y1 ← Rn(x1)
x2 ← D(y1)
y2 ← Rn(x2)
b2 ← D(y1, y2)

Game 3

k ← KeyGenG(1n)

z1
$← {0, 1}n

y1 ← Gk(z1)

z2
$← {0, 1}n

y2 ← Gk(z2)
b3 ← D(y1, y2)

In Game 2 the y1, y2 are just uniform random values whereas in Game 3 the
y1, y2 are computed by G on random inputs. From the non-adaptive security of
G it also follows that for some negligible δ23

|Pr[b2 = 1] − Pr[b3 = 1]| ≤ δ23(n). (2)

Composition Implies Adaptive Security in Minicrypt 333

Protocol BitAgreement(n)

Amélie Benôıt

bA
$← {0, 1}

kA ← KeyGenF(1n) kB ← KeyGenG(1n)

x1 ← D(1n)

if bA = 0 then z1 ← FkA(x1)

otherwise z1
$← {0, 1}n z1 → y1 ← GkB (z1)

← y1

x2 ← D(y1)

if bA = 0 then z2 ← FkA(x2)

otherwise z2
$← {0, 1}n z2 → y2 ← GkB (z2)

bB ← D(y1, y2)

Fig. 1. 3-pass BitAgreement protocol from a 2-adaptive D

With such an F, G and D we can construct a bit-agreement protocol with non-
negligible correlation and overwhelming security (and thus get key-agreement)
as shown in Figure 1. If D is randomised we need Amélie and Benôıt to use the
same random coins for D in BitAgreement. Here Amélie can simply choose
the random coins initially and send them to Benôıt .

Claim 1. BitAgreement(n) has correlation φ − δ23.

Proof. Note that if bA = 0 (bA = 1) then the distribution of bB is the same as
the distribution of b1 (b3) in game 1 (game 3), now as (1) and (2) imply

Pr[b3 = 1] − Pr[b1 = 1] ≥ φ(n) − δ23(n)

we get

Pr[bA = bB] = Pr[bA = 0]Pr[bB = 0|bA = 0] + Pr[bA = 1]Pr[bB = 1|bA = 1]

=
1 − Pr[b1 = 1]

2
+

Pr[b3 = 1]
2

≥ 1 + φ(n) − δ23(n)
2

�

Claim 2. BitAgreement(n) is δ-secure for an overwhelming δ.

Proof. We must show that there is an overwhelming δ such that for all efficient D

Pr[D(z1, y1, z2) → bA] ≤ 1 − δ(n)
2

We consider six more games which all define a distribution for the values
(z1, y1, z2). The distribution of (z1, y1, z2) in game 4 and 9 is the same as in
BitAgreement(n) conditioned on bA = 0 and bA = 1 respectively.

334 K. Pietrzak

Game 4
k1 ← KeyGenF(1n)
k2 ← KeyGenG(1n)
x1 ← D(1n)
z1 ← Fk1(x1)
y1 ← Gk2(z1)
x2 ← D(y1)
z2 ← Fk1(x2)

Game 5
k1 ← KeyGenF(1n)

x1 ← D(1n)
z1 ← Fk1(x1)

y1
$← {0, 1}n

x2 ← D(y1)
z2 ← Fk1(x2)

Game 6
k1 ← KeyGenF(1n)

x1 ← D(1n)

y1
$← {0, 1}n

x2 ← D(y1)
z1 ← Fk1(x1)
z2 ← Fk1(x2)

Game 7

x1 ← D(1n)

y1
$← {0, 1}n

x2 ← D(y1)
z1 ← Rn(x1)
z2 ← Rn(x2)

Game 8

x1 ← D(1n)
z1 ← Rn(x1)

y1
$← {0, 1}n

x2 ← D(y1)
z2 ← Rn(x2)

Game 9
k2 ← KeyGenG(1n)
x1 ← D(1n)
z1 ← Rn(x1)
y1 ← Gk2(z1)
x2 ← D(y1)
z2 ← Rn(x2)

With PrGi[E] we denote the probability of the event E in game i, and δij is
defined by

|PrGi[D(z1, y1, z2) → 1] − PrGj [D(z1, y1, z2) → 1]| = δij(n)

Game 4 differs from Game 5 only by the computation of y1 which is computed
by G and random respectively. As G is non-adaptively secure (and a single query
is always non-adaptive) δ45 is negligible. For the same reason δ89 is negligible.
Game 6 differs from Game 7 only by the computation of z1 and z2 which in
Game 6 are non-adaptively computed by F and in Game 7 by R, so from F’s
non-adaptive security it follows that δ67 is also negligible. Finally δ56 and δ78
are 0 as Game 5 is equivalent to Game 6 (only the order of the commands is
changed to emphasis that in Game 5 the F is in fact queried non-adaptively)
and Game 7 is equivalent to Game 8.

Using the triangle inequality we see that δ49 ≤ ∑8
i=4 δi i+1 is negligible, and

thus δ
def= 1 − δ49 is overwhelming. We can now conclude the proof of the claim

as

Pr[D(z1, y1, z2) → bA]
= Pr[bA = 0]Pr[D(z1, y1, z2) → 0|bA = 0] +

Pr[bA = 1]Pr[D(z1, y1, z2) → 1|bA = 1]
= (1 − Pr[D(z1, y1, z2) → 1|bA = 0] + Pr[D(z1, y1, z2) → 1|bA = 1])/2
= (1 − PrG4[D(z1, y1, z2) → 1] + PrG9[D(z1, y1, z2) → 1])/2
≤ (1 + δ49)/2
= 1 − δ/2

Composition Implies Adaptive Security in Minicrypt 335

This concludes the proof of ¬Ck ⇒ K2k−1 for the case k = 2 with the addi-
tional assumption that the cascade can be broken by a distinguisher D which
makes two adaptive queries (and not a general 2-adaptive distinguisher). �

We first explain how to adapt the reduction so that if works for any 2-adaptive
distinguisher and not just for two adaptive queries. Then we show how to adapt
it so that it works for any k ≥ 2 which will then conclude the proof of Theorem 1.

Protocol BitAgreement(n)

Amélie Benôıt

bA
$← {0, 1}

kA ← KeyGenF(1n) kB ← KeyGenG(1n)

for i = 1 to k − 1 do

Xi ← D′′(Y1, . . . , Yi−1)
if bA = 0then Zi ← FkA(Xi)

otherwise Zi
$← {0, 1}n Zi → Yi ← GkB (Zi)

← Yi

od;

Xk ← D′′(Y1, . . . , Yk−1)
if bA = 0 then Zk ← FkA(Xk)

otherwise Zk
$← {0, 1}n Zk → Yk ← GkB (Zk)

bB ← D′′(Y1, . . . , Yk)

Fig. 2. (2k − 1)-pass BitAgreement protocol from a k-adaptive D′′

Reduction from 2-adaptive D′. Let D′ be any 2-adaptive distinguisher which
can distinguish Fk1 ◦Gk2 from random. From such a D′ we can construct a 3-
pass bitagreement protocol almost like from the D which made only two queries.
If q = q(n) denotes (an upper bound on) the size of the blocks requested by
D′, then just replace all occurrences of x1, x2, y1, y2, z1, z2 by appropriate q-
tuples X1, X2, Y1, Y2, Z1, Z2 in the bitagreement protocol. For example replace
x1 ← D(1n) with X1 = (x1

1, x
2
1, . . . , x

q
1) where X1 ← D′(1n), similarly replace

y1 ← Fk1 ◦Gk2(x1) by Y1 ← Fk1 ◦Gk2(X1) and so on.

Reduction from k-adaptive D′′. For any k ≥ 2, let D′′ be any k-adaptive
distinguisher for Fk1 ◦Gk2 from random. To construct a bitagreement from such
a distinguisher we can proceed similarly to the k = 2 case, only the number of
rounds must be increased as now D′′ must be fed with k and not just 2 input
blocks.

The construction of (2k−1)-pass bitagreement from a k-adaptive D′′ is shown
in Figure 2. It is straight forward (and we omit it) to adapt the Claims 1 and 2
and their proofs for this protocol.

336 K. Pietrzak

4 Discussion

Does Theorem 1 Ck ∨ K2k−1 have any practical meaning? After all, DDH is
believed to be true in the real world, so K2 is true [1] and C2 is wrong [13]. Even
if someday (2k − 1)-pass key-agreement turns out to be impossible, having Ck

instead is a cold comfort.
But one can see Ck∨K2k−1 as a positive result, even when assuming that DDH

is true: Composition of k-adaptively secure pseudorandom functions implies (k+
1)-adaptive security4, unless the pseudorandom functions themselves have some
public-key functionality in the sense that they can be turned into a key-agreement
protocol by a black-box (BB for short) reduction. Of course that was more an
intuitive argument than a result that can be actually applied. In the next section
we prove a first positive composition result for PRFs whose security can be
BB-reduced to the security of a one-way function.

4.1 Black-Box Breaks

Combining Theorem 1 with the Impagliazzo-Rudich result [9] that key-agreement
cannot be BB-reduced to one-way functions we can prove a first positive result
in the direction that composition sometimes does imply adaptive security (or
rather, that the adaptive security cannot be broken in a generic way) even in
the computational setting. Before we can state the theorem we first need some
definitions.

F(·) is an oracle PRF whose k-adaptive security can be BB-reduced to the
one-wayness of the oracle if the following is true: There exists an efficient B(·)

such that for any (not necessarily efficient) k-adaptive adversary A(·) and any f
(for simplicity we assume f is {0, 1}∗ → {0, 1}∗ and length preserving) for which∣∣∣Pr[k ← KeyGenf

F(n);AFf
k → 1] − Pr[ARn → 1]

∣∣∣
is k-negligible (note that this means that A breaks the k-adaptive pseudoran-
domness of Ff), BA,f breaks the one-wayness of f , this means that then also

Pr[x $← {0, 1}n; BA,f (f(x)) ∈ f−1(x)]

is non-negligible. This definition of BB-reduction is standard and called a fully-
BB reduction in the taxonomy from [14]. The definition of a BB-break given
below is not standard.

We say that the k-adaptive security of F(·) can be BB-broken if there exists
an efficient k-adaptive C(·) where∣∣∣Pr[k ← KeyGenf

F(n); CFf
k ,f → 1] − Pr[CRn,f → 1]

∣∣∣
is noticeable for all f ; So C can distinguish Ff from R for every f , i.e. C breaks
the the security of the construction F(.) and not some particular instantiation.
4 And in particular composition of non-adaptively secure pseudorandom functions

implies 2-adaptive security.

Composition Implies Adaptive Security in Minicrypt 337

Note that if the k-adaptive security of F(.) can be BB-broken, then it obviously
cannot be BB-reduced to the one-wayness of the oracle, but the converse is not
true in general.

Theorem 2. If the k-adaptive security of the PRFs F(·) and G(·) can be BB-
reduced to the one-wayness of the oracle, then the (k + 1)-adaptive security of
G(·)◦F(·) cannot be BB-broken.

Proof. The proof is by contradiction: assume there is (k + 1)-adaptive distin-
guisher C(·) which can distinguish Gf◦Ff from a random function with noticeable
advantage for any f . With such a C(·), Ff , Gf we can construct a key-agreement
protocol.5 The security of this protocol can be BB-reduced to the k-adaptive se-
curity of Ff and Gf whose security can again be BB-reduced to the one-wayness
of f . So we have a BB-reduction from key-agreement to one-way functions which
is not possible [9]. �

Note that the theorem does not claim that the k + 1-adaptive security of Ff◦Gf

can be BB-reduced to the one-wayness of f , but something weaker. Namely that
there is no single efficient C(·) which breaks the (k + 1)-adaptive security for
all f .

4.2 Outlook

Are there other interesting statements that one can we prove to be true only
under the assumption that public-key cryptography does not exist? It seems
unlikely that our composition result is an isolated example.

As shown in Theorem 2 given such a statement one might well be able to prove
a weaker version of it without making the (unlikely) assumption that public-
key crypto does not exist. But what does “BB-broken” as used in Theorem 2
actually mean? Can one strengthen this theorem and replace “BB-broken” with
“BB-reduced to the one-wayness of the oracle” or show that this is not possible.

Can we strengthen Theorem 1? For example can we show that key-agreement
(via a BB-reduction) exists when the composition of two (k − 2)-adaptive PRFs
secure PRFs is k-adaptive secure6? We think this is not true,7 but we believe
that Theorem 2 holds with an infinite gap, i.e. where k-adaptive is replaced by
non-adaptive and (k + 1)-adaptive by adaptive. To show this one would have to
show that there exists some statement L such that L is implied by the statement
“the composition of two non-adaptive PRFs is not adaptively secure” and where
L cannot be BB-reduced to one-way functions.

5 As shown in Section 3 for the special case k = 1 and where each of the k + 1 blocks
contained only one message.

6 This is statement Ck with an increased gap, i.e. k − 2 instead of (k − 1).
7 Because there seems to be an oracle relative to which no key-agreement exists and

cascading (k − 2)-adaptive PRFs does not give k-adaptive security. But we didn’t
check all details.

338 K. Pietrzak

Acknowledgments

I’d like to thank Ueli Maurer for insightful discussions on this topic and Thomas
Holenstein for several clarifying conversations on key- and bit-agreement.

References

1. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, 1976.

2. Taher El-Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–472,
1985.

3. Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan. The Relationship between Public Key Encryption and Oblivious
Transfer. In FOCS, pages 325–335, 2000.

4. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. J. ACM, 33(4):792–807, 1986.

5. Danny Harnik and Moni Naor. On the Compressibility of NP instances and Cryp-
tographic Applications, 2005. Manuscript.

6. Thomas Holenstein, 2005. Personal Communication.
7. Thomas Holenstein. Immunization of key-agreement schemes, PhD.thesis. PhD

thesis, ETH Zürich, 2006. to appear.
8. Russell Impagliazzo. A personal view of average-case complexity. In Structure in

Complexity Theory Conference, pages 134–147, 1995.
9. Russell Impagliazzo and Steven Rudich. Limits on the Provable Consequences of

One-way Permutations. In Proc, 21th ACM Symposium on the Theory of Comput-
ing (STOC), pages 44–61, 1989.

10. Ueli M. Maurer. Secret key agreement by public discussion from common infor-
mation. IEEE Transactions on Information Theory 39(3), pages 733-742, 1993

11. Ueli Maurer, Krzysztof Pietrzak, and Renato Renner. Indistinguishability Ampli-
fication, 2006. Manuscript.

12. Steven Myers. Black-box composition does not imply adaptive security. In
Advances in Cryptology — EUROCRYPT 04, volume 3027 of Lecture Notes in
Computer Science, pages 189–206, 2004.

13. Krzysztof Pietrzak. Composition does not imply adaptive security. In Advances in
Cryptology — CRYPTO ’05, volume 3621 of Lecture Notes in Computer Science,
pages 55–65, 2005.

14. Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility be-
tween cryptographic primitives. In TCC, pages 1–20, 2004.

15. Steven Rudich. The use of interaction in public cryptosystems (extended abstract).
In CRYPTO, pages 242–251, 1991.

16. Claude E. Shannon. A mathematical theory of communication. Bell Systems
Technical Journal, 27:373–423 and 27:623–656, 1948.

17. Hoeteck Wee. Finding pessiland. In TCC, pages 429–442, 2006.

Perfect Non-interactive Zero Knowledge for NP

Jens Groth�, Rafail Ostrovsky��, and Amit Sahai���

UCLA, Computer Science Department,
4732 Boelter Hall,

Los Angeles, CA 90095, USA
{jg, rafail, sahai}@cs.ucla.edu

Abstract. Non-interactive zero-knowledge (NIZK) proof systems are
fundamental cryptographic primitives used in many constructions, in-
cluding CCA2-secure cryptosystems, digital signatures, and various cryp-
tographic protocols. What makes them especially attractive, is that they
work equally well in a concurrent setting, which is notoriously hard for
interactive zero-knowledge protocols. However, while for interactive zero-
knowledge we know how to construct statistical zero-knowledge argu-
ment systems for all NP languages, for non-interactive zero-knowledge,
this problem remained open since the inception of NIZK in the late
1980’s. Here we resolve two problems regarding NIZK:

– We construct the first perfect NIZK argument system for any NP
language.

– We construct the first UC-secure NIZK argument for any NP lan-
guage in the presence of a dynamic/adaptive adversary.

While it is already known how to construct efficient prover compu-
tational NIZK proofs for any NP language, the known techniques yield
large common reference strings and large proofs. Another contribution
of this paper is NIZK proofs with much shorter common reference string
and proofs than previous constructions.

Keywords: Non-interactive zero-knowledge, universal composability,
non-malleability.

1 Introduction

In this paper, we resolve a central open problem concerning Non-Interactive
Zero-Knowledge (NIZK) protocols: how to construct statistical NIZK arguments
for any NP language. While for interactive zero knowledge (ZK), it has long been
known how to construct statistical zero-knowledge argument systems for all NP
languages [5], for NIZK this question has remained open for nearly two decades.

� Supported by NSF Cybertrust ITR grant No. 0456717.
�� Supported in part by a gift from Teradata, Intel equipment grant, NSF Cybertrust

grant No. 0430254, OKAWA research award, B. John Garrick Foundation and Xerox
Innovation group Award.

��� Supported by NSF Cybertrust ITR grant No. 0456717, an equipment grant from
Intel, and an Alfred P. Sloan Foundation Research Fellowship.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 339–358, 2006.
c© International Association for Cryptologic Research 2006

340 J. Groth, R. Ostrovsky, and A. Sahai

In context with previous work – statistical zero knowledge: Blum,
Feldman, and Micali [3] introduced the notion of NIZK in the common ran-
dom string model and showed how to construct computational NIZK proof sys-
tems for proving a single statement about any NP language. The first compu-
tational NIZK proof system for multiple theorems was constructed by Blum,
De Santis, Micali, and Persiano [2]. Both [3] and [2] based their NIZK systems
on certain number-theoretic assumptions (specifically, the hardness of deciding
quadratic residues modulo a composite number). Feige, Lapidot, and Shamir
[18] showed how to construct computational NIZK proofs based on any trapdoor
permutation.

The above work, and the plethora of research on NIZK that followed, mainly
considered NIZK where the zero-knowledge property was only true computation-
ally; that is, a computationally bounded party cannot extract any information
beyond the correctness of the theorem being proven. In the case of interactive
zero knowledge, it has long been known that all NP statements can in fact be
proven using statistical (in fact, perfect) zero knowledge arguments [6, 5]; that
is, even a computationally unbounded party would not learn anything beyond
the correctness of the theorem being proven, though we must assume that the
prover, only during the execution of the protocol, is computationally bounded to
ensure soundness1.

Achieving statistical NIZK has been an elusive goal. The original work of [3]
showed how a computationally unbounded prover can prove to a polynomially
bounded verifier that a number is a quadratic-residue, where the zero-knowledge
property is perfect. Statistical ZK (including statistical NIZK2) for any non-
trivial language for both proofs and arguments were shown to imply the exis-
tence of a one-way function by Ostrovsky [29]. Statistical NIZK proof systems
were further explored by De Santis, Di Crescenzo, Persiano, and Yung [14] and
Goldreich, Sahai, and Vadhan [23], who gave complete problems for the com-
plexity class associated with statistical NIZK proofs. However, these works came
far short of working for all NP languages, and in fact NP-complete languages
cannot have (even interactive) statistical zero-knowledge proof systems unless
the polynomial hierarchy collapses [19, 1]3. Unless our computational complexity
beliefs are wrong, this leaves open only the possibility of argument systems.

Do there exist statistical NIZK arguments for all NP languages? Despite
nearly two decades of research on NIZK, the answer to this question was not
known. In this paper, we answer this question in the affirmative, based on a
number-theoretic complexity assumption introduced in [4].

1 Such systems where the soundness holds computationally have come to be known
as argument systems, as opposed to proof systems where the soundness condition
must hold unconditionally.

2 We note that the result of [29] is for honest-verifier SZK, and does not require the
simulator to produce Verifier’s random tape, and therefore it includes NIZK, even
for the common reference string which is not uniform. See also [31] for an alternative
proof.

3 See also [22] appendix regarding subtleties of this proof, and [33] for an alternative
proof.

Perfect Non-interactive Zero Knowledge for NP 341

Our results. Our main results, which we describe in more detail below, are:

- Significantly more efficient NIZK proofs for circuit satisfiability.
- Perfect NIZK arguments for any NP language.
- UC-secure perfect NIZK arguments for any NP language, secure against

adaptive/dynamic adversaries.

In our second result, we prove that our perfect NIZK argument has non-adaptive
soundness, i.e., it is infeasible to forge a proof for a false statement that is chosen
independently of the common reference string. In our third result, however, we
construct a UC-secure perfect NIZK argument (i.e., in which the adversary sees
the common reference string first, and can adaptively choose theorems and try
to forge arguments afterwards)4.

NIZK proofs. As a building block we start by constructing a simple and effi-
cient computational NIZK proof of knowledge for circuit satisfiability, based on
the subgroup decision problem introduced in [4]. To the best of our knowledge,
our techniques are completely different from all previous constructions of NIZK
proofs, which use the hidden bits model. In this NIZK proof system, the size
of the common reference string is O(k), where k is the security parameter; thus
it is independent of the size of the NP statements. The NIZK proofs have size
O(k|C|), where |C| is the size of the circuit. This is a significant result in its own
right; the most efficient NIZK proof systems for an NP-complete problem with
efficient provers previously known [27] required a reference string of size at least
O(k3) and the NIZK proofs of size at least O(|C|k2). For comparison with the
most efficient previous work, please see Table 1.

Table 1. Comparison of CRS size and NIZK proof size for efficient-prover NIZK proof
systems for circuit satisfiability

Reference CRS size Proof Size Assumption
Damg̊ard [9] O(|C|k2 + k3) O(|C|k2 + k3) Quadratic Residuosity

Kilian-Petrank [27] O(|C|k2) O(|C|k2) Trapdoor Permutations
Kilian-Petrank [27] O(k3) O(|C|k3) Trapdoor Permutations

De Santis et al. [12, 13] O(k + |C|ε) poly(|C|k) NIZK & One-Way Functions
This paper O(k) O(|C|k) Subgroup Decision [4]

Perfect NIZK arguments. The NIZK proofs we construct are built using
encryptions of the bits in the circuit. However, by a slight modification to only

4 In general, there is an interesting and subtle technical point regarding the UC frame-
work that should be pointed out here: while the UC framework does rule out proofs
of false theorems in the ideal model, it does not explicitly rule out the possibility
of proofs of false theorems in the real world. Instead, since the ideal and real world
executions are indistinguishable, the UC framework rules out the possibility that
the adversary (or the environement) can gain any advantage from proofs of false
theorems that it manages to generate in the real world.

342 J. Groth, R. Ostrovsky, and A. Sahai

the reference string, we effectively transform the cryptosystem into a perfectly
hiding commitment scheme. With this transformation, we obtain a perfect NIZK
argument for circuit satisfiability.

UC-secure perfect NIZK argument. We generalize our techniques to con-
struct perfect NIZK arguments that satisfy Canetti’s UC definition of security.
Canetti introduced the universal composability (UC) framework [7] as a general
method to argue security of protocols in an arbitrary environment. It is a strong
security definition; in particular it implies non-malleability [17], and security
when arbitrary protocols are executed concurrently.

We define NIZK arguments in the UC framework and construct a NIZK ar-
gument that satisfies the UC security definition. From the theory behind the
UC framework, this means that we can plug in our NIZK argument in arbitrary
settings and maintain soundness and privacy. At the same time, we can prove
that our UC NIZK argument enjoys a perfect zero-knowledge property.

We stress that our result of prefect NIZK in the UC framework holds even in
the setting of dynamic/adaptive adversaries without erasures: where the adver-
sary can corrupt parties adaptively, and upon corruption of a party, it learns the
entire history of the internal state of this party. Prior to our result, no NIZK pro-
tocol was known to be UC-secure against dynamic/adaptive adversaries. In [8],
it was observed that De Santis et al. [11] achieve UC-security, but only for the
setting with static adversaries (in the non-erasure model).

2 Non-interactive Zero-Knowledge

Let R be an efficiently computable binary relation. For pairs (x, w) ∈ R we call x
the statement and w the witness. Let L be the language consisting of statements
in R.

An argument system for a relation R consists of a key generation algorithm
K, a prover P and a verifier V . The key generation algorithm produces a com-
mon reference string σ. The prover takes as input (σ, x, w) and checks whether
(x, w) ∈ R. In that case, it produces a proof or argument π, otherwise it out-
puts failure. The verifier takes as input (σ, x, π) and outputs 1 if the proof is
acceptable and 0 if rejecting the proof. We call (K, P, V) an argument system
for R if it has the completeness and soundness properties described below.
(Perfect) Completeness. For all (x, w) ∈ R, we have

Pr
[
σ ← K(1k); π ← P (σ, x, w) : V (σ, x, π) = 1 if (x, w) ∈ R

]
= 1.

(Non-adaptive Computational) Soundness. For all non-uniform polyno-
mial time adversaries A and x /∈ L, we have

Pr
[
σ ← K(1k); π ← A(x, σ) : V (σ, x, π) = 0

]
≈ 1.

We call (K, P, V) a proof system for R if soundness also holds for computationally
unbounded adversaries.

Perfect Non-interactive Zero Knowledge for NP 343

(Perfect) Knowledge Extraction. We call (K, P, V) a proof of knowledge
for R if there exists a knowledge extractor E = (E1, E2) with the properties
described below.

For all non-uniform polynomial time adversaries A we have

Pr
[
σ ← K(1k) : A(σ) = 1

]
= Pr

[
(σ, τ) ← E1(1k) : A(σ) = 1

]
For all non-uniform polynomial time adversaries A we have

Pr
[
(σ, τ) ← E1(1k); (x, π) ← A(σ); w ← E2(σ, τ, x, π) :

V (σ, x, π) = 0 or (x, w) ∈ R
]

= 1.

Since perfect knowledge extraction implies the existence of a witness for the
statement being proven, it implies perfect adaptive soundness.

(Adaptive Multi-theorem) Zero-Knowledge. We call (K, P, V) a NIZK
argument or NIZK proof for R if there exists a simulator S = (S1, S2) with the
following zero-knowledge property. For all non-uniform polynomial time adver-
saries A we have

Pr
[
σ ← K(1k) : AP (σ,·,·)(σ) = 1

]
≈ Pr

[
(σ, τ) ← S1(1k) : AS′(σ,τ,·,·)(σ) = 1

]
,

where S′(σ, τ, x, w) = S2(σ, τ, x) for (x, w) ∈ R and outputs failure if (x, w)
/∈ R.

Honest prover state reconstruction. In modeling adaptive UC security
without erasures, an honest prover may be corrupted at some time. To handle
such cases, we want to extend the zero-knowledge property such that not only can
we simulate an honest party making a proof, we also want to be able to simulate
how it constructed the proof. In other words, once the party is corrupted, the
adversary will learn the witness and the randomness used; we want to create
convincing randomness so that it looks like the simulated proof was constructed
by an honest prover using this randomness.

We say a NIZK argument or proof for R has honest prover state reconstruction
if there exists a simulator S = (S1, S2, S3) so for all A we have

Pr
[
σ ← K(1k) : APR(σ,·,·)(σ) = 1

]
≈ Pr

[
(σ, τ) ← S1(1k) : ASR(σ,τ,·,·)(σ) = 1

]
,

where PR(σ, x, w) runs r ← {0, 1}�P (k); π ← P (σ, x, w; r) and returns π, r, and
where SR runs ρ ← {0, 1}�S(k); π ← S2(σ, τ, x; ρ); r ← S3(σ, τ, x, w, ρ) and re-
turns π, r, both of the oracles outputting failure if (x, w) /∈ R.

Perfect completeness, soundness, knowledge extraction and zero-
knowledge. We speak of perfect completeness, perfect soundness, perfect
knowledge extraction, perfect zero-knowledge and perfect honest prover state
reconstruction if for sufficiently large security parameters we have equalities in
the respective definitions.

344 J. Groth, R. Ostrovsky, and A. Sahai

3 The Boneh-Goh-Nissim Cryptosystem

Boneh, Goh and Nissim [4] suggest a cryptosystem with interesting homomorphic
properties. The BGN-cryptosystem is the main building block in the paper.

Bilinear groups. We use two cyclic groups G, G1 of order n, where n = pq
and p, q are primes. We make use of a bilinear map e : G × G → G1. I.e., for all
u, v ∈ G and a, b ∈ Z we have e(ua, vb) = e(u, v)ab. We require that e(g, g) is a
generator of G1 if g is a generator of G. We also require that group operations,
group membership, sampling of a random generator for G and the bilinear map
be efficiently computable.

[4] suggest the following example. Pick large primes p, q and let n = pq. Find
the smallest 	 so P = 	n − 1 is prime and equal to 2 modulo 3. Consider the
points on the elliptic curve y2 = x3 + 1 over FP . This curve has P + 1 = 	n
points, so it has a subgroup G of order n. We let G1 be the order n subgroup of
F∗

P 2 and e : G × G → G1 be the modified Weil-pairing.

The subgroup decision problem. Let G be an algorithm that takes a security
parameter as input and outputs (p, q, G, G1, e) such that p, q are primes, n = pq
and G, G1 are descriptions of groups of order n and e : G×G → G1 is a bilinear
map.

Let Gq be the subgroup of G of order q. The subgroup decision problem is to
distinguish elements of G from elements of Gq. Let Ggen be the generators of G.

Definition 1. The subgroup decision assumption holds for generator G if there
exists a negligible function νSD : N → [0; 1] so for any non-uniform polynomial
time adversary A we have

Pr
[
(p, q, G, G1, e) ← G(1k); n = pq; g, h ← Ggen : A(n, G, G1, e, g, h) = 1

]
− Pr

[
(p, q, G, G1, e) ← G(1k); n = pq; g ← Ggen, h ← Gq \ {1} :

A(n, G, G1, e, g, h) = 1
]

< νSD(k).

We remark that we have changed the wording of the subgroup decision problem
slightly in comparison with [4], but the definitions are equivalent.

The BGN-cryptosystem. We generate a public key by running (p, q, G, G1, e)
← G(1k), setting n = pq, selecting g as a random generator of G and h as a
random generator of Gq. The public key is (n, G, G1, e, g, h) while the decryption
key is p, q.

To encrypt a message m of length O(log k) using randomness r ← Z∗
n we

compute the ciphertext c = gmhr. To decrypt we compute cq = gmqhmq = (gq)m

and exhaustively search for m.
By the subgroup decision assumption, we could indistinguishably select h to

be a random generator of G as well. In this case, we do not have a cryptosystem
but rather a perfectly hiding trapdoor commitment scheme.

Perfect Non-interactive Zero Knowledge for NP 345

4 Non-interactive Zero-Knowledge Proof

4.1 NIZK Proof That c Encrypts 0 or 1

We will construct a NIZK proof of knowledge for circuit satisfiability in Section
4.2. As a building block in this NIZK proof, we will encrypt the truth-values of
the wires in the circuit. We need to convince the verifier that these ciphertexts
have been correctly formed. We therefore start by constructing a NIZK proof
that a BGN-ciphertext has either 0 or 1 as plaintext.

We observe that a ciphertext c contains 0 or 1, if and only if c ∈ Gq or
cg−1 ∈ Gq. Our strategy is therefore to show that e(c, cg−1) has order q. If
we know m, w so c = gmhw then m = 0 implies e(c, cg−1) = e(hw, g−1hw) =
e(h, (g−1hw)w) and m = 1 means e(c, cg−1) = e(ghw, hw) = e(h, (ghw)w). In
both cases we get e(c, cg−1) = e(h, (g2m−1hw)w). Since h has order q, revealing
the two components will immediately convince the verifier that e(c, cg−1) has
order q, however may not be zero-knowledge.

Instead, we make a NIZK proof for e(c, cg−1) having order q as follows. We
choose a random exponent r and compute e(c, cg−1) = e(hr, (g2m−1hw)wr−1

).
We reveal these two components, and must convince the verifier that the first
element π1 = hr has order q. For this purpose, we show him the element gr.
Since e(π1, g) = e(hr, g) = e(h, gr) the verifier can now tell that π1 has order q.

To argue zero-knowledge we change the public key. Instead of having h of
order q, we use h of order n and select g so we know the discrete logarithm. Now
all ciphertexts are perfectly hiding commitments so we can create all of them
as encryptions of 0. We can simulate the revelation of gr because we know the
discrete logarithm.

Common reference string:
1. (p, q, G, G1, e) ← G(1k)
2. n = pq
3. g random generator of G

4. h random generator of Gq

5. Return σ = (n, G, G1, e, g, h).
Statement: The statement is an element c ∈ G. The claim is that there exists a

pair (m, w) ∈ Z2 so m ∈ {0, 1} and c = gmhw .
Proof: Input (σ, c, (m, w)).

1. Check m ∈ {0, 1} and c = gmhw. Return failure if check fails.
2. r ← Z∗

n

3. π1 = hr, π2 = (g2m−1hw)wr−1
, π3 = gr

4. Return π = (π1, π2, π3)
Verification: Input (σ, c, π = (π1, π2, π3)).

1. Check c ∈ G and π ∈ G3

2. Check e(c, cg−1) = e(π1, π2) and e(π1, g) = e(h, π3)
3. Return 1 if both checks pass, else return 0

Fig. 1. NIZK proof of plaintext being zero or one

346 J. Groth, R. Ostrovsky, and A. Sahai

Theorem 1. The protocol in Figure 1 is a NIZK proof that c ∈ G has plaintext
m ∈ {0, 1}. The NIZK proof has perfect completeness, perfect soundness and
computational zero-knowledge and honest prover state reconstruction.

Proof. Perfect completeness. We know that c = gmhw, where m ∈ {0, 1}.
This gives us e(c, cg−1) = e(h, (g2m−1hw)w) = e(hr, (g2m−1hw)wr−1

) = e(π1, π2).
Furthermore, e(π1, g) = e(hr, g) = e(h, gr) = e(h, π3).
Perfect soundness. We have e(πq

1 , g) = e(π1, g)q = e(h, π3)q = e(hq, π3) =
e(1, π3) = 1. Therefore, π1 must have order 1 or q. This means e(c, cg−1)q =
e(π1, π2)q = e(πq

1 , π2) = 1, implying that c or cg−1 has order 1 or q.
Computational zero-knowledge and honest prover state reconst-
ruction. First, we describe the simulator S = (S1, S2, S3). S1 runs the algo-
rithm for generating the common reference string with the following modifica-
tion. It selects h to be a random generator for G and sets g = hγ , where γ ← Z∗

n.
During the generation of the common reference string the simulator also learns
p, q. S1 outputs (σ, τ) = ((n, G, G1, e, g, h), (p, q, γ)).

S2 on input (σ, τ, c) simulates a proof as follows. Either c, cg−1, or both
are generators for G. The simulator picks r ← Z∗

n. If c is a generator it sets
π1 = cr, π2 = (cg−1)r−1

and π3 = πγ
1 . If c is not a generator for the group, then

the simulator sets π1 = (cg−1)r, π2 = cr−1
, π3 = πγ

1 .
S3 is given the witness (m, w) so c = gmhw and m ∈ {0, 1} and wishes to

reconstruct how the prover could have come up with the proof π. Since it knows γ
it can write c = hγm+w. Consider first the case where c is a generator for G, then
we have gcd(n, γm + w) = 1. So we can write the proof as π1 = hr(γm+w), π2 =
(g2m−1hw)w(r(γm+w))−1

, π3 = gr(γm+w). We return r(γm + w) mod n as the
prover’s simulated randomness that would cause it to produce π. In case c is
not a generator, we know that cg−1 is a generator and we write the proof as
π1 = hr(γ(m−1)+w), π2 = (g2m−1hw)w(r(γ(m−1)+w))−1

, π3 = gr(γ(m−1)+w) and
return r(γ(m − 1) + w) mod n as the prover’s simulated randomness.

To argue computational zero-knowledge we consider a hybrid experiment,
where we use S1 to generate the common reference string σ, but implement the
simulation oracle using the real prover P . We first show that for all non-uniform
polynomial time adversaries A we have∣∣∣ Pr

[
σ ← K(1k) : APR(σ,·,·)(σ) = 1

]
−Pr

[
(σ, τ) ← S1(1k) : APR(σ,·,·)(σ) = 1

] ∣∣∣ < νSD(k),

where PR(σ, (σ, c), (m, w)) runs r ← Z∗
n; π ← P (σ, (σ, c), (m, w); r) and returns

π, r, and outputs failure if m /∈ {0, 1} or c �= gmhw.
The only difference between the two experiments is the choice of h. In one

case, h is a random generator of G in the other case it is a generator of Gq.
We do not use the knowledge of p, q or the discrete logarithm of g with respect
to h in either experiment. Consider now a subgroup decision problem challenge
(n, G, G1, e, g, h). The challenges correspond exactly to common reference strings

Perfect Non-interactive Zero Knowledge for NP 347

produced by respectively K and S1. The advantage of A is therefore bounded
by νSD(k).

Next, we go from the hybrid experiment to the simulation. For all A we have

Pr
[
(σ, τ) ← S1(1k) : APR(σ,·,·)(σ) = 1

]
= Pr

[
(σ, τ) ← S1(1k) : ASR(σ,τ,·,·)(σ) = 1

]
,

where SR runs ρ ← Z∗
n; π ← S2(σ, τ, (σ, c); ρ); r ← S3(σ, τ, (σ, c), (m, w), ρ) and

returns π, r, or failure if m /∈ {0, 1} or c �= gmhw.
A simulated proof π = (π1, π2, π3) uniquely defines the randomness r ∈ Z∗

n

so π1 = hr, and it is indeed this randomness S3 outputs. We therefore just need
to argue that simulated proofs have the same distribution as real proofs in the
hybrid experiment. In case c is a generator for G, S2 selects r ← Z∗

n at random
and set π1 = cr, which gives us a random generator of G. In a real prover’s proof
π1 is also a random generator of G when h has order n. Since π1 uniquely defines
π2 and π3, we see that the two distributions are identical. If c is not a generator
for G, then cg−1 and since a simulated π1 = (cg−1)r for r ← Z∗

n is a random
generator of G, we can use a similar argument to show that also in this case we
get a perfect simulation. �

4.2 NIZK Proof of Knowledge for Circuit Satisfiability

Suppose we have a circuit C and want to prove that there exists w so C(w) = 1.
Since any circuit can be linearly reduced to a circuit built only from NAND-
gates, we will without loss of generality focus on this simpler case.

To prove satisfiability of C we encrypt the bit value of each wire, when the
circuit is evaluated on the input bits in w. Using the NIZK proof in Figure 1 it
is straightforward to prove that all ciphertexts contain a plaintext in {0, 1}. We
form the output ciphertext with randomness 0 so it is straightforward for the
verifier to check that the output of the circuit is 1.

The only thing left is to prove that all the encrypted output wires do indeed
evaluate the NAND-gates correctly. We make the following observation, leaving
the proof to the reader.

Lemma 1. Let b0, b1, b2 ∈ {0, 1}.
b0 + b1 + 2b2 − 2 ∈ {0, 1} if and only if b2 = ¬(b0 ∧ b1).

Given ciphertexts c0, c1, c2 containing plaintexts b0, b1, b2 we can use the homo-
morphic property to form the ciphertext c0c1c

2
2g

−2. A NIZK proof that c0c1c
2
2g

−2

contains a plaintext in {0, 1} implies b2 = ¬(b0 ∧ b1), as required. We make such
a NIZK proof for each NAND-gate in the circuit.

Theorem 2. The protocol in Figure 2 is a NIZK proof of knowledge of circuit
satisfiability. It has perfect completeness, perfect soundness, perfect knowledge
extraction and computational zero-knowledge and honest prover state reconstruc-
tion.

348 J. Groth, R. Ostrovsky, and A. Sahai

Common reference string:
1. (p, q, G, G1, e) ← G(1k)
2. n = pq
3. g random generator of G

4. h random generator of Gq

5. Return σ = (n, G, G1, e, g, h).
Statement: The statement is a circuit C built from NAND-gates. The claim is

that there exist input bits w so C(w) = 1.
Proof: The prover has a witness w consisting of input bits so C(w) = 1.

1. Extend w to contain the bits of all wires in the circuit.
2. Encrypt each bit wi as ci = gwihri , with ri ← Z∗

n.
3. For all ci make a NIZK proof of existence of wi, ri so wi = {0, 1} and

ci = gwihri .
4. For the output of the circuit we let the ciphertext be coutput = g, i.e., an

easily verifiable encryption of 1.
5. For all NAND-gates, we do the following. We have input ciphertexts

ci0 , ci1 and output ciphertexts ci2 . We wish to prove the existence of
wi0 , wi1 , wi2 ∈ {0, 1} and ri0 , ri1 , ri2 so w2 = ¬(w0 ∧ w1) and
cij = g

wij h
rij . To do so we make a NIZK proof that there exist m, r with

m ∈ {0, 1} so ci0ci1c2
i2g−2 = gmhr.

6. Return π consisting of all the ciphertexts and NIZK proofs.
Verification: The verifier given a circuit C and a proof π.

1. Check that all wires have a corresponding ciphertext and that the output
wire’s ciphertext is g.

2. Check that all ciphertexts have a NIZK proof of the plaintext being 0 or 1.
3. Check that all NAND-gates have a valid NIZK proof of compliance.
4. Return 1 if all checks pass, else return 0.

Fig. 2. NIZK proof for circuit satisfiability

Proof. Perfect completeness. Knowing a satisfying assignment w for C, we
can compute truth-values for all wires that are consistent with the NAND-gates
and make the circuit have 1 as output. Perfect completeness follows from the
perfect completeness of the NIZK proofs of plaintexts being either 0 or 1.
Perfect soundness. Since we prove for each wire that the encrypted plaintext
is either 0 or 1, we have made a perfectly binding commitment to a bit for each
wire. By Lemma 1, the NIZK proofs for the gates imply that all encrypted wire-
bits respect the NAND-gates. Finally, we know that the output ciphertext is g,
so the output bit is 1.
Perfect knowledge extraction. The extractor sets up the common refer-
ence string by running the key generator for the NIZK proof. In the process it
learns p, q. This allows it to decrypt the ciphertexts containing the input-bits.
Since the NIZK proof has perfect soundness, these input bits must correspond
to a witness w so C(w) = 1.
Computational zero-knowledge and honest prover state reconst-
ruction. Let S1 be the simulator of the NIZK proof for a ciphertext having 0
or 1 as plaintext. We use the same algorithm to create the common reference

Perfect Non-interactive Zero Knowledge for NP 349

string for simulation of circuit satisfiability NIZK proofs. In other words, both
g, h are random generators of G and the simulator knows γ ∈ Z∗

n so g = hγ .
S2 starts by choosing the ciphertexts for the wires: The output wire gets the

ciphertext g. For all other wires, it selects a ciphertext ci = hri with ri ← Z∗
n.

Later, when S3 learns a witness w, it can compute the corresponding messages
mi ∈ {0, 1} for all these ciphertexts, and open them as ci = gmihri−miγ

−1
.

For all these ciphertexts S2 simulates a NIZK proof that they contain 0 or 1
as the plaintext. Also for all NAND-gates with input wires i0, i1 and output wire
i2 it simulates a NIZK proof that ci0ci1c

2
i2

g−2 contains a plaintext that is 0 or
1. Later, upon learning the witness w, S3 knows the plaintexts wij ∈ {0, 1} and
randomizers rij − wij γ

−1 that constitute a satisfactory encryption of the wires
of a satisfied circuit. For each NIZK proof of a plaintext being 0 or 1, S3 can run
the honest prover state reconstructor to get convincing randomness that would
make the prover produce this proof.

To prove that this is a good simulation, we first consider a hybrid experiment
where we use the simulator to create the common reference string, but use the
real prover to create the NIZK proofs. As in the proof of Theorem 1, we can
argue that for all non-uniform polynomial time adversaries A we have∣∣∣ Pr

[
σ ← K(1k) : APR(σ,·,·)(σ) = 1

]
−Pr

[
(σ, τ) ← S1(1k) : APR(σ,·,·)(σ) = 1

] ∣∣∣ < νSD(k),

where PR(σ, C, w) runs π ← P (σ, C, w; r) and returns π, r.
Next, we modify the way we create proofs. Instead of running the real prover,

we create the encryptions of the wires ci as the real prover, but simulate the
NIZK proofs of 0 or 1 being the plaintext and simulate the NIZK proofs for the
NAND-gates as well. From the proof of Theorem 1 we get that this modification
does not increase A’s probability of outputting 1. We have

Pr
[
(σ, τ) ← S1(1k) : APR(σ,·,·)(σ) = 1

]
= Pr

[
(σ, τ) ← S1(1k) : APSR(σ,τ,·,·)(σ) = 1

]
,

where PSR(σ, τ, C, w) creates ciphertexts ci correctly but simulates NIZK proofs
for 0- or 1-plaintexts and the randomness involved, and outputs failure if
C(w) �= 1.

Finally, we go to the full simulation. For all A we have

Pr
[
(σ, τ) ← S1(1k) : APSR(σ,τ,·,·)(σ) = 1

]
= Pr

[
(σ, τ) ← S1(1k) : ASR(σ,τ,·,·)(σ) = 1

]
,

where SR runs π ← S2(σ, τ, C; ρ); r ← S3(σ, τ, C, w, ρ) and returns π, r, and
outputs failure if C(w) �= 1. The only difference here is in the way we create
the ciphertexts, but since they are perfectly hiding, we cannot distinguish the
two experiments. �

350 J. Groth, R. Ostrovsky, and A. Sahai

5 Non-interactive Statistical Zero-Knowledge Argument

In this section, we construct a NIZK argument of circuit satisfiability with perfect
zero-knowledge. The main idea is a simple modification of the NIZK proof for
circuit satisfiability in Figure 2. Instead of choosing h of order q, we let h be a
random generator of G. This way gmhr is no longer an encryption of m, but a
perfectly hiding commitment to m. It corresponds to using S1 restricted to the
first half of its outputs as key generator. Completeness is obvious and the proof
of Theorem 2 reveals that the argument is perfect zero-knowledge.

Soundness is also simple enough. Suppose we have circuit C /∈ L generated
independently of the common reference string. We can argue that no adversary
can distinguish an h of order n from an h of order q, and therefore by Theorem
2 has negligible probability of making an acceptable NIZK argument.

Let Sσ be the simulator S1 from the proof of Theorem 2 restricted to its first
output. We have the following theorem
Theorem 3. (Sσ, P, V) is a NIZK argument for circuit satisfiability.
Proof. As in the proof of Theorem 2, we can show that the protocol has perfect
completeness. Perfect zero-knowledge and honest prover state reconstruction fol-
lows from the proof of Theorem 2. This leaves us with the question of soundness.
Soundness. We first demonstrate that the NIZK argument is sound, i.e., for any
fixed false statement, all adversaries have negligible probability of generating a
valid proof of this statement.

Consider any unsatisfiable circuit C and a polynomial time adversary A that
with probability So-AdvA(1k) breaks the soundness property. In other words, A
is given a common reference string and proceeds to output a valid argument π.
We will construct an adversary B that decides the subgroup decision problem
with probability SD-AdvB(1k) =So-AdvA(1k).

B gets a challenge (n, G, G1, e, g, h) and has to decide whether h has order n
or not. This corresponds to a common reference string generated by either K or
Sσ. So we can give it to A and output 1 if and only if A forms a valid argument
for C being true.

In case h has order n, the common reference string produced by B is dis-
tributed exactly as in a real argument. The adversary therefore has probability
So-AdvA(1k) of generating an acceptable argument.

On the other hand, in case h has order q the common reference string produced
by B is distributed as the reference string in the previously described NIZK proof.
Since the NIZK proof has perfect soundness, the probability of A producing a
valid argument is 0. �

6 Universally Composable Non-interactive
Zero-Knowledge

6.1 Modeling Non-interactive Zero-Knowledge Arguments

The universal composability (UC) framework (see [7] for a detailed description)
is a strong security model capturing security of a protocol under concurrent

Perfect Non-interactive Zero Knowledge for NP 351

execution of arbitrary protocols. We model all other things not directly related
to the protocol through a polynomial time environment. The environment can at
its own choosing give inputs to the parties running the protocol, and according
to the protocol specification, the parties can give outputs to the environment. In
addition, there is a non-uniform polynomial time adversary A that attacks the
protocol. A can communicate freely with the environment. It can also corrupt
parties, in which case it learns the entire history of that party and gains complete
control over the actions of this party.

To model security we use a simulation paradigm. We specify the functionality
F that the protocol should realize. The functionality F can be seen as a trusted
party that handles the entire protocol execution and tells the parties what they
would output if they executed the protocol correctly. In the ideal process, the
parties simply pass on inputs from environment to F and whenever receiving
a message from F they output it to the environment. In the ideal process, we
have an ideal process adversary S. S does not learn the content of messages
sent from F to the parties, but is in control of when, if ever, a message from
F is delivered to the designated party. S can corrupt parties, at the time of
corruption it will learn all inputs the party has received and all outputs it has
sent to the environment. As the real world adversary, S can freely communicate
with the environment.

We now compare these two models and say that it is secure if no environment
can distinguish between the two worlds. This means, the protocol is secure, if for
any A running in the real world, there exists an S running in the ideal process
with F so no environment can distinguish between the two worlds.

The standard zero-knowledge functionality FZK as defined in [7] goes as fol-
lows: On input (prove,P, V, sid, ssid, x, w) from P the functionality FZK checks
that (x, w) ∈ R and in that case sends (proof,P, V, sid, ssid, x) to V . It is thus
part of the model that the prover will send the proof to a particular receiver and
that this receiver will learn who the prover is. This is a very reasonable model
when we talk about interactive zero-knowledge proofs of knowledge. We remark
that with only small modifications in the UC NIZK argument that we are about
to suggest we could securely realize this functionality.

Parameterized with relation R and running with parties P1, . . . , Pn and
adversary S .

Proof: On input (prove,sid, ssid, x, w) from party P ignore if (x, w) /∈ R. Send
(prove,x) to S and wait for answer (proof , π). Upon receiving the answer
store (x, π) and send (proof , sid, ssid, π) to P .

Verification: On input (verify, sid, ssid, x, π) from V check whether (x, π) is
stored. If not send (verify,x,π) to S and wait for an answer (witness,w).
Upon receiving the answer, check whether (x,w) ∈ R and in that case, store
(x, π). If (x, π) has been stored return (verification,sid, ssid,1) to V , else
return (verification,sid, ssid,0).

Fig. 3. NIZK argument functionality FNIZK

352 J. Groth, R. Ostrovsky, and A. Sahai

However, when we talk about NIZK arguments we do not always know who
is going to receive the NIZK argument. We simply create a string π, which is the
NIZK argument. We may create this string in advance and later decide to whom
to send it. Furthermore, anybody who intercepts the string π can verify the truth
of the statement and can use the string to convince others about the truth of
the statement. The NIZK argument is not deniable; quite on the contrary, it is
transferable [30]. For this reason, and because the protocol and the security proof
becomes a little simpler, we suggest a different functionality FNIZK to capture
the essence of NIZK arguments.

6.2 Tools

We will need a few cryptographic tools to securely realize FNIZK.
Perfectly hiding commitment scheme with extraction. A perfectly hid-
ing commitment scheme with extraction (first used in [16] in the setting of per-
fectly hiding non-malleable commitment) has the following property. We can run
a key generation algorithm hk ← Khiding(1k) to get a hiding key hk, or we can al-
ternatively run a key generation algorithm (hk, xk) ← Kextract(1k) in which case
we get both a hiding key hk and an extraction key xk. (Khiding, com) constitute
a perfectly hiding commitment scheme. On the other hand, (Kextract, com, dec)
constitute a public key cryptosystem with errorless decryption, i.e.,

Pr
[
(hk, xk) ← Kextract(1k) : ∀(m, r) : decxk(comhk(m; r)) = m

]
≈ 1.

We demand that no non-uniform polynomial time adversary A can distinguish
between the two key generation algorithms. This implies that the cryptosystem
is semantically secure against chosen plaintext attack since the perfectly hiding
commitment does not reveal what the message is.

We have already seen one example of a perfectly hiding commitment scheme
with extraction. We can set up the BGN-cryptosystem with a public key, where h
has full order n. In this case, the cryptosystem is a perfectly hiding commitment
scheme. We can also set it up with h having order q, in this case, the cryptosystem
has errorless decryption. The subgroup decisional assumption implies that no
non-uniform polynomial time adversary can distinguish commitment keys from
cryptosystem keys.
Pseudorandom cryptosystem. A cryptosystem (Kpseudo, E, D) has pseu-
dorandom ciphertexts of length 	E(k) if for all non-uniform polynomial time
adversaries A we have

Pr
[
(pk, dk) ← Kpseudo(1k) : AEpk(·)(pk) = 1

]
≈ Pr

[
(pk, dk) ← Kpseudo(1k) : ARpk(·)(pk) = 1

]
,

where Rpk(m) runs c ← {0, 1}�E(k) and returns c. We require that the cryptosys-
tem have errorless decryption as defined earlier.

Trapdoor permutations imply pseudorandom cryptosystems, we can use the
Goldreich-Levin hard-core bit [21] of a trapdoor permutation to make a one-time

Perfect Non-interactive Zero Knowledge for NP 353

pad. In the concrete case of the BGN cryptosystem, we observe that it implies
hardness of factorization and it is possible to transform Rabin-encryption into a
pseudorandom cryptosystem. When working over elliptic curves, there are also
more direct constructions of pseudorandom cryptosystems based on the subgroup
decision assumption.
Tag-based simulation-sound trapdoor commitment A tag-based com-
mitment scheme has four algorithms. The key generation algorithm Ktag−com
produces a commitment key ck as well as a trapdoor key tk. There is a com-
mitment algorithm that takes as input the commitment key ck, a message m
and any tag tag and outputs a commitment c = commitck(m, tag; r). To open
a commitment c with tag tag we reveal m and the randomness r. Anybody can
now verify whether indeed c = commitck(m, tag; r). As usual, the commitment
scheme must be both hiding and binding.

In addition, to these two algorithms there are also a couple of trapdoor al-
gorithms Tcom, Topen that allow us to create an equivocal commitment and
later open this commitment to any value we prefer. We create an equivocal
commitment and an equivocation key as (c, ek) ← Tcomck,tk(tag). Later we
can open it to any message m as r ← Topenck,ek(c, m, tag), such that c =
commitck(m, tag; r). We require that equivocal commitments and openings are
indistinguishable from real openings. For all non-uniform polynomial time
adversaries A we have

Pr
[
(ck, tk) ← Ktag−com(1k) : AR(·,·)(ck) = 1

]
≈ Pr

[
(ck, tk) ← Ktag−com(1k) : AO(·,·)(ck) = 1

]
,

where R(m, tag) returns a randomly selected randomizer and O(m, tag) com-
putes (c, ek) ← Tcomck,tk(m, tag); r ← Topenck,ek(c, m, tag) and returns r and
A does not submit the same tag twice to the oracle.

Tag-based simulation-sound trapdoor commitments were first implicitly con-
structed in [15], and explicitly in [16, 28]. The tag-based simulation soundness
property is based on the notion of simulation soundness introduced by Sahai [32]
for NIZK proofs. Aside from [15, 16, 28], other constructions of tag-based simu-
lation sound commitments or schemes that can easily be transformed into tag-
based simulation-sound commitments have appeared in [11, 8, 20, 10, 24, 25]. The
tag-based simulation-soundness property means that a commitment using tag
remains binding even if we have made equivocations for commitments using
different tags. For all non-uniform polynomial time adversaries A we have

Pr
[
(ck, tk) ← K(1k); (c, tag, m0, r0, m1, r1) ← AO(·)(ck) : tag /∈ Q and

c = commitck(m0, tag; r0) = commitck(m1, tag; r1) and m0 �= m1

]
≈ 0,

where O(commit, tag) computes (c, ek) ← Tcomck,tk(tag), returns c and stores
(c, tag, ek), and O(open, c, m, tag) returns r ← Topenck,ek(c, m, tag) if (c, tag, ek)
has been stored, and where Q is the list of tags for which equivocal commitments
have been made by O.

354 J. Groth, R. Ostrovsky, and A. Sahai

Strong one-time signatures. We remind the reader that strong one-time
signatures allow a non-uniform polynomial time adversary to ask an oracle for
a signature on one arbitrary message. Then it must be infeasible to forge a
signature on any different message and infeasible to come up with a different
signature on the same message. Strong one-time signatures can be constructed
from one-way functions.

6.3 UC NIZK

The standard technique to prove that a protocol securely realizes a functionality
in the UC framework is to show that the ideal model adversary S can simulate
everything that happens on top of the ideal functionality. In our case, there are
two tricky parts. First, S may learn that a statement C has been proved and has
to simulate a UC NIZK argument π without knowing the witness. Furthermore,
if this honest prover is corrupted later then we learn the witness but must now
simulate the randomness of the prover that would lead it to produce π. The
second problem is that whenever S sees an acceptable UC NIZK argument π for
a statement C, then an honest verifier V will accept. We must therefore, input
a witness w to FNIZK so it can instruct V to accept.

The main idea in overcoming these hurdles is to commit to the witness w and
make a NIZK proof that indeed we have committed to a witness w so C(w) = 1.
If the NIZK proof has the honest prover state reconstruction property, then we
can simulate NIZK proofs and the prover’s random coins.

This leaves us with the commitment scheme. On one hand, when we simulate
UC NIZK arguments we want to make equivocal commitments that can be
opened to anything since we do not know the witness yet. On the other hand,
when we see a UC NIZK argument that we did not construct ourselves we want
to be able to extract the witness, since we have to give it to FNIZK.

We will construct such a commitment scheme from the tools specified in the
previous section. We use a tag-based simulation-sound trapdoor commitment
scheme to commit to each bit of w. If w has length 	 this gives us commitments
c1, . . . , c�. For honest provers we can use the trapdoor key tk to create equiv-
ocal commitments that can be opened to any bit we like. This enables us to
simulate the commitments of the honest provers, and when we learn w upon
corruption, we can simulate the randomness they could have used to commit to
the witness w.

We still have an extraction problem, it is not clear that we can extract a
witness from tag-based commitments created by a malicious adversary. To solve
this problem we choose to encrypt the openings of the commitments. Now we
can extract witnesses, but we have reintroduced the problem of equivocation. In
a simulated commitment we may know two different openings of a commitment
ci to respectively 0 and 1, however, if we encrypt the opening then we are stuck
with one possible opening. This is where the pseudorandomness property of the
cryptosystem comes in handy. We can simply make two encryptions, one of an
opening to 0 and one of an opening to 1. Since the ciphertexts are pseudorandom,
we can open the ciphertext containing the opening we want and claim that

Perfect Non-interactive Zero Knowledge for NP 355

the other ciphertext was chosen as a random string. To recap, the idea so far
to commit to a bit b is to make a commitment ci to this bit, and create a
ciphertext ci,b containing an opening of ci to b, while choosing ci,1−b as a random
string.

The commitment scheme is equivocable, however, again we must be careful
that we can extract a message from an adversarial commitment. The problem
is that since we equivocate commitments for honest provers it may be the case
that the adversary can produce equivocable commitments. This means, the ad-
versary can produce some simulation sound commitment ci and encryptions
ci,0, ci,1 of openings to respectively 0 and 1. To resolve this issue we will se-
lect the tags for the commitments in a way so the adversary is forced to use
a tag that has not been used to make an equivocable commitment. When an
honest prover is making a commitment, we will select keys for a strong one-
time signature scheme (vk, sk) ← Ksign(1k). We will use tag = (vk, C) when
making the commitment ci. The verification key vk will be published together
with the commitment, and we will sign the commitment (as well as something
else) using this key. Since the adversary cannot forge signatures, it must use
a different tag, and therefore the commitment is binding and only one of the
ciphertexts can contain an opening of ci. This allows us to establish simulation
soundness.

If the adversary corrupts a party that has used vk earlier, then it may indeed
sign messages using vk and can therefore use vk in the tag for commitments.
However, since we also include the statement C in the tag for the commitment
using vk, the adversary can only create an equivocable commitment in a UC
NIZK argument for the same statement C. We will observe that in this particular
case we do not need to extract the witness w, because we can get it during the
corruption of the prover.

Finally, in order to make the UC NIZK argument perfect zero-knowledge we
wrap all the commitments ci and the ciphertexts ci,b inside a perfectly hiding
commitment c. In the simulation, however, we generate the key for this com-
mitment scheme in a way such that it is instead a cryptosystem and we can
extract the plaintext. This last step is only added to make the UC NIZK argu-
ment perfect zero-knowledge, it can be omitted if perfect zero-knowledge is not
needed.

The resulting protocol can be seen in Figure 4. We use the notation from
Section 6.2.

We prove the following theorems in the full paper [26].

Theorem 4. The protocol in Figure 6 securely realizes FNIZK in the FCRS-
hybrid model.

Theorem 5. The UC NIZK argument in Figure 4 is perfect zero-knowledge.

Corollary 1. Bilinear groups as described in Section 3 for which the decisional
subgroup assumption holds imply the existence of a non-interactive perfect zero-
knowledge protocol that securely realizes FNIZK.

356 J. Groth, R. Ostrovsky, and A. Sahai

CRS generation:
1. hk ← Khiding(1k)
2. (ck, tk) ← Ktag−com(1k)
3. (pk, dk) ← Kpseudo(1k)
4. (σ, τ) ← S1(1k)
5. Return Σ = (hk, ck, pk, σ)

Statement: A circuit C and a claim that there exists input wires w so C(w) = 1.
Proof: On input (Σ, C, w).

1. Check C(w) = 1 and return failure if not
2. (vk, sk) ← Ksign(1k)
3. For i = 1 to � select ri at random and let ci = commitck(wi, (vk, C); ri)
4. For i = 1 to � select Rwi at random and set ci,wi = Epk(ri; Rwi) and

choose ci,1−wi as a random string.
5. Choose r at random and let c = comhk(c1, c1,0, c1,1, . . . , c�, c�,0, c�,1; r)
6. Create a NIZK argument π for the statement that there exists w such

that C(w) = 1 and there exists randomness so c has been produced as
described in steps 3,4 and 5.

7. s ← signsk(C, vk, c, π)
8. Return Π = (vk, c, π, s)

Verification: On input (Σ, C, Π)
1. Parse Π = (vk, c, π, s)
2. Verify that s is a signature on (C, vk, c, π) under vk.
3. Verify the NIZK argument π
4. Return 1 if all checks work out, else return 0

Fig. 4. UC NIZK argument

Common reference string: On input (start,sid) run Σ ← K(1k).
Send (crs,sid, Σ) to all parties and halt.

Fig. 5. Protocol for UC NIZK common reference string generation

Proof: Party P waits until receiving (crs,sid, Σ) from FCRS .
On input (prove,sid, ssid, C, w) run Π ← P (Σ, C, w). Output
(proof,sid, ssid, Π).

Verification: Party V waits until receiving (crs,sid, Σ) from FCRS .
On input (verify,sid, ssid, C, Π) run b ← V (Σ, C, Π). Output
(verification,sid, ssid, b).

Fig. 6. Protocol for UC NIZK argument

References

1. William Aiello and Johan H̊astad. Perfect zero-knowledge languages can be recog-
nized in two rounds. In Proceedings of FOCS ’87, pages 439–448, 1987.

2. Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninter-
active zero-knowledge. SIAM Jornal of Computation, 20(6):1084–1118, 1991.

3. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge
and its applications. In proceedings of STOC ’88, pages 103–112, 1988.

Perfect Non-interactive Zero Knowledge for NP 357

4. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ci-
phertexts. In proceedings of TCC ’05, LNCS series, volume 3378, pages 325–341,
2005.

5. Gilles Brassard, David Chaum, and Claude Crèpeau. Minimum disclosure proofs
of knowledge. JCSS, 37(2):156–189, 1988.

6. Gilles Brassard and Claude Crèpeau. Non-transitive transfer of confidence: A
perfect zero-knowledge interactive protocol for sat and beyond. In Proceedings of
FOCS ’86, pages 188–195, 1986.

7. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In proceedings of FOCS ’01, pages 136–145, 2001. Full paper available
at http://eprint.iacr.org/2000/067.

8. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In proceedings of
STOC ’02, pages 494–503, 2002. Full paper available at http://eprint.iacr.org/
2002/140.

9. Ivan Damg̊ard. Non-interactive circuit based proofs and non-interactive perfect
zero-knowledge with proprocessing. In proceedings of EUROCRYPT ’92, LNCS
series, volume 658, pages 341–355, 1992.

10. Ivan Damg̊ard and Jens Groth. Non-interactive and reusable non-malleable com-
mitment schemes. In proceedings of STOC ’03, pages 426–437, 2003.

11. Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,
and Amit Sahai. Robust non-interactive zero knowledge. In proceedings of
CRYPTO ’01, LNCS series, volume 2139, pages 566–598, 2002.

12. Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Non-interactive
zero-knowledge: A low-randomness characterization of np. In proceedings of ICALP
’99, LNCS series, volume 1644, pages 271–280, 1999.

13. Alfredo De Santis, Giovanni Di Crescenzo, and Giuseppe Persiano. Randomness-
optimal characterization of two np proof systems. In proceedings of RANDOM ’02,
LNCS series, volume 2483, pages 179–193, 2002.

14. Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti Yung.
Image density is complete for non-interactive-szk. In proceedings of ICALP ’98,
LNCS series, volume 1443, pages 784–795, 1998.

15. Giovanni Di Crescenzo, Yvail Ishai, and Rafail Ostrovsky. Non-interactive and
non-malleable commitment. In proceedings of STOC ’98, pages 141–150, 1998.

16. Giovanni Di Crescenzo, Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Ef-
ficient and non-interactive non-malleable commitment. In proceedings of EURO-
CRYPT ’01, pages 40–59, 2001.

17. Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. SIAM
J. of Computing, 30(2):391–437, 2000. Earlier version at STOC ’91.

18. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs under general assumptions. SIAM J. Comput., 29(1):1–28, 1999. Earlier
version entitled Multiple Non-Interactive Zero Knowledge Proofs Based on a Single
Random String appeared at FOCS ’90.

19. Lance Fortnow. The complexity of perfect zero-knowledge. In Proceedings of STOC
’87, pages 204–209, 1987.

20. Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge
protocols using signatures. In proceedings of EUROCRYPT ’03, LNCS series, vol-
ume 2656, pages 177–194, 2003. Full paper available at http://eprint.iacr.org/
2003/037.

21. Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way func-
tions. In proceedings of STOC ’89, pages 25–32, 1989.

358 J. Groth, R. Ostrovsky, and A. Sahai

22. Oded Goldreich, Rafail Ostrovsky, and Erez Petrank. Computational complexity
and knowledge complexity. SIAM J. Comput., 27:1116–1141, 1998.

23. Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Can statistical zero knowledge
be made non-interactive? or on the relationship of szk and niszk. In CRYPTO ’99,
LNCS series, volume 1666, pages 467–484, 1999.

24. Jens Groth. Honest verifier zero-knowledge arguments applied. Dissertation Series
DS-04-3, BRICS, 2004. PhD thesis. xii+119 pp.

25. Jens Groth. Cryptography in subgroups of Z∗
n. In proceedings of TCC ’05, LNCS

series, volume 3378, pages 50–65, 2005.
26. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero-

knowledge for np. ECCC Report TR05-097, http://eccc.uni-trier.de/
eccc-reports/2005/TR05-097/index.html, 2005.

27. Joe Kilian and Erez Petrank. An efficient noninteractive zero-knowledge proof
system for np with general assumptions. Journal of Cryptology, 11(1):1–27, 1998.

28. Philip D. MacKenzie and Ke Yang. On simulation-sound trapdoor commitments.
In proceedings of EUROCRYPT ’04, LNCS series, volume 3027, pages 382–400,
2004. Full paper available at http://eprint.iacr.org/2003/252.

29. Rafail Ostrovsky. One-way functions, hard on average problems, and statistical
zero-knowledge proofs. In Proceedings of Structure in Complexity Theory Confer-
ence, pages 133–138, 1991.

30. Rafael Pass. On deniability in the common reference string and random oracle
model. In proceedings of CRYPTO ’03, LNCS series, volume 2729, pages 316–337,
2003.

31. Rafael Pass and Abhi Shelat. Characterizing non-interactive zero-knowledge in the
public and secret parameter models. In proceedings of CRYPTO ’05, LNCS series,
2005.

32. Amit Sahai. Non-malleable non-interactive zero-knowledge and adaptive chosen-
ciphertext security. In proceedings of FOCS ’01, pages 543–553, 2001.

33. Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero knowledge.
J. ACM, 50(2):196–249, 2003.

Language Modeling and
Encryption on Packet Switched Networks�

Kevin S. McCurley

Google

Abstract. The holy grail of a mathematical model of secure encryption
is to devise a model that is both faithful in its description of the real
world, and yet admits a construction for an encryption system that fulfills
a meaningful definition of security against a realistic adversary. While
enormous progress has been made during the last 60 years toward this
goal, existing models of security still overlook features that are closely
related to the fundamental nature of communication. As a result there
is substantial doubt in this author’s mind as to whether there is any
reasonable definition of “secure encryption” on the Internet.

1 Introduction

In any area of science there is a fundamental tension between the desire to de-
scribe the real world with a model that is accurate in detail, vs. the desire to
use models that facilitate precise mathematical reasoning. In the case of cryp-
tology, if a model fails to describe the real-world application, it leaves room for
attacks in the real world that were not anticipated by the model itself. This
has been highlighted in recent years by the discovery of multiple “side-channel
attacks” that are very effective against real-world systems, but usually fall out-
side the scope of existing security models. Examples include algorithmic timing
analysis [12], differential power analysis [13], protocol fault analysis [4], and dif-
ferential fault analysis[3]. There is at least anecdotal evidence that many other
side channel attacks exist (e.g., RF and acoustic attacks) for popular models of
security. Unfortunately, a security model is successful only to the extent that
it accurately describes the process and the capabilities of the adversaries; any
omission, oversight, or ambiguity in this may properly be regarded as a weakness
of the model itself.

Micali and Reyzin [14] have recently sought to address some of the deficiencies
in current models of encryption by devising a corresponding model for physically
observable cryptography. They proposed an extension to the complexity-theoretic
model to embrace the notion that cryptographic algorithms are typically exe-
cuted in a physical environment of a computer. In so doing, they sought to
address the deficiencies that have arisen from the aforementioned side-channel
attacks.

In this work I will address a different deficiency of current models, namely
the failure to model conveyance of semantic meaning through the physical act
� Updates to this paper may appear at http://mccurley.org/papers/traffic/.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 359–372, 2006.
c© International Association for Cryptologic Research 2006

360 K.S. McCurley

of communication. Just as the physical act of computation has side effects that
are usable to a cryptanalyst, so too does the physical act of communication
produce features that can be used to the advantage of the cryptanalyst. I will
develop several examples of the phenomenon to demonstrate my point, but one
obvious example is the encoding of communication into packets for transmission
on a packet-switched network. It has been observed by multiple others (see Sec-
tion 6) that the packetization of communication often leaks information about
the content. While it may not leak the exact contents of the packets themselves,
it leaks knowledge about the communication, and provides a tempting target for
cryptanalysis.

The goal of this work is perhaps more modest than that of Micali and Reyzin,
since I do not put forward any reasonable model under which a secure cryptosys-
tem could be constructed. Instead, I will advance the view that the structure of
the Internet as we know it may actually preclude the existence of any reasonable
model for completely secure encryption. Given the degree to which society has
come to depend upon the Internet, this is a startling possibility. Moreover, I will
give examples to suggest that the phenomena is more general than just packet
switched networks, and arises from many forms of communication via language.

While optimistic cryptologists should and will continue their quest for per-
fectly secure systems, there is no a priori reason why such a thing has to exist.
Indeed, the entire framework of complexity-based security arguments would be
radically changed if it turns out that P=NP, though it may also be argued that a
polynomial separation between the capabilities of the legitimate user and the ad-
versaries is sufficient for practical considerations. Moreover, the entire approach
of complexity-theoretic security was an attempt to get around the limitation im-
posed by Shannon’s result on perfect secrecy, and has proved to be remarkably
effective in practice. It remains to be seen whether there is a similar approach
that will mitigate the effects induced by the process of communication.

The point of view taken in this paper is partly historical and partly philosoph-
ical. An outline of the paper is as follows. In the next section we shall consider
the definition of communication, after which we will present some examples of
communication and how the process can leak knowledge. Following that we will
propose a framework from which a partial security model can be constructed,
without dwelling on the details. In fact, due to space and time constraints, I
make no attempt describe a complete security model, but focus instead on the
nature of the problem and why it may be impossible to construct such a model.
I lay no claims on theorems regarding the possible existence or nonexistence of
provably secure encryption. My hope is that this work will at least point the way
toward better understanding of the underlying process of communication that
we seek to model in the science of cryptology.

2 Mathematical Models of Encryption

During the last 60 years of mathematical research in cryptology, remarkable
progress has been made in advancing cryptology to a science from what was

Language Modeling and Encryption on Packet Switched Networks 361

once a black art. Most of the fundamental work has centered on the analysis
of three models, namely information-theoretic security [19], complexity-based
security [8], and quantum-theoretic security [2]. The goal of these is to construct
a mathematical model of security, characterize the capabilities of an adversary,
and (hopefully), provide a system that achieves some level of security under
reasonable assumptions.

In both the information-theoretic model and the complexity-theoretic models
of security, a secure cryptosystem is typically defined as a family of functions
Ek : M → C that maps plaintexts m ∈ M to ciphertexts c ∈ C. The family of
encryption functions is indexed by the key k ∈ K for some set of keys K. In
Shannon’s original formulation [19], an encryption system is said to have perfect
secrecy if the adversary gains no more information about the plaintext from
observing the ciphertext, i.e., Pk(p|c) = Pk(p) for all keys k ∈ K. The major
result that Shannon proved about this is that perfect secrecy requires that the
key have as much entropy as the plaintext. This is often cited as a negative
result, as it implies that substitution of secrecy of one piece of information (the
plaintext) for another (the key) does not effectively result in any savings for the
amount of secret information. This fact has motivated a lot of the research that
has followed.

The example of the one-time pad is generally held up as the prototypical
example of an encryption system that satisfies the perfect secrecy requirement,
but in fact this holds only for messages that have constant length. The reason for
this is obvious; the plaintext and the ciphertext are in fact the same length, so
knowledge of the length of the ciphertext immediately reveals the length of the
plaintext. While most theoreticians sweep this problem aside by simply assuming
that all messages are the same size, I believe that this problem is in fact related
to an important weakness in existing models.

In practice, the limitation of the one-time pad to message spaces in which
all messages have the same length is at least as troublesome as the requirement
for a large source of secure key bits. Moreover, the limitation is inherent to the
definition of perfect secrecy, as is evidenced by the seminal observation of Chor
and Kushilevitz [5] that it is impossible to construct an encryption system over
a countably infinite message space that has information-theoretically perfect
secrecy. Note that Shannon’s original formulation incorporates an underlying
probability distribution on plaintexts. This was reformulated in [5] by stating
that for every pair of plaintexts p1, p2, P (c|p1) = P (c|p2), or in other words,
the probability of observing a given ciphertext is independent of the plaintext
that generates it. Under this definition, they proved that there is no encryption
system over a countably infinite message space that can achieve perfect secrecy.
The implicit suggestion is that this is due to leakage of the length of the plaintext,
and that this is unavoidable.

A primary driving force in the development of the complexity-theoretic mod-
els of security was to address the fact that just because information about the
plaintext would be present in the ciphertext need not compromise the plaintext,
provided the adversary was constrained in their ability to compute the implicit

362 K.S. McCurley

information. A major breakthrough in this line of research was the construc-
tion by Goldwasser and Micali[10] of a semantically secure encryption system. A
semantically secure encryption system is based on the notion of indistinguisha-
bility of ciphertexts; given two plaintexts it should be infeasible to distinguish
which of them gave rise to a given ciphertext. A fundamental part of their con-
struction was the realization that randomness is necessarily a part of any secure
encryption system.

Unfortunately, it was proved by Oded Goldreich[9] that a semantically secure
encryption scheme must also leak information about the length of the plaintext.
A related problem lies at the heart of indistinguishability, namely that it does
not address the issue of whether the eavesdropper can determine whether com-
munication takes place, but only which message was sent. The mere fact that an
eavesdropper observes the communication of bits from one party to another is
in itself information, and knowledge about the number of bits is simply further
leakage. The problem of leaking the size of the plaintext is often swept aside in
mathematical treatments with the casual remark to simply pad or packetize all
messages to be the same length. This approach was refuted in [9], but the prob-
lem has been largely ignored since then. It should be noted that Shannon [19]
also chose not to address the problem of hiding the existence of communication,
though he explicitly mentioned the distinction.

3 The Nature of Communication

In addressing the original problem of providing a reasonable definition for secure
encryption of communication, it is prudent to consider what constitutes commu-
nication in the first place. In its purest form, communication is an amorphous
concept, since the term is used to describe a variety of physical behaviors and
other features in addition to the encoding of symbols. Moreover, it’s not even
clear what is being transferred in the act of communication. The problem of
defining communication cuts very close to the often-cited DIKW hierarchy of
data, information, knowledge, and wisdom. The definitions of such terms are
hotly debated, lying on the boundary between philosophy, mathematics, and
computer science. For a philosopher, knowledge is a topic in epistemology, and
consists of thoughts that are true, believed, and justified. For a mathematician,
knowledge is a concept in modal or temporal logic. For a computer scientist,
knowledge represents the inference from and application of data and information,
whereas information contains only answers to “who what where” questions. For
followers of artificial intelligence, knowledge represents a degree of uncertainty.
All of these points of view are probably relevant to the study of cryptology.

Consider the sentence “Why are you doing that?”. At one level it can be
thought of as a string of symbols (data). At a higher layer it consists of a sequence
of words representing concepts (information). At an even higher layer, it has
meaning as a question, though only within a context. The mere presence of
the symbol ’?’ indicates that it is a question, but the mapping of interpretations
from one layer to the next is seldom this transparent. The use of the term “that”

Language Modeling and Encryption on Packet Switched Networks 363

indicates that the sentence only makes sense in a broader context, with reference
either through physical proximity or through reference to an earlier information
state.

Communication is often associated with action. If this is a sentence uttered
from one person to another, then we probably should expect a response from the
other party to shortly follow. If a response does follow, then we might expect it to
be a response to the question. If the question is sent over a radio broadcast, then
no such response is likely, since the channel does not support it. If the speaker
of this sentence is waving their arms wildly then it probably has a different
meaning than if the person is simply arching an eyebrow. All of these nuances
can be considered elements of a model of communication, and all are potentially
relevant to a cryptanalyst.

Unfortunately, models of secure encryption typically assume that the crypt-
analyst is restricted to only the encoded symbols, or at best, to the concepts
represented by the grouping of symbols. Cryptologic research has typically taken
information theory as the the starting point for characterizing communication,
starting from the seminal work of Claude Shannon. In this characterization, mes-
sages are emitted as blocks of symbols by the sender according to some known
probability distribution, and that the problem is simply to conceal which of the
possible messages was emitted. In practice, communication is much more compli-
cated than this. Shannon’s original model of communication was first published
as a paper [17], in which he said:

The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another
point. Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or conceptual
entities. These semantic aspects of communication are irrelevant to the
engineering problem.

Shannon’s paper was republished the following year as part of a book, with
introductory material by his coauthor, Warren Weaver [18]. The introductory
material by Weaver alludes to the limitations of Shannon’s definition for com-
munication, and states that:

In fact, two messages, one of which is heavily loaded with meaning and
the other of which is pure nonsense, can be exactly equivalent, from the
present viewpoint, as regards information. It is this, undoubtedly, that
Shannon means when he says that “the semantic aspects of communica-
tion are irrelevant to the engineering aspects.”

Weaver casts Shannon’s theory as one layer of a more complex set of phe-
nomena. Many of the advancements of the information age can be traced to
the fundamental contributions of Shannon; this separation of meaning from
encoding and transport is what allowed engineers to concentrate on a useful
paradigm for technology, while ignoring the incredibly complex nuances of the
underlying conveyance of concepts. Weaver identified three layers of problems in
communication:

364 K.S. McCurley

Level A. How accurately can the symbols of communication be trans-
mitted? (the technical problem)

Level B. How precisely do the transmitted symbols convey the desired
meaning? (the semantic problem)

Level C. How effectively does the received meaning affect conduct in
the desired way? (the effectiveness problem)

Shannon and Weaver’s separation of the communication problem into layers
is analogous to the invention of written language, where complex human com-
munication processes were reduced to a sequence of symbols on a page. The
result was enormously powerful in influencing the nature of human communica-
tion because it eliminated the need for humans to be in physical proximity in
order to communicate, but at the same time, something was lost in communica-
tion by the conversion to symbols. For example, a sentence that is spoken while
waving arms wildly in the air has different semantic meaning than the same
sentence that is uttered with arms crossed. Interpersonal communication often
applies a secondary semantic interpretation or decoding of the communication
that augments and corrects errors and omissions made from the spoken symbols.
It should be noted that this nuance of definition for communication is also not
limited to communication between humans. For example, it is easy to imagine
how a computer will exhibit different characteristics of communication when it
is in distress than when it is in a normal mode of operation.

4 The Nature of Cryptanalysis

The purpose of communication is to convey something, and in some cases that is
merely to convey data. In this case, communication is thought of as stateless. In
other cases, the goal is to convey something more, namely information that can
be acted upon. In still other cases, the purpose is to create common knowledge
out of knowledge. Our difficulty in defining encrypted communication is probably
closely related to this confusion.

By breaking a communication system into layers, Shannon and Weaver were
able to separate the problem of conveying ideas from that of conveying a sym-
bolic representation of language. In Shannon’s work, the semantic meaning of
communication is separated from the problem of conveying it, since this was
embodied in an encoding layer that takes place before and after the physical act
of communication that was Shannon’s focus. Unfortunately, from the point of
view of a cryptanalyst, the semantic meaning of the underlying communication
may be precisely what they are interested in, and the actual symbols used to
convey the ideas may be of only peripheral interest. Cryptanalysis typically has
a purpose, and the act of cryptanalysis is the gathering of actionable knowl-
edge for this purpose. Thus while a cryptanalyst may be interested in recovering
the credit card of a targeted person, they may also be interested in knowing
what the person is buying, or of discovering their social preferences, or of simply
knowing that a credit card was used. There is no direct way to quantify the
range of semantic concepts that the cryptanalyst may be interested in, and in

Language Modeling and Encryption on Packet Switched Networks 365

fact the information content of semantic information that may be derived from
context of the communication can be arbitrarily large relative to the amount of
information contained in the communication itself.

To illustrate the importance of semantic meaning in the process of crypt-
analysis, consider the following questions that a cryptanalyst might ask about
communication on the Internet:

– What language is being spoken in a telephone call?
– Does Internet traffic contain VoIP or Skype traffic?
– Does Internet traffic use UDP or TCP?
– Is the same email being sent to multiple recipients?
– What is the nature of the relationships between the two parties in commu-

nication? Is one in command?
– What is the likelihood that a buy order will be issued in the next few seconds

by a stock trader?

These are completely natural questions for a cryptanalyst to ask, and I claim
that in each case there are plausible scenarios where the questions can be an-
swered accurately with high probability, using observations of the physical act
of communication.

It is tempting to define cryptanalysis as an attempt to create shared knowledge
out of information. Unfortunately, it is completely unclear what falls within
the domain of knowledge that is relevant to a given communication, since that
requires us to characterize the goals of the eavesdropper relative to the two
communicating parties who are his adversaries. It is almost certainly the case
that any reasonable definition along these lines will need to take into account the
state of knowledge of the eavesdropper before and after the communication, and
the way in which it changed (either temporally, logically, or probabilistically).
What is clear is that the current approach based only on information seems
inadequate for accurately describing many situations.

5 The Use of Fragmentation in Communication

The original motivation for this work was to model the situation of two com-
puters communicating privately over the Internet, and to understand the in-
herent limitations of using IPSEC to encrypt communication on the Internet.
One of the fundamental features of Internet communication is that it is a packet
switched network, in which the communication medium is shared between all
parties connected to the network, and that communication is fragmented to en-
able congestion control and buffer management in intermediate routers. This
feature of fragmentation of communication also arises in spoken and written
language. Such “natural” language is typically composed of a sequence of dis-
tinct language elements (paragraphs, sentences, and words) that are themselves
encoded into sequences of individual symbols or sounds.

To see why this the process of fragmentation is relevant to cryptanalysis,
consider the following illustrative example. Suppose we are given the following

366 K.S. McCurley

fragment of encrypted text in which individual characters are encrypted but
word breaks are exposed:

####
#######

########

As a cryptanalyst we might begin by noticing that two of the words are only a
single letter. If the original text is in English, we might expect these words to
be either the letter “I” or the letter “A”. We might next notice that the text is
arranged visually in a layout that is commonly used for quotations. The last line
that is flush right might therefore be guessed to be a name, which greatly restricts
the vocabulary. Knowing that this person is likely to be a famous person, we
might be able to recover the most popular quotations of such people and apply
a process of elimination. Even if the quotation was not in our list, we could
apply basic knowledge of common sentence constructions to form a set of most
likely candidates. If we hypothesis that the first letter is indeed ’A’, then we
might further hypothesize that the next word is either an adjective or a noun.
By knowing something about the context of the communication, we may form
a hypothesis about the candidates for each word, and in the end arrive at a
probability distribution on potential plaintexts that has a relatively low entropy
from among all possible messages that fit the observed pattern.

There are several observations to be made from this simple example. First,
our knowledge of word breaks provides a huge advantage for inferring the actual
content of the message. Second, our knowledge of the underlying language and
conventions for its usage assists us in identifying a few basic structures. Each
of these factors interact with each other and increase our level of confidence in
predicting the content of the message.

As another simple example, I took three versions of Tolstoy’s novel “Anna
Karenina” written in English, French, and German. These should be more or
less semantically the same message, with the only difference being that they are
expressed in different languages. In order to test them to see if they could be
distinguished from each other, I simply calculated the distribution of values of
the lengths of the words. The result is shown in Figure 1. The data clearly shows
a distinction between French and the other two languages.

Of course one should probably object to the relevance of this experiment since
it’s hard to imagine a communication system that exposes word boundaries in
language. On the other hand, nearly all existing text instant messaging protocols
operate on the basis of buffering entire lines, which are often aligned with sen-
tence boundaries. In this case the packets that would be sent would likely reveal
the lengths of the sentences. The amount of information being leaked is less in
this case, but for all we know it might still be possible to reliably distinguish
between the topics of sports vs. travel, or whether the parties are male, or to
make a good guess on the age of the sender. Moreover, there are numerous other
examples where packetization of communication can reveal knowledge about the
application.

Language Modeling and Encryption on Packet Switched Networks 367

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 2 4 6 8 10 12 14

English
French

German

Fig. 1. Distribution of word lengths between three translations of the novel “Anna
Karenina”. Note that English and German have distinctly longer words on average
than French, suggesting that it may be possible to distinguish French from the other
two languages if word lengths are exposed through the communication process.

6 Characteristics of Internet Communication

Two of the major characteristics that are present in Internet communications
are layering and packetization. The principal of layering is ubiquitous in engi-
neering of complex tasks such as networking, since it isolates the many different
requirements from each other, and provides a layer of abstraction for one layer
to address another. By separating the routing, transmission, ordering, buffering,
physical device drivers, and error correction into different layers, it simplifies
the maintenance of software systems, improves their reliability, and facilitates
extensions to new technologies such as wireless.

The principle of packetization is probably the biggest single contributor to the
success of the Internet, because the Internet is a shared network that provides
transport for all parties who connect to it. By regulating and merging the flow
of packets from different sources, the Internet provides congestion control and a
degree of fairness in use of the shared network. It also facilitates buffering, error
correction, and retransmission. Without packetization there would be no sharing,
and by providing a shared network for multiple applications, the Internet greatly
increased the efficiency of communication. Much of the value was realized due to
the fact that different applications with different quality of service requirements
can use the same underlying network infrastructure. Extreme examples of service
requirements arise from voice over IP (VoIP) and HTTP. The primary quality
of service requirement for VoIP is a high probability of delivery and low latency,
since any interruption or delay of voice results in a poor user experience. By

368 K.S. McCurley

contrast, HTTP has a requirement for high throughput, since people would like
to download more and more sophisticated pieces of content.

6.1 Cryptographic Implications

The analogy of human natural language to Internet traffic is actually a very
strong one, for the simple reason that word breaks are very much like packet
boundaries, in that they reflect the semantics of the underlying communication.
For example, in a persistent HTTP connection, the images embedded in a page
are likely to be transmitted in packets that are separate from the packets con-
taining the HTML page itself. In an interactive ssh session, a screen refresh
event will often generate a packet containing as much of the refresh as will fit in
a packet. This is due to the fact that within an application, individual send()s
of information to the network are often broken into natural units of information
that are defined by the application.

There are a number of complicated factors that determine whether an individ-
ual call by the program to send() generates a packet into the network, including
the state of existing buffers, whether the application uses TCP or UDP, whether
the operating system has properly implemented the TCP PUSH option, and
whether the application chose to disable Nagle’s algorithm on a TCP connection.
In many cases it is still relatively easy to determine from the size and number of
packets the number and size of send() calls in the application [11]. As a result,
the “information breaks” of an application that correspond to word breaks or
sentence breaks in natural language are often aligned to packet boundaries, and
are therefore visible to an eavesdropper.

One feature of layering is that it provides the ability to address cryptographic
requirements at the layer where it is convenient to do so. Examples include SSH
at the application layer, SSL at the transport layer, IPSEC at the network layer,
and WEP at the media layer. On the other hand, layering tends to introduce
cryptographic weaknesses as well. For example, Bellovin [1] has observed that
IP and TCP headers contain hints about the nature of the underlying traffic,
and this largely results from layering, since quality of service is generally only
implemented at the IP layer.

In addition to observations from headers, there are other signals present in
packets from their timings, size, and patterns of traffic. For example, observations
of SSH interactive login sessions were used to infer keystroke timings in [20],
allowing them to mount an effective attack on passwords in SSH. A number of
other examples were given by Bellovin [1].

The techniques of classifying traffic by characteristics that are not shielded by
encryption have been developed by numerous authors, including Sun et. al. [21],
Moore and Zuev [15], Zhang and Paxson [25], and Danezis [7, 6]. and Wright
et. al. [24]. In spite of the increasing number of published attacks using char-
acteristics of packet-switched networks, there has been very little discussion of
this in the theoretical cryptography literature. Moreover, as was pointed out in
section 2, current models of encryption simply avoid the problem of message
size.

Language Modeling and Encryption on Packet Switched Networks 369

One application on the Internet that is rapidly gaining in popularity is voice
over IP (VoIP). This protocol is extremely sensitive to latency and lost packets,
so there are a number of optimizations and quality of service provisions for this
service. Unfortunately some of these conflict with the security requirements of
personal voice communication [23]. For example, VoIP voice packets are small
(10-50 byte payload) and are therefore pretty easily recognized by their length.
They are also likely to contain quality of service specifications in their headers.
One interesting issue arises from a feature of VoIP that is designed to limit
the bandwidth requirement for VoIP. In most phone conversations, only one
end of the conversation will be talking at any given time. Hence it is only really
important to send data in one direction most of the time, and in order to optimize
bandwidth usage, VoIP supports something called silence suppression, where no
packets are transmitted from the side that is silent. This feature has significant
security implications, since this is precisely the kind of language break that was
described in section 5!

7 Mathematical Models of Packetized Communication

Following up from the previous discussion, we can now derive some axioms that
any model of packetized communication should follow in order to provide a
meaningful model for cryptanalysis.

Axiom 1. A model of communication must include all sources and recipients of
transmitted data. Consider for example a two-way communication between
two people. A conversation may consist of questions, as well as responses to
actions performed on the receipt of previous information. If we neglect to
include these in our model, then we neglect a major source of information
that is available to the eavesdropper.

Axiom 2. Communication is packetized. One way of looking at this is that com-
munication has two states, namely when information is being transmitted
and when it is not. Another way of saying this is that the sender is always
sending; either real information or the null symbol, and the transmission of
the null symbol is always detectable to the eavesdropper.

Axiom 3. Communication has state associated with it in both sender and re-
ceiver. This state changes as a result of receiving information.

Axiom 4. Communication has a temporal dimension, implying both an order-
ing and a distribution.

Axiom 5. Communication may be coupled to observable actions or states of the
senders and recipients. In some cases traffic analysis may not be available to
determine the source or destination of communication.

A natural model for a bidirectional channel is that of a pair of coupled Markov
processes Xi, Yi where Xi and Yi are each dependent on Xj , Yj , j < i. Here
Xi, Yi are ternary random variables taking on the values 0,1,null. The question
of channel analysis is then to estimate the loss of information about Xi, Yi when
you are told when Xi, Yi take on null values. More elaborate models would

370 K.S. McCurley

incorporate characteristics that may be observed about the aggregate of values,
such as the notification that a packet payload is beginning, or that a packet was
fragmented, etc.

7.1 Keeping the Channel Full

The leakage of the length of the message may be regarded as a generalization
of the fact that if an adversary observes communication taking place between
two parties, then they gain some information that they were not previously in
possession of. This fundamental problem lies within a class of attacks commonly
referred to as “traffic analysis”. In practice this problem has been known for
a very long time, and countermeasures are routinely used in modern link en-
cryptors, by making sure that they always send information between sender and
receiver, inserting dummy information if necessary [22]. By doing so, they seek to
obscure the difference between actual communication and non-communication.

Unfortunately, the approach taken by link encryptors to “keep the channel
full” is infeasible on the Internet, due to the requirement that the communication
infrastructure serves the needs of multiple parties. In order for the Internet
to operate efficiently and in an economically practical way, all parties must
abstain from communicating except when they need to. One might ask how
much additional bandwidth would be required in order for everyone to “keep the
channel full”. It has been observed empirically that the topology of the Internet
connectivity graph has evolved as a sparse graph (e.g., see[16]), in which the
degree distribution follows a power-law distribution. Thus in order to connect
an Internet of n nodes, it appears that we require only O(n) edges to provide
a robust and scalable infrastructure for communication between potentially any
pair of nodes. By contrast, if we adopt the link encryptor approach of masking
the existence of communications by always communicating, we could potentially
require

(
n
2

)
edges in order for all n parties to be able to speak to each other. This

is perhaps a pessimistic number, since the real number is the number of edges
that a graph would require in order for there to be a collection of edge-disjoint
paths between any bipartite matching of nodes in the graph. Of course even if
the paths existed, we would still be left with the problem of finding them for
routing purposes; this problem is unfortunately NP-complete. In other words,
in order for the Internet to provide edge-disjoint paths that could be kept full
between arbitrary matchings of nodes, a substantial increase in investment would
be required.

8 Conclusions

The accumulated evidence of cryptanalysis through observation of communica-
tion points out that existing models of cryptographic security are lacking for at
least two reasons. First, they fail to take into account the physical process of
communication, in which the process of packetization is extremely important.
It’s almost certainly true that without packetization, the Internet could not have
had the impact that it has. Yet at the same time, packetization has been seen to

Language Modeling and Encryption on Packet Switched Networks 371

introduce numerous cryptographic weaknesses into communication, and there is
currently no practical mathematical model to analyze the degree of weakness or
within which we could prove anything about mitigating effects.

There is substantial doubt in the author’s mind as to whether there is a
reasonable balance that can be found between the quality of service demands
of Internet applications and the goals of theoretical cryptography to provide
an almost perfectly secure encryption methodology. It may turn out that it is
inevitable that a cryptanalyst can attain some new knowledge from observing
communication in some applications (notably those requiring low latency). If this
is the case, then future research will be needed to define and quantify exactly
how much knowledge will be leaked.

The second main point about theoretical models of cryptographic security is
that they seem to overlook the distinction between knowledge and information.
Shannon’s achievement was to separate them so that communication engineer-
ing could proceed without the need to worry about conveyance of knowledge.
Unfortunately, many cryptanalytic attacks take place at the knowledge layer of
the DIKM hierarchy, and existing models fail to take this into account.

In many ways, this paper may be regarded as being even more pessimistic than
that of Shannon, since I have argued that the nature of Internet communication
channels makes it inevitable that cryptanalysts will be able to gain knowledge
from passive eavesdropping. I would be happy if I could be proved wrong.

References

[1] Steven M. Bellovin. Probable plaintext cryptanalysis of the IP security protocols.
In Proc. of the Symp. on Network and Distributed System Security, pages 155–160,
1997.

[2] Charles Bennett, F. Bessette, Gilles Brassard, L. Salvail, and J. Smolin. Experi-
mental quantum cryptography. Journal of Cryptology, 5:3–28, 1992.

[3] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Advances in Cryptology, Proc. Crypto 1997, Lecture Notes in Computer
Science, pages 513–525. Springer-Verlag, 1997.

[4] Dan Boneh, Richard A. Demillo, and Richard J. Lipton. On the importance of
checking cryptographic protocols for faults. In Advances in Cryptology, Proc.
Eurocrypt 1997, volume 1233 of Lecture Notes in Computer Science, pages 37–51.
Springer-Verlag, 1997.

[5] Benny Chor and Eyal Kushilevitz. Secret sharing over infinite domains. In
Proceedings of Crypto ’89, Lecture Notes in Computer Science, pages 299–306,
Heidelberg, 1989. Springer-Verlag.

[6] George Danezis. Traffic analysis of the HTTP protocol over TLS. http://
homes.esat.kuleuven.be/∼gdanezis/TLSanon.pdf.

[7] George Danezis. Introducing traffic analysis: Attacks, defences and public policy
issues, 2005. http://homes.esat.kuleuven.be/∼gdanezis/TAIntro.pdf.

[8] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22:644–654, 1976.

[9] Oded Goldreich. A uniform-complexity treatment of encryption and zero-know-
ledge. Journal of Cryptology, 6:21–53, 1993.

372 K.S. McCurley

[10] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28:270–299, 1984.

[11] Amit Klein. Detecting and preventing HTTP response splitting and HTTP
request smuggling attacks at the TCP level. http://www.securityfocus.com/
archive/1/408135.

[12] Paul Kocher. Cryptanalysis of Diffie-Hellman, RSA, DSS, and other cryptosys-
tems using timing attacks. In Advances in Cryptology, Proc. Crypto ’95, LNCS,
pages 171–183. Springer-Verlag, 1995.

[13] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Ad-
vances in Cryptology, Proc. Crypto ’99, LNCS, pages 388–397, Heidelberg, 1999.
Springer-Verlag.

[14] Silvio Micali and Leonid Reyzin. Physically observable cryptography. In Theory
of Cryptography Conference, volume 2951 of LNCS, pages 278–296. Springer, 2004.

[15] Andrew W. Moore and Denis Zuev. Internet traffic classification using Bayesian
analysis techniques. In SIGMETRICS ’05, pages 50–60, 2005.

[16] M. E. J. Newman. The structure and function of complex networks. SIAM Review,
45:167–256, 2003.

[17] C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423,623–656, 1948.

[18] C. E. Shannon and Warren Weaver. The Mathematical Theory of Communication.
University of Illinois Press, 1949.

[19] Claude E. Shannon. Communication theory of secrecy systems. Bell Systems
Technical Journal, pages 656–715, 1949.

[20] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing analysis of
keystrokes and timing attacks on ssh. In Proc. USENIX Security Symposium,
pages 337–352, Washington, D.C., 2001.

[21] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell, Venkata N. Padman-
abhan, and Lili Qiu. Statistical identificatoin of encrypted web browsing traffic.
In Proc. IEEE Security and Privacy Symp., pages 19–30, 2002.

[22] V. L. Voydoc and Stephen Kent. Security mechanisms in high-level network pro-
tocols. ACM Computing Surveys, pages 135–171, 1983.

[23] Thomas J. Walsh and Richard Kuhn. Challenges in security voice over IP. IEEE
Security and Privacy, pages 44–49, May/June 2005.

[24] Charles Wright, Fabian Monrose, and Gerald M. Masson. HMM profiles for
network traffic classification. In ACM Conference on Computer and Communica-
tion Security, pages 9–15, 2004.

[25] Y. Zhang and V. Paxson. Detecting stepping stones. In Proc. 9th USENIX Secu-
rity Symposium, pages 171–184, 2000.

A Provable-Security Treatment
of the Key-Wrap Problem

Phillip Rogaway1 and Thomas Shrimpton2

1 Dept. of Computer Science, University of California, Davis, California 95616, USA
2 Dept. of Computer Science, Portland State University,

Portland, Oregon 97201, USA

Abstract. We give a provable-security treatment for the key-wrap problem, pro-
viding definitions, constructions, and proofs. We suggest that key-wrap’s goal
is security in the sense of deterministic authenticated-encryption (DAE), a no-
tion that we put forward. We also provide an alternative notion, a pseudorandom
injection (PRI), which we prove to be equivalent. We provide a DAE construc-
tion, SIV, analyze its concrete security, develop a blockcipher-based instantiation
of it, and suggest that the method makes a desirable alternative to the schemes
of the X9.102 draft standard. The construction incorporates a method to turn
a PRF that operates on a string into an equally efficient PRF that operates on
a vector of strings, a problem of independent interest. Finally, we consider IV-
based authenticated-encryption (AE) schemes that are maximally forgiving of
repeated IVs, a goal we formalize as misuse-resistant AE. We show that a DAE
scheme with a vector-valued header, such as SIV, directly realizes this goal.

1 Introduction

The American Standards Committee Working Group X9F1 has proposed four key-wrap
schemes in a draft standard known as ANS X9.102, and NIST has promulgated a request
for comments on the proposal [13]. The S/MIME working group of the IEEE had earlier
adopted a key-wrap scheme [17], and their discussions on this topic go back to at least
1997 [36]. NIST is considering specifying a key-wrap mechanism in their own series
of recommendations [M. Dworkin, personal communications]. But despite all this, the
key-wrap goal would seem to be essentially unknown to the cryptographic community.
No published paper analyzes any key-wrap scheme, and there is no formal definition
for key wrap in the literature, let alone any proven-secure scheme. Consequently, the
goal of this paper is to put the key-wrap problem on a proper, provable-security footing.
In the process, we will learn quite a bit that’s new about authenticated-encryption (AE).

Before proceeding it may be useful to give a very informal description of the key-
wrap goal, echoing the wording in [13, p. 1]. A key-wrap scheme is a kind of shared-key
encryption scheme. It aims to provide “privacy and integrity protection for specialized
data such as cryptographic keys, . . . without the use of nonces” (meaning counters or
random bits). So key-wrap’s raison d’être is to remove AE’s reliance on a nonce or
random bits. At least in the context of transporting cryptographic keys, a deterministic
scheme should be just as good as a probabilistic one, anyway. Another goal of key
wrap is to provide “integrity protection . . . for cleartext associated data, . . . which will
typically contain control information about the wrapped key” [13, p. 1].

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 373–390, 2006.
c© International Association for Cryptologic Research 2006

374 P. Rogaway and T. Shrimpton

CONTRIBUTIONS. We begin by offering a formal definition for what a key-wrap scheme
should do, defining a goal we call deterministic authenticated-encryption (DAE). A the-
sis underlying our work is that the goal of a key-wrap scheme is DAE. In a DAE scheme,
encryption deterministically turns a key, a header, and a message into a ciphertext. The
header (which may be absent, a string, or even a vector of strings) is authenticated but
not encrypted. To define security, the adversary is presented either a real encryption
oracle and a real decryption oracle (both are deterministic), or else a bogus encryption
oracle that just returns random bits and a bogus decryption oracle that always returns
an indication of invalidity. For a good DAE scheme, the adversary should be unable to
distinguish these possibilities. See Section 2.

Next we provide a DAE construction, SIV. (The acronym stands for Synthetic IV,
where IV stands for Initialization Vector.) The construction combines a conventional
IV-based encryption scheme (eg, CTR mode [27]) and a special kind of pseudorandom
function (PRF)—one that takes a vector of strings as input. We prove that SIV is a good
DAE, assuming its components are secure. See Section 3.

In practice one would want to realize SIV from a blockcipher, and so we show how
to turn a PRF f that operates on a single string into a PRF f∗ that takes a vector of
strings. Under our S2V construction, the cost of computing the PRF f∗ = S2V[f] on
a vector X = (X1, . . . , Xn) is at most the total cost to compute f on each compo-
nent Xi, and it can be considerably less, as the contribution from a component Xi can
be precomputed if it is to be held constant. See Section 4.

For a concrete alternative to the X9.102 schemes, we suggest to instantiate SIV
using modes CTR and CMAC∗ = S2V[CMAC], where CTR is counter mode [27]
and CMAC is an arbitrary-input-length variant of the CBC MAC [28]. The specified
mechanism removes unnecessary usage restrictions, improves efficiency, and provides
provable security. See Section 5.

Applications of DAEs go beyond the wrapping of keys. Many IV-based encryption
schemes, such as CBC, require an adversarially unpredictable IV. Experience has shown
that implementers and protocol designers often supply an incorrect IV, such as a con-
stant or counter. In a misuse-resistant AE scheme the aim is to do as well as possible
with whatever IV is provided. We formalize this goal and show that a DAE scheme that
takes a vector-valued header provides an immediate solution: just regard the IV as one
component of the header. Adopting this viewpoint, SIV can be regarded as an IV-based
AE scheme, one as efficient with respect to blockcipher calls as conventional two-pass
AE schemes like CCM [29] but more resilient to IV misuse. See Section 6.

Finally, we investigate the basic properties of DAEs. First, we give an alternative
characterization of DAEs. A pseudorandom injection (PRI) is like a blockcipher ex-
cept that the ciphertext may be longer than the plaintext (also, the message space
may be richer than {0, 1}n for some fixed n, and a header may be provided). We
prove PRIs equivalent to DAEs, up to a term that is negligible when the PRI is ade-
quately length-increasing. Next, we explain that the “all-in-one” definition we adopt for
DAEs is equivalent to a more conventional, two-requirement (privacy-plus-authenticity)
definition. Finally, we sketch a result validating the intuition that DAE-encrypting a
message that includes a random key provides semantic security. See Section 7.

A Provable-Security Treatment of the Key-Wrap Problem 375

WHY THIS GOAL? There are two main reasons to prefer DAE over conventional (prob-
abilistic or stateful) AE. First, DAE saves one from having to introduce random bits or
state in contexts where these measures are infeasible or unnecessary. Relatedly, DAE
saves on bandwidth, since no nonce or random value need be sent.

That said, in many contexts where one would think to use key wrap, one can use
a conventional AE scheme, instead. This does not make studying the key-wrap prob-
lem pointless. First, it clarifies the relationship between key wrap and conventional AE.
Second, DAE leads to misuse-resistant AE, and methods that achieve this aim make
practical alternatives to conventional (not misuse-resistant) two-pass AE methods. Fi-
nally, practitioners have already “voted” for key-wrap by way of protocol-design and
standardization efforts, and it is simply not productive to say “use a conventional AE
scheme” after this option has been rejected.

FURTHER RELATED WORK. AE goals were formalized over a series of papers [6, 8, 20,
31, 33]. The idea of binding the encryption process to unencrypted strings is folklore,
with recent work in this direction including [23, 31, 35]. Russell and Wong [34] intro-
duce a completely different approach for dealing with the encryption of low-entropy
messages, and Dodis and Smith [12] extend this entropy-based approach. Phan and
Pointcheval [30] study relationships among security notions for conventional (length-
preserving and headerless) ciphers. The SIV construction resembles the AE scheme
EAX [9]. A less ambitious relaxation on IV requirements than that formalized as misuse-
resistant encryption is given in [32]. A full version of this paper is available from the
authors’ web pages.

2 DAE Security

NOTATION. For a distribution S let S
$←S mean that S is selected randomly from S

(if S is a finite set the assumed distribution is uniform). All strings are binary strings.
When X and Y are strings we write X‖Y for their concatenation. When X ∈ {0, 1}∗
is a string |X | is its length and, if 1 ≤ i ≤ j ≤ |X |, then X [i..j] is the substring run-
ning from its ith to jth characters, or the empty string ε otherwise. By a vector we
mean a sequence of zero or more strings, and we write {0, 1}∗∗ for the space of all
vectors. We write a vector as X = (X1, . . . , Xn) where n = |X | is its number of
components. If X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) are vectors then X, Y is the
vector (X1, . . . , Xn, Y1, . . . , Ym). In pseudocode, Boolean variables are silently initial-
ized to false, sets are initialized to the empty set, and partial functions are initialized
to everywhere undefined (set to undef). An adversary is an algorithm with access to
one or more oracles, which we write as superscripts. By AO ⇒ 1 we mean the event
that adversary A, running with its oracle O, outputs 1. When an adversary has an oracle
with an expressed domain D we understand that the oracle returns the distinguished
value ⊥, read as invalid, if the adversary asks a query outside of D.

SYNTAX. A scheme for deterministic authenticated-encryption, or DAE, is a tuple
Π = (K, E ,D). The key space K is a set of strings or infinite strings endowed with a
distribution. For a practical scheme there must be a probabilistic algorithm that samples
from K, and we identify this algorithm with the distribution it induces. The encryption

376 P. Rogaway and T. Shrimpton

algorithm E and decryption algorithm D are deterministic algorithms that take an input
in K×{0, 1}∗∗×{0, 1}∗ and return either a string or the distinguished value ⊥. We write
EH

K (X) or EK(H, X) for E(K, H, X) and DH
K(Y) or DK(H, Y) for D(K, H, Y). We

assume there are sets H ⊆ {0, 1}∗∗, the header space, and X ⊆ {0, 1}∗, the message
space, such that EH

K (X) ∈ {0, 1}∗ iff H ∈ H and X ∈ X . We assume that X ∈ X ⇒
{0, 1}|X| ⊆ X . The ciphertext space is Y = {EH

K (X): K ∈ K, H ∈ H, X ∈ X}.
We require DH

K(Y) = X if EH
K (X) = Y , and DH

K (Y) = ⊥ if there is no such X .
It will be our convention that EH

K (⊥) = DH
K (⊥) = ⊥ for all K ∈ K and H ∈ H.

For any K ∈ K, H ∈ H, and X ∈ X , we assume that |EH
K (X)| = |X | + e(H, X)

for a function e: {0, 1}∗∗ × {0, 1}∗ → N where e(H, X) depends only on the number
of components of H , the length of each of these components, and the length of X .
The function e is called the expansion function of the DAE scheme. Often we are
concerned with the minimum expansion that might arise, and so define the number
s = minH∈H,X∈X{e(H, X)} as the stretch of the scheme.

Among what is formalized above: (1) encryption and decryption are given by algo-
rithms, not just functions; (2) trying to encrypt something outside of the header space
or message space returns ⊥; (3) trying to decrypt something that isn’t the encryption of
anything returns ⊥; (4) if you can encrypt a string of some length you can encrypt all
strings of that length; and (5) the length of a ciphertext exceeds the length of the plain-
text by an amount that depends on, at most, the length of the plaintext and the length of
the components of the header.

A DAE is length-preserving if e(H, X) = 0 for all H ∈ H, X ∈ X . An enciphering
scheme is a length-preserving DAE. A tweakable blockcipher is an enciphering scheme
where the plaintext space is X = {0, 1}n for some n ≥ 1. A blockcipher is a tweakable
blockcipher where the header space H = {ε} is a singleton set; as such, we omit
mention of it and write E: K × {0, 1}n → {0, 1}n.

SECURITY. We now give our formalization for DAE security.
Definition 1. Let Π = (K, E ,D) be a DAE scheme with header space H, message
space X , and expansion function e. The DAE-advantage of adversary A in breaking Π
is defined as

Advdae
Π (A) = Pr

[
K

$←K : AEK(·,·), DK(·,·) ⇒ 1
]
− Pr

[
A$(·,·), ⊥(·,·) ⇒ 1

]
.

On query H ∈ H, X ∈ X , the adversary’s random-bits oracle $(·, ·) returns a random
string of length |X |+ e(H, X). As always, oracle queries outside the specified domain
return ⊥. The ⊥(·, ·) oracle returns ⊥ on every input. We assume that the adversary
does not ask (H, Y) of its right (ie, second) oracle if some previous left (ie, first) oracle
query (H, X) returned Y ; does not ask (H, X) of its left oracle if some previous right-
oracle query (H, Y) returned X ; does not ask left queries outside of H×X ; and does not
repeat a query. The last two assumptions are without loss of generality, as an adversary
that violated any of these constraints could be replaced by a more efficient and equally
effective adversary (in the Advdae

Π -sense) that did not. The first two assumptions are to
prevent trivial wins.

DISCUSSION. The DAE-notion of security directly captures the amalgamation of
privacy and authenticity. Assume that Advdae

Π (A) is insignificantly small for any

A Provable-Security Treatment of the Key-Wrap Problem 377

reasonable adversary. Then, for privacy, we know that any sequence of distinct EK-
queries results in a distribution on outputs resembling a distribution on outputs that
depends only on the length of each query (in fact, the outputs look like random strings
of the appropriate lengths). For authenticity we have that, despite the ability to perform
a chosen-plaintext attack (as provided by the EK oracle), we are unable to come up with
a new query Y for which DH

K(Y) �= ⊥.
It is possible to disentangle the privacy and authenticity notions in the DAE defi-

nition, defining separate notions for deterministic privacy and deterministic authentic-
ity. While the traditional approach for defining AE has been to split the goal into two
separate properties, the unified definition seems to us nicer and more succinct.

We point out that the DAE notion does not formalize the idea that the party that
produces a valid ciphertext (a value that decrypts to something other than ⊥) necessarily
knows the underlying key K . One could formalize this, but it would not coincide with
DAE. Sometimes the key-wrap goal has been described in these terms. We suspect that
when security-designers speak of having to know the key in order to produce a valid
ciphertext what they typically mean is not a proof of knowledge, but just the inability
for a party to produce a valid ciphertext in the absence of the key. It is the latter notion
that is well captured by our DAE definition.

3 Building a DAE Scheme: The SIV Construction

CONVENTIONAL IV-BASED ENCRYPTION SCHEMES. Encryption modes like CBC
and CTR are what we call conventional IV-based encryption schemes. Such a scheme
Π = (K, E ,D) is syntactically similar to a DAE but in this context the header space H
is a set of strings and is renamed the IV space, IV . We expect only privacy in a conven-
tional IV-based encryption scheme, and demand a random IV. This makes the security
notion rather weak, but sufficient for our purposes. The following definition captures
the desired notion.

Fix a conventional IV-based encryption scheme Π = (K, E ,D) with IV-space IV =
{0, 1}n. For simplicity, assume Π is length-preserving. Let E$ be the probabilistic algo-

rithm defined from E that, on input K ∈ K and M ∈ {0, 1}∗, chooses an IV $← {0, 1}n,
computes C ← E IV

K (M) and returns IV ‖ C. Then we define the advantage of adver-
sary A in violating the privacy of Π by

Advpriv$
Π (A) = Pr

[
K

$←K : AE$
K(·) ⇒ 1

]
− Pr

[
A$(·) ⇒ 1

]
where the $(·) oracle, on input M , returns a random string of length n + |M |. We
assume that the adversary never asks a query M outside of the message space X of Π .

ARBITRARY-INPUT PSEUDORANDOM FUNCTIONS. Fix nonempty sets K and X , the
first being finite or otherwise endowed with a distribution and the second being finite or
countably infinite. A pseudorandom function (PRF) is a map F : K ×X → {0, 1}n for
some n ≥ 1. We write FK(X) for F (K, X). Let Func(X ,Y) be the set of all functions
from X to Y and let Func(X , n) = Func(X , {0, 1}n). Regarding a function as the key,
we can consider Func(X , n) to be a PRF; to each X ∈ X associate a random string in

378 P. Rogaway and T. Shrimpton

X

CIV

EK2

FK1

 IV’ if =

Hm X

CIV

DK2

H1 ...

...

FK1

HmH1 ...

...

Algorithm ẼK1,K2(H, X)
IV ← FK1(H, X)
C ← E IV

K2(X)
return Y ← IV ‖ C

Algorithm D̃K1,K2(H, Y)
if |Y | < n then return ⊥
IV ← Y [1 .. n], C ← Y [n + 1 .. |Y |]
X ← DIV

K2(C)
IV ′ ← FK1(H, X)
if IV = IV ′ then return X else return ⊥

Fig. 1. The SIV construction. The left side illustrates and defines encryption, the right side, de-
cryption. The header is H = (H1, . . . , Hm), the plaintext is X, the key is (K1, K2), and the
ciphertext is Y = IV ‖ C. Function F : K1 × {0, 1}∗∗ → {0, 1}n is a PRF and (K2, E ,D) is
an IV-based encryption scheme, such as CTR mode.

{0, 1}n. Let A be an adversary. The advantage of A in violating the pseudorandomness
of F is

Advprf
F (A) = Pr

[
K ← K : AFK(·) ⇒ 1

]
− Pr

[
ρ

$← Func(X , n) : Aρ(·) ⇒ 1
]
.

It is tacitly assumed that the adversary has a mechanism of naming points in X
by strings; if X ⊆ {0, 1}∗ then a string names itself, but if X is not a set of strings
then points of X are encoded as strings in some natural way. Our definition of PRFs is
unusual for allowing the input X to be arbitrary (possibly not a string).

THE SIV CONSTRUCTION. Let F : K1 × {0, 1}∗∗ → {0, 1}n be a PRF. Let Π =
(K2, E ,D) be a conventional IV-based encryption scheme with IV-length n and mes-
sage space X . We write FK(H, M) instead of FK((H, M)). We construct from (F, Π)
a DAE Π̃ = SIV[F, Π] = (K̃, Ẽ , D̃) with header space {0, 1}∗∗ and message space X
where K̃ = K1 × K2 and the encryption and decryption algorithms are as illustrated
and defined in Fig. 1. Recall that Y [n + 1..|Y |] = ε if |Y | < n.

We will now show that if F is PRF-secure and Π is IND$-secure then Π̃ =SIV[F, Π]
is DAE-secure. The intuition behind the proof is this. If any bit of the header H or
plaintext X is new then the string IV will look like a random string and so IV ‖ C
will be difficult to distinguish from random bits. On decryption, the adversary must
create a new (H, Y) where Y = IV ‖ C. Let’s imagine giving the adversary the
corresponding plaintext X for free. Now (H, X) is new because (H, X) determines
(H, Y) and the adversary is not allowed to decipher values that it trivially knows the

A Provable-Security Treatment of the Key-Wrap Problem 379

decipherment of. But if (H, X) is new then IV ′ is adversarially unpredictable and so
its chance of being equal to IV is only about 2−n.

In the following result we write TimeΠ(μ), where Π = (K, E ,D) is an IV-based
encryption scheme and μ > 0 is an integer, for the sum of the worst-case times: to select
K

$←K, to compute E IV
K on inputs of total length μ, and to compute DIV

K on inputs of
total length μ. Here, by convention, “time” means actual running time plus program
size, all relative to some fixed RAM model of computation.

Theorem 1. Let F : K1 × {0, 1}∗∗ → {0, 1}n be a PRF and let Π = (K2, E ,D) be a
conventional IV-based encryption scheme with message space X and IV-length n. Let
Π̃ = SIV[F, Π]. Let A be an adversary (for attacking Π̃) that runs in time t and asks q
queries, these of total length μ. Then there exists adversaries B and D such that

Advpriv$
Π (B) + Advprf

F (D) ≥ Advdae
Π

(A) − q/2n .

What is more, B and D run in time at most t′ = t + TimeΠ(μ) + cμ for some absolute
constant c and ask at most q queries, these of total length μ.

Proof. The proof proceeds in two stages. First we consider the DAE scheme G =
SIV[Func({0, 1}∗∗, n), Π] (replacing the function FK1 with a random function ρ ∈
Func({0, 1}∗∗, n)). Then we extend this to account for the insecurity of the PRF F .

Denote the forward and reverse algorithms associated to G as Gρ,K2 and G−1
ρ,K2,

with (ρ, K2) being the key. Let δ = Advdae
G (A) and q = qL + qR and μ = μL + μR

where qL and qR are the number of left and right oracle queries, these totaling μL and
μR bits, respectively. With the obvious simplifications in notation we have

δ = Pr
[
AGρ,K2(·,·), G−1

ρ,K2(·,·) ⇒ 1
]
− Pr

[
A$(·,·), ⊥(·,·) ⇒ 1

]
=

(
Pr

[
AGρ,K2(·,·), G−1

ρ,K2(·,·) ⇒ 1
]
− Pr

[
AGρ,K2(·,·), ⊥(·,·) ⇒ 1

])
+
(
Pr

[
AGρ,K2(·,·), ⊥(·,·) ⇒ 1

]
− Pr

[
A$(·,·), ⊥(·,·) ⇒ 1

])
= p1 + p2

where p1 and p2 represent the corresponding parenthesized expressions; it remains to
bound these quantities. For p2 we construct from A an adversary Bg for attacking the
priv$-security of Π . Let B run A. When A asks its left-oracle a query (H, X), let B
ask g(M) and return the result to A. When A asks a right-oracle query have B return ⊥.
When A halts with output bit b, let B output b. Notice that if g = E$

K then B properly
simulates Gρ,K2(·, ·),⊥(·, ·) oracles for A (here we need the assumption that A never
repeats a query). Similarly, if g = $ then B simulates $(·, ·),⊥(·, ·) oracles for A. Hence
p2 ≤ Advpriv$

Π (B).
To bound p1 consider giving the key K2 to the adversary and then asking it to carry

out its distinguishing task. As this can only make the task easier we may assume

p1 = Pr
[
AGρ,K2(·,·), G−1

ρ,K2(·,·) ⇒ 1
]
− Pr

[
AGρ,K2(·,·), ⊥(·,·) ⇒ 1

]
≤ Pr

[
A(K2)Gρ,K2(·,·), G−1

ρ,K2(·,·) ⇒ 1
]
− Pr

[
A(K2)Gρ,K2(·,·), ⊥(·,·) ⇒ 1

]
.

380 P. Rogaway and T. Shrimpton

We can assume without loss of generality that A halts and outputs 1 as soon as a right-
oracle query returns something other than ⊥. Under this assumption, encryption queries
are useless for distinguishing between these two oracle pairs, as prior to the right oracle
returning M �= ⊥ both pairs behave as Gρ,K2(·, ·),⊥(·, ·). Hence p1 is bounded by the
probability that A asks a right-oracle query (H, Y) such that G−1

ρ,K2(H, Y) �= ⊥. Exam-

ining the algorithm for G−1
ρ,K2 we see that this occurs only when ρ(H, X) = IV , where

X = DIV
K2(C) (with Y having been parsed into IV and C). Since the adversary is given

the key K2, it can compute DIV
K2(C) for any strings IV, C of its choosing. In particular,

when it asks a right-oracle query (H, Y) it knows what is the input to the random func-
tion ρ and what is the target output IV . But under our assumption that A never queries
its right oracle (H, Y) when some left-oracle query (H, X) returned Y , either the input
(H, X) is new, or the target IV is new. Thus, the probability that ρ(H, X) = IV is at
most 1/2n for each right-oracle query, and we conclude that p1 ≤ qR/2n. Since qR ≤ q

we have δ ≤ Advpriv$
Π (B) + q/2n.

For the second part of the proof note that

Advdae
Π

(A) = δ + Pr
[
AEK1,K2(·,·),DK1,K2(·,·) ⇒ 1

]
− Pr

[
AGρ,K2(·,·),G−1

ρ,K2 ⇒ 1
]

where Π̃ = (K1×K2, Ẽ , D̃) and we have suppressed the random selections K1 $←K1

and K2 $← K2. Let Dg be an adversary for attacking F as a PRF, and let it operate as
follows. Adversary D picks K2 $← K2 and runs A. When A asks a left oracle query
(H, X), B answers by setting IV ← g(H, X), computing C ← E IV

K2(X) and returning
to A the string IV ||C. On a right oracle query (H, Y), adversary D parses IV =
Y [1..n], C = Y [n + 1..|Y |], computes X ← DIV

K2(C) and tests if IV = g((H, X)),
returning X to A if so and ⊥ otherwise. When A halts with output bit b, let D output b.
Clearly D correctly simulates ẼK1,K2(·, ·), D̃K1,K2(·, ·) when its oracle g = FK1 for
some random key K1, and GK1,K2(·, ·), G−1

K1,K2(·, ·) if instead g = ρ for a random

ρ ∈ Func(M, n). So, Advdae
E (A) ≤ δ + Advprf

F (D) and rearranging gives the result.

4 Enriching a PRF to Take Vectors of Strings as Input

THE GOAL. Traditionally, a pseudorandom function (PRF) takes a single string as input:
under the control of a key K , a PRF f maps a string X ∈ {0, 1}∗ into a string fK(X).
But SIV uses a non-traditional PRF—a function F that, under the control of a key K ,
maps a vector of strings X = (X1, . . . , Xm) ∈ {0, 1}∗∗ into a string FK(X). Let us
call a PRF that takes a string as input an sPRF (string-input PRF) and a PRF that takes
a vector of strings as input a vPRF (vector-input PRF). This section is about efficient
ways to turn an sPRF f into a vPRF f∗.

At first glance it might seem like there’d be little to say about sPRF-to-vPRF conver-
sion: there’s an obvious approach for solving the problem, and it’s obviously correct.
Namely, encode any vector of strings X = (X1, . . . , Xm) into a single string 〈X〉
and apply the sPRF to that, f∗

K(X) = fK(〈X〉). By encode we mean any reversible,
easily-computed map of a vector of strings into a single one, say 〈X1, . . . , Xm〉 =
X1‖N1‖ · · · ‖Xm‖Nm where Ni = |Xi|64 is the length of Xi encoded into 64 bits

A Provable-Security Treatment of the Key-Wrap Problem 381

fK

Y1

fK

Y3

X1 X4X2 X3

fK

Y2

fK

Z

T

x 2

end

fK

Y1

fK

Y3

X4

fK

Y2

fK

Z

T

end

10*X1 X2 X3

x 2 x 2 x 2

x 2

fK (0)

x 2

fK (0)

x 2

Algorithm f∗
K(X1, . . . , Xm) The S2V Construction, f∗ = S2V[f]

10 if m = 0 then return fK(1)
11 S ← fK(0)
12 for i ← 1 to m − 1 do S ← 2S ⊕ fK(Xi)
13 if |Xm| < n then T ← S ⊕end Xm else T ← 2S ⊕end Xm10∗

14 return Z ← fK(T)

Fig. 2. The S2V construction makes a PRF f∗: K × {0, 1}∗∗ → {0, 1}n from a PRF f : K ×
{0, 1}∗ → {0, 1}n. Bottom: Definition of S2V. Strings X1, . . . , Xm ∈ {0, 1}∗ and m ≥ 0 are
arbitrary. Top: Illustration of it, computing Z = f∗

K(X1, X2, X3, X4). The left side shows the
case when |X4| is a nonzero multiple of n bits, the right otherwise.

(assume that |Xi| < 264 for all i). The problem with making a vPRF in such a way is
a diminution of efficiency. First, computing f∗

K(X) may take longer than the total time
to compute fK(Xi) for each component Xi since we have added 64m bits for length
annotation. Second, even if some components of X stay fixed (say X2 is constant), we
must still re-process the entire encoded string each time we compute f∗

K at a new value.
Third, the mechanism is not parallelizable; one cannot process Xi until one is done
processing Xi−1. Fourth, the assumption that |Xi| < 264, while reasonable in practice,
is artificial and potentially wasteful, yet use of a stingier encoding will lead to greater
complexity. Finally, the given encoding disrupts word alignment: if, for example, the
first argument is one byte and all subsequent arguments are multiples of eight bytes, an
implementation will now be dealing with non-word-aligned data. Fixing this problem
by a smarter encoding will lead to increased complexity. We aim to do sPRF-to-vPRF
conversion in a way that fixes the problems above.

NOTATION. Fix a value n ≥ 2. Let 0 = 0n and 1 = 0n−11 and 2 = 0n−210. These
are regarded as points in finite field F2n represented using a primitive polynomial in the
customary way. For S ∈ {0, 1}n let 2S mean the n-bit string representing the product
of 2 and S. This can be computed with a left shift of S followed by a conditional xor.
By 2iS we mean to do this multiplication by 2 a total of i times. By N ⊕end X (“xor-
into-the-end”) we mean to xor the n-bit string N into the end of the string X , which
will have at least n bits; N ⊕end X = (0x−nN)⊕X where x = |X |. By X10∗ we
mean X10i where i ≥ 0 is the least number such that |X | + 1 + i is divisible by n.

382 P. Rogaway and T. Shrimpton

THE S2V CONSTRUCTION. Let f : K × {0, 1}∗ → {0, 1}n be an sPRF. We construct
from it the vPRF f∗ = S2V[f] where f∗: K × {0, 1}∗∗ → {0, 1}n is specified and
illustrated in Fig. 2. The special treatment of the last component of input, Xm, is to
handle the case where |Xm| < n. The construction has the desired efficiency charac-
teristics. The time to compute f∗

K(X) is essentially the sum of the times to compute
fK(Xi) on each component; in particular, when f = CMAC, say, the number of block-
cipher calls to compute f∗

K(X) is the sum of the number of blockcipher calls to compute
each fK(Xi). Also, one can preprocess invariant components so that the time to com-
pute f∗

K(X) will not significantly depend on them. The computation of f∗ is on-line
(assuming that f itself is on-line); in particular, the component lengths need not be
known in advance. Word alignment is not disrupted. And the scheme is parallelizable:
different arguments can be acted on simultaneously, so f∗ will be parallelizable if f is.

In a related effort we have proven the following result. The complexity-theoretic
analog of Theorem 2 follows in the usual way.

Theorem 2. Let f = Func({0, 1}∗, n) and f∗ = S2V[f]. Let A be an adversary that
asks at most q ≥ 3 vector-valued queries having p components in all, and each vector
having fewer than n components. Then Advprf

f∗ (A) ≤ pq/2n .

5 The SIV Mode of Operation

SIV MODE. Fix an n-bit blockcipher E and let Π = CTR be counter mode [27] over E,
with an incrementing function of S �→ 2S (that is, multiply by x in the finite field). Let
F = CMAC∗ = S2V[CMAC] be the result of applying the S2V construction to the
CMAC [28], again with an underlying blockcipher of E. (Recall that CMAC is a NIST-
recommended CBC MAC variant. It has a message space {0, 1}∗.) Consider the scheme
SIV[F, Π]. By combining Theorems 1 and 2 and known results about CMAC and CTR
mode [3, 18], the suggested mechanism is a provably secure DAE assuming E is a
secure PRP. The proven security falls off, as usual, in σ2/2n where σ is the total number
of blocks asked about. We overload the name SIV and call the mode of operation just
described SIV mode. We emphasize that the only thing left unspecified in the definition
of SIV mode is the underlying blockcipher, which would typically be AES.

COMMENTS. Comparing SIV-AES and the X9.102 scheme AESKW, say, we note that,
with SIV-AES, (1) the message space and header space are now {0, 1}∗ instead of
unusual sets; (2) message expansion is now independent of header length and mes-
sage length; (3) the number of blockcipher calls is reduced by a factor of at least six;
(4) vector-valued headers can now be handled, and the contribution of any component
can be pre-processed if it is to be held fixed; (5) one now has a provable-security guar-
antee, falling off in σ2/2n, where σ is the total number of message blocks acted on.
On the other hand, there is an effective attack on SIV if one can ask this many message
blocks, while we do not know if this is true for AESKW.

In the instantiation of SIV we could have used, in place of CMAC, the composition
of a universal hash function that gives n-bit outputs with an n-bit blockcipher. This
demonstrates that the DAE goal can be achieved by a single “cryptographic” pass over

A Provable-Security Treatment of the Key-Wrap Problem 383

the plaintext, plus a universal-hash-function computation over the header and plain-
text. Similarly, a parallelizable MAC like PMAC [10] could have been used in place of
CMAC, illustrating that DAE can be achieved by a parallelizable scheme.

6 Misuse-Resistant AE

This section gives an application of DAEs motivated not by the key-wrap problem but
by the goal of constructing symmetric encryption schemes that are resistant to misuse.
We are specifically concerned with IV-misuse, meaning that the IV is used in a way
other than the way mandated by the scheme; for example, using a counter when the
scheme requires a random value, or repeating an IV when the scheme requires it to
be a nonce. Experience has shown that IVs are frequently mishandled. An encryption
scheme robust against misuse should at least be an AE scheme (as programmers, pro-
tocol designers, and even books often assume that encryption provides for authenticity)
and so we will treat IV-misuse within the context of authenticated encryption and not
privacy-only encryption. The notion is applicable to the latter context, too.

Designing an IV-based AE scheme that is secure when its IV is an arbitrary nonce—
not just when it is a random value—is a first move in the direction of making schemes
robust against IV-misuse. The current section takes this a step further; we aim for an AE
scheme in which if the IV is a nonce then one achieves the usual notion for nonce-based
AE; and if the IV does get repeated then authenticity remains and privacy is compro-
mised only to the extent that some minimal amount of information may be revealed,
the information being if this plaintext is equal to a prior one, and even that is revealed
only if both the message and its header have been used with this particular IV. Our
formalization will capture this intent.

REVISED SYNTAX FOR AN IV-BASED ENCRYPTION SCHEME. Let us update the syn-
tax of a conventional IV-based encryption scheme to accommodate an associated header.
In this case an IV-based encryption scheme is a tuple Π = (K, E ,D) where every-
thing is as before except that the encryption algorithm and decryption algorithm take
an extra argument: now they are deterministic algorithms that map K × {0, 1}∗∗ ×
{0, 1}∗ × {0, 1}∗ to {0, 1}∗ ∪ {⊥}. We write EK(H, IV, X) or EH,IV

K (X) in place of
E(K, H, IV, X) and DK(H, IV, C) or DH,IV

K (Y) in place of D(K, H, IV, Y). There
must be sets H, IV , and X such that EH,IV

K (X) ∈ {0, 1}∗ iff H ∈ H and IV ∈ IV
and X ∈ X . We call IV the IV space of Π . We require that DH,IV

K (Y) = X if
EH,IV

K (X) = Y and DH,IV
K (Y) = ⊥ if there is no such X .

MISUSE-RESISTANT AE SECURITY. To measure the AE-security of an encryption
scheme Π = (K, E ,D) in the face of possible IV-reuse, imagine an adversary that
may ask any sequence of encryption queries, even those that repeat IVs, and any se-
quence of decryption queries, which may likewise repeat IVs. We want the encryption
oracle to return bits that look random except when this is impossible—on a repeated
triple of (header, IV, message)—and the decryption oracle should return ⊥ except when
the triple is already known to have a valid decryption. For simplicity, assume as before
that our IV-based encryption scheme is length-preserving.

384 P. Rogaway and T. Shrimpton

Definition 2. Let Π = (K, E ,D) be an IV-based encryption scheme that can handle
an associated header and let A be an adversary. Then the MRAE-advantage of A in
attacking Π is

Advmrae
Π (A) = Pr

[
K

$← K : AEK(·,·,·), DK(·,·,·) ⇒ 1
]
− Pr

[
A$(·,·,·), ⊥(·,·,·) ⇒ 1

]
.

The adversary may not repeat a left-query and may not ask a right-query (H, IV, Y) if
some previous left-query (H, IV, X) returned Y .

Of course the EK oracle returns EK(H, IV, X) on input (H, IV, X) and DK returns
DK(H, IV, Y) on input (H, IV, Y). As before $(H, IV, X) returns a random string of
length n + |X | and ⊥(·, ·, ·) always returns ⊥.

The MRAE-notion of security trivially implies nonce-based AE-scheme security: the
latter is the special case where the adversary is not allowed to repeat an IV to any left
query. Note that all proposed AE schemes to date [19, 21, 26, 29, 33] do fail should an
IV get repeated: existing AE schemes are not MRAE-secure.

BUILDING A MISUSE-RESISTANT AE SCHEME. We can turn a DAE scheme Π =
(K, E ,D) with header space {0, 1}∗∗ and message space X into a misuse-resistant AE
scheme Π̃ = (K, Ẽ , D̃) by regarding the IV as one of the components, say the last
component, of the header. In particular, SIV mode can be regarded as an MRAE scheme
by asserting that one of the header components, say the last one specified, is an IV.

CORRECTNESS. Correctness of the MRAE scheme described above is nearly immedi-
ate. Given an adversary A for breaking the misuse-resistant AE scheme (it distinguishes
EK(·, ·, ·), DK(·, ·, ·) from $(·, ·, ·), ⊥(·, ·, ·)) we get a comparably good adversary B
for breaking the DAE, distinguishing EK(·, ·), DK(·, ·) from $(·, ·), ⊥(·, ·): adver-
sary B runs A and maps left queries (H, IV, X) to queries (〈H, IV 〉, X), and maps
right queries (H, IV, Y) to queries (〈H, IV 〉, Y). The syntax and DAE-security notion
for a PRI have been designed to “match up” so that there is nothing to do.

COMMENTS. Since all we have done in the construction is to hijack a component of the
header as an IV, it seems as though nothing has actually been done. Yet the MRAE goal
is conceptually different from the DAE goal, the former employing an IV and gaining
for this a stronger notion of security. The header and the IV are conceptually different,
the one being user-supplied data that the user wants authenticated, the other being a
mechanism-supplied value needed to obtain a strong notion of security.

In retrospect, it is easy to construct an MRAE scheme by a sequence of simple steps.
One can achieve this goal in a trivial way from a DAE scheme that takes a vector-valued
header. Such a DAE scheme is easily built from a vector-input PRF and an IND$-
secure conventional encryption scheme. At least if one is unconcerned with optimizing
efficiency, a vector-input PRF is easily made from a string-input PRF. String-input PRFs
and IND$-secure conventional encryption schemes can be built from blockciphers by
well-known means. So each step along our path is easy or well-known. Still, the direct
construction of an MRAE or DAE scheme from a blockcipher is not a simple matter, as
evidenced by the long history of buggy or baroque AE schemes. Perhaps simple is how
things seem after finding the right abstraction boundaries.

A Provable-Security Treatment of the Key-Wrap Problem 385

7 Properties of DAEs

This section investigates the properties of the DAE notion, looking in three different
directions. First we explain the sense in which DAE achieve semantic security, indeed
AE, when plaintexts carry a key. Next we give an alternative definition for DAEs, called
pseudorandom injections, based on quite different intuition. Finally we show that the
“all-in-one” definition of DAE can equivalently be factored into separate privacy and
authenticity notions, as is traditionally done in this domain.

DAES ACHIEVE SEMANTIC SECURITY WHEN PLAINTEXTS CARRY A KEY. A folklore
justification for using a key-wrap scheme instead of a conventional AE scheme is that,
in the key-wrap setting, one expects the plaintext to carry a random cryptographic key,
and so a probabilistic or stateful mechanism should not be needed. We sketch a result
that validates this intuition.

A key-insertion scheme is a pair of algorithms Φ = (InsertKey, ExtractKey), the
first for inserting a κ-bit random value into a plaintext and the second for extracting it.
Algorithm InsertKey, on input of X ∈ {0, 1}∗, chooses a random R

$← {0, 1}κ and
returns M

$← InsertKey(X). An equivalent viewpoint is that InsertKey is determin-
istic and takes the random string R as input; then we write M ← InsertKey(X, R).
Algorithm ExtractKey takes M ∈ {0, 1}∗ and returns 〈X, R〉 with |R| = κ. Given a
DAE Π = (K, E ,D) define the probabilistic encryption scheme Π̃ = (K, Ẽ , D̃) by:

Algorithm ẼK(H, X)
R

$← {0, 1}κ

M ← InsertKey(X, R)
if M = ⊥ return ⊥
return EK(H, M)

Algorithm D̃K(H, Y)
M ← DK(H, Y)
if M = ⊥ then return ⊥
return ExtractKey(M)

The encryption scheme is nonstandard insofar as decryption of a ciphertext Y returns
not only the underlying plaintext X but also the random bits R that were inserted.
Correspondingly, we must adapt the definition of AE to get a variant of Advae

Π (A), call
it Advkiae

Π (A), where when the adversary asks for the encryption of X we choose the
random R and return it along with the ciphertext. This must look like random bits.

As long as the inserted key is sufficiently long, the algorithm described achieves the
security notion we have sketched. We omit further details.

DAES ARE EQUIVALENT TO PRIS. A secure pseudorandom injection (PRI) resembles
a random injective function with the desired amount of length-expansion. We allow a
chosen-ciphertext attack in our definition (that is, we focus on a “strong” PRI, analogous
to a strong PRP [24]), giving the adversary both the forward and backward direction of
the function. We allow the PRI to be tweakable [23], so that the scheme can be used
to authenticate an associated header. We allow the domain to be fairly arbitrary—in
particular, we consider message spaces that contain strings of various lengths.

Formally, let Π = (K, E ,D) be a DAE with header space H and message space X .
Imagine an adversary A given access to two oracles—one for E and one for D. We want
to say that this pair looks just like a random injection f and its inverse f−1, the random

386 P. Rogaway and T. Shrimpton

injection f having the same signature as E . For e: H × X → N let InjHe (X ,Y) be the
set of all injective functions f from H×X to Y such that |f(H, X)| = |X |+ e(H, X).

Definition 3. Let Π = (K, E ,D) be a DAE with header space H, message space X ,
and expansion e. The PRI-advantage of adversary A in breaking Π is Advpri

Π (A) =

Pr
[
K

$← K : AEK(·,·), DK(·,·) ⇒ 1
]
− Pr

[
f

$← InjHe (X ,Y) : Af(·,·), f−1(·,·) ⇒ 1
]
.

The f−1 oracle above, on input (H, Y) returns the point X such that f(H, X) = Y ;
if there is no such point then it returns the distinguished value ⊥. As before, we may
assume without loss of generality that the adversary does not repeat a query, that it does
not ask (H, Y) of its right oracle if some previous left oracle query (H, X) returned Y ,
that it does not ask (H, X) of its left oracle if some previous right-oracle query (H, Y)
returned X , and that it does not ask any query (H, X) outside of H × X .

Assuming a reasonable amount of stretch, the PRI and DAE notions of security are
very close, as the following theorem shows.

Theorem 3. Let Π = (K, E ,D) be a DAE with header space H, message space X , and
stretch s, and let τ = minX∈X{|X |} be the length of a shortest plaintext. Let A be an
adversary that asks at most qL left-oracle queries, qR right-oracle queries, for a total of

q = qL + qR queries. Then
∣∣∣Advpri

Π (A) − Advdae
Π (A)

∣∣∣ ≤ q2/2s+τ+1 +4qR/2s.

In other words, as the stretch s grows, the DAE and PRI notions converge. The quan-
titative difference between the measures is small if the stretch is, say, s = 128 bits.
Among other reasons, it is to achieve this equivalence with PRIs that our definition for
them used indistinguishability from random bits rather than, say, indistinguishability
from the encryption of random bits.

Proof. Let A be an adversary that has access to two oracles. Let it ask qL queries of
its left oracle and qR queries of its right oracle, and let q = qL + qR. With the obvious
notational simplifications we have∣∣∣Advpri

Π (A) − Advdae
Π (A)

∣∣∣ =
∣∣∣Pr

[
Af(·,·), f−1(·,·) ⇒ 1

]
− Pr

[
A$(·,·), ⊥(·,·) ⇒ 1

]∣∣∣
=

∣∣Pr
[
AG1 ⇒ 1] − Pr[AG0 ⇒ 1

]∣∣
for the games G0 and G1 defined in Fig. 3. Recall that booleans are initialized to false,
sets are initialized to empty, and partial functions are initialized to everywhere unde-
fined with the symbol undef. The set Image(f(H, ·)) contains all points Y �= undef
such that f(H, X) = Y for some X ∈ X . Set difference is indicated with a minus sign.
Look first at game G0. Much of the code (lines 12–13 and 20–26) is irrelevant to what
the adversary sees. Each query left(H, X) returns a random string of |X |+e(H, X) bits
and each query right(H, Y) returns ⊥. Thus game G0’s (left, right) oracles faithfully
simulate a pair of oracles ($,⊥) and we have that Pr[AG0 ⇒ 1] = Pr[A$,⊥ ⇒ 1].

Game G1 is more subtle. We claim that its (left, right) oracles are simply a lazy
evaluation of a pair of oracles (f, f−1) with the desired domain and range. To see
this, understand first that the partial function f(H, ·) maintains the correspondence
X �→ f(H, X) for those domain points that we have already assigned values to,

A Provable-Security Treatment of the Key-Wrap Problem 387

On query left(H,X):
10 c ← |X| + e(H,X)
11 Y

$←{0, 1}c

12 if Y ∈ Image(f(H, ·)) ∪ InvalidH then

13 bad ← true , Y
$←{0, 1}c − Image(f(H, ·)) − InvalidH

14 return f(H, X) ← Y

On query right(H,Y):

20 c ← |Y |
21 EligibleX ← {X ∈ {0, 1}≤c: |X| + e(H,X) = |Y | and f(H, X) = undef}
22 EligibleY ← {0, 1}c − Image(f(H, ·)) − InvalidH

23 x
$← [1 .. |EligibleY |]

24 if x ∈ [1..|EligibleX |] then

25 bad ← true , X ← the xth string of EligibleX , f(H, X) ← Y , return X

26 InvalidH ← InvalidH ∪ {Y }
27 return ⊥

Fig. 3. Games used in the proof of Theorem 3. Game G1 is the complete code; game G0 omits
the shaded statements.

while the set InvalidH maintains the set of points Y that have become ineligible to
be f(H, X) values, for any X , by virtue of having been asked right(H, Y) and having
returned ⊥, effectively asserting that f−1(H, Y) = ⊥ and so Y is outside the image
of f(H, ·). Now, starting at left(H, X) queries, we begin at line 10 by calculating the
length c of the ciphertext that we must return. The code at lines 11–14 returns a random
string Y of length c subject to the constraint that Y is outside of the image of f(H, ·)
and not ineligible to be an f(H, X) value by virtue of having asserted that there is no
preimage for Y with tweak H . Looking next at right(H, Y) queries, we calculate at
line 21 the set EligibleX of values X that could possibly map to Y using tweak H ,
and we calculate at line 22 the set of strings Y that could, at this moment be paired
with strings in EligibleX . By our conventions on the adversary making no “pointless”
queries, the string Y will necessarily be among the strings in EligibleY . Since we
aim to randomly and injectively pair points in EligibleX with points in EligibleY ,
the chance that a given point Y in EligibleY has a preimage in EligibleX is just
|EligibleX |/|EligibleY |. Lines 23 and 24 effectively flip a coin with this bias, decid-
ing if the string Y ∈ EligibleY should or should not be given a (random) preimage
in EligibleX . If it is not given a preimage, we record this decision by augmenting
InvalidH at line 26. If it is given a preimage, it is given a random one by lines 23–25,
the choice is recorded, and the random preimage is returned. We have thus provided a
perfect simulation of an (f, f−1) oracle, and so Pr[AG1 ⇒ 1] = Pr[Af,f−1 ⇒ 1].

To bound |Pr[AG1 ⇒ 1] − Pr[AG0 ⇒ 1]| we can now invoke the fundamental
lemma of game-playing [7], since games G1 and G0 have been defined to be iden-
tical apart from the sequel of statements bad ← true. The lemma assures us that
|Pr[AG1 ⇒ 1] − Pr[AG0 ⇒ 1]| ≤ Pr[AG0 sets bad].

388 P. Rogaway and T. Shrimpton

Let BAD be the event that AG0 causes bad to get set to true. We must bound
the probability of BAD. Remember that the shaded statements have been expunged
from the game. Prior to BAD occurring, each left-query adds a single point to a set
Image(f(H, ·)) but has no impact on any set InvalidH , while each right-query adds
a single point to a set InvalidH but has no impact on any set Image(f(H, ·)). If
the ith query is left-query then the set Image(f(H, ·)) ∪ InvalidH will have at most
i − 1 points and the chance that bad will get set at line 13 will be at most (i −
1)/2s+τ and so, overall, the probability that bad gets set at line 13 is at most

∑q
i=1(i−

1)/2s+τ ≤ q2/2s+τ+1. If the ith query is a right-query then bad will be set with proba-
bility |EligibleX |/|EligibleY | for the current sets EligibleX and EligibleY . How big
can |EligibleX | be? Asked a query Y of length c, even if every string of length at most
c−s (the maximal possible length) is in EligibleX , still we will have that |EligibleX | <
2c+1−s. Conversely, how small can |EligibleY | be? On the ith query we know that
|EligibleY | > 2c − i. So on the ith query we have that |EligibleX |/|EligibleY | <
2c+1−s/(2c − i) ≤ 22−s assuming i ≤ 2c−1 or, more strongly, assuming q ≤ 2s+τ−1.
Summing over all qR right-queries we have that the probability that bad gets set at
line 25 is at most 4qR/2s. Since the result becomes vacuous when q > 2s+τ−1, we may
now drop that technical condition and conclude the theorem.

EQUIVALENCE OF ALL-IN-ONE AND TWO-REQUIREMENT DEFINITIONS. To define
DAE-security one could specify separate notions for deterministic privacy, detPriv,
and deterministic authenticity, detAuth, and demand both. This “dual-requirement”
approach is the one that has been taken in all prior work on AE. In our setting one could
let AdvdetPriv

Π (A) = Pr[AEK(·,·) ⇒ 1] − Pr[A$(·,·) ⇒ 1] and AdvdetAuth
Π (A) =

Pr[AEK(·,·), DK(·,·) forges] where in the first definition A does not repeat a query, and in
the second it never asks a right-query (H, Y) having already asked a left-query (H, X)
that returned Y . Saying that A forges means that it asks a right-query (H, Y) and gets
a response other than ⊥, and A did not earlier ask a left-query (H, X) that returned Y .

It is straightforward to prove that our all-in-one notion of DAE-security and the two-
requirement definition just sketched are equivalent. We omit further details.

The idea above can be extended to other variants of AE: the encryption scheme
may be probabilistic, nonce-based, or deterministic; the privacy requirement can be in-
distinguishability from random bits or conventional indistinguishability; and message
headers may be present or absent, strings or vectors. For any of these variants one can
give a two-requirement definition or an all-in-one definition. In all cases we have inves-
tigated, the results come out as above: the all-in-one definition and the two-requirement
definition are equivalent.

All-in-one definitions for AE resemble the definition for chosen-ciphertext-attack
(CCA2) security [3, 4]; the definition of AE strengthens CCA2 in a simple and natural
way. Perhaps it is only historical accident that our community has come to think of AE
as privacy+authenticity and not as “CCA3 security.”

Acknowledgments

Many thanks to the X9F1 working group, whose draft standard motivated this paper, and
Morris Dworkin, who made this work known to us [13]. Thanks to Jesse Walker for an

A Provable-Security Treatment of the Key-Wrap Problem 389

enormous number of valuable comments; to Susan Langford for noticing a significant
error in an earlier draft; to Steve Bellovin for voicing his concerns about IV-misuse at
a meeting back in 2000 (his comments ultimately motivated Section 6); Mihir Bellare
for his typically perceptive comments; and the Eurocrypt 2006 PC for their comments.
Phil Rogaway was supported by NSF 0208842 and a gift from Intel Corp. Much of this
paper was written while Rogaway was a visitor to the School of Information Technology
at Mae Fah Luang University, Thailand. Many thanks to MFLU and, in particular, to
Dr. Thongchai Yooyativong and Dr. Tatsanee Mallanoo, for their generous hospitality.

References

1. J. An and M. Bellare. Does encryption with redundancy provide authenticity? Advances in
Cryptology – Eurocrypt ’01, LNCS vol. 2045, Springer, pp. 512–528, 2001.

2. M. Bellare, A. Boldyreva, L. Knudsen, and C. Namprempre. On-Line ciphers and the Hash-
CBC constructions. Advances in Cryptology – Crypto ’01, LNCS vol. 2139, Springer,
pp. 292–309, 2001.

3. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmet-
ric encryption: analysis of the DES modes of operation. Proc. of the 38th Symposium on
Foundations of Computer Science, IEEE Press, pp. 394–403, 1997.

4. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security
for public-key encryption schemes. Advances in Cryptology – Crypto’98, LNCS vol.1462,
Springer, pp. 26–45, 1998.

5. M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block chaining message
authentication code. J. of Computer and System Science (JCSS), vol. 61, no. 3, pp. 362–399,
Dec 2000.

6. M. Bellare and C. Namprempre. Authenticated encryption: relations among notions and
analysis of the generic composition paradigm. Advances in Cryptology – Asiacrypt ’00,
LNCS vol. 1976, Springer, pp. 531–545, 2000.

7. M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of triple en-
cryption. Cryptology ePrint report 2004/331, 2004.

8. M. Bellare and P. Rogaway. Encode-then-encipher encryption: how to exploit nonces or re-
dundancy in plaintexts for efficient encryption. Advances in Cryptology – Asiacrypt ’00,
LNCS vol. 1976, Springer, pp. 317–330, 2000.

9. M. Bellare, P. Rogaway, and D. Wagner. The EAX mode of operation. Fast Software Encryp-
tion (FSE 2004), LNCS vol. 3017, Springer, pp. 389–407, 2004.

10. J. Black and P. Rogaway. A block-cipher mode of operation for parallelizable message
authentication. Advances in Cryptology – Eurocrypt ’02, LNCS vol. 2332, Springer, pp.
384-397, 2001.

11. J. Black and P. Rogaway. CBC MACs for arbitrary-length messages: the three-key construc-
tions. Advances in Cryptology – Crypto ’00, LNCS vol. 1880, Springer, pp. 197–215, 2000.

12. Y. Dodis and A. Smith. Entropic security and the encryption of high entropy messages. The-
ory of Cryptography (TCC 2005), LNCS vol. 3378, Springer, pp. 556-577, 2005.

13. M. Dworkin. Request for review of key wrap algorithms. Cryptology ePrint report 2004/340,
2004. Contents are excerpts from a draft standard of the Accredited Standards Committee,
X9, entitled ANS X9.102 — Wrapping of Keys and Associated Data.

14. O. Goldreich, S. Goldwasser, and S. Micali, How to construct random functions. Journal of
the ACM, vol. 33, no. 4, pp. 210–217, 1986.

15. S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., vol. 28, no. 2,
pp. 270–299, 1984.

390 P. Rogaway and T. Shrimpton

16. S. Halevi and P. Rogaway. A tweakable enciphering mode. Advances in Cryptology –
Crypto ’03, LNCS vol. 2727, Springer, pp. 482–499, 2003.

17. R. Housley. Triple-DES and RC2 key wrapping. IETF RFC 3217, Dec. 2001. Earlier version
in RFC 2630, June 1999.

18. T. Iwata and K. Kurosawa. OMAC: One-key CBC MAC. Fast Software Encryption
(FSE 2003), LNCS vol. 2887, Springer, pp. 129–153, 2003.

19. C. Jutla. Encryption modes with almost free message integrity. Advances in Cryptology –
Eurocrypt ’01, LNCS vol. 2045, Springer, pp. 529–544, 2001.

20. J. Katz and M. Yung. Unforgeable encryption and adaptively secure modes of operation. Fast
Software Encryption (FSE 2000), LNCS vol. 1978, Springer, pp. 284–299, 2000.

21. T. Kohno, J. Viega, and D. Whiting. CWC: A high-performance conventional authenticated
encryption mode. Fast Software Encryption (FSE 2004), LNCS vol. 3017, Springer, pp.
427–445, 2004.

22. H. Krawczyk. The order of encryption and authentication for protecting communications
(or: how secure is SSL?) Advances in Cryptology – Crypto ’01, LNCS vol. 2139, Springer,
pp. 310–331, 2001.

23. M. Liskov, R. Rivest, and D. Wagner. Tweakable block ciphers. Advances in Cryptology –
Crypto ’02, LNCS vol. 2442, Springer, pp. 31–46, 2002.

24. M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom
functions. SIAM J. Comput., vol. 17, no. 2, pp. 373–386, 1988.

25. S. Matyas. Key handling with control vectors. IBM Systems Journal, vol. 30, no. 2, pp.
151–174, 1991.

26. D. McGrew and J. Viega. The Galois/Counter mode of operation (GCM). Manuscript,
May 2005. Available from the NIST website.

27. National Institute of Standards and Technology, M. Dworkin, author. Recommendation
for block cipher modes of operation, methods and techniques. NIST Special Publication
800-38A, 2001.

28. National Institute of Standards and Technology, M. Dworkin, author. Recommendation for
block cipher modes of operation: the CMAC mode for authentication. NIST Special Publi-
cation 800-38B, May 2005.

29. National Institute of Standards and Technology, M. Dworkin, author. Recommendation for
block cipher modes of operation: the CCM mode for authentication and confidentiality. NIST
Special Publication 800-38C, May 2004.

30. D. Phan and D. Pointcheval. About the security of ciphers (semantic security and pseudo-
random permutations). Selected Areas in Cryptography (SAC 2004), LNCS vol 3357,
Springer, pp. 182-197, 2004.

31. P. Rogaway. Authenticated-encryption with associated-data. Proceedings of the 9th Annual
Conference on Computer and Communications Security (CCS-9), ACM, pp. 98–107, 2002.

32. P. Rogaway. Nonce-based symmetric encryption. Fast Software Encryption (FSE 2004),
LNCS vol. 3017, Springer, pp. 348–359, 2004.

33. P. Rogaway, M. Bellare, and J. Black. OCB: A block-cipher mode of operation for efficient
authenticated encryption. ACM Transactions on Information and System Security (TISSEC),
vol. 6, no. 3, pp. 365–403, Aug. 2003.

34. A. Russell and H. Wong. How to fool an unbounded adversary with a short key. Advances in
Cryptology – Eurocrypt ’02, LNCS vol. 2332, Springer, pp. 133–148, 2002.

35. R. Schroeppel. The hasty pudding cipher. AES candidate submitted to NIST, 1998.
36. S/MIME Working Group, IETF. Mailing list archives, 1997. http://www.imc.org/

ietf-smime/index.html

Luby-Rackoff Ciphers from
Weak Round Functions?

Ueli Maurer1, Yvonne Anne Oswald1,
Krzysztof Pietrzak2,�, and Johan Sjödin1,��

1 Department of Computer Science, ETH Zurich, CH-8092 Zurich, Switzerland
{maurer, sjoedin}@inf.ethz.ch, yoswald@student.ethz.ch

2 Département d’informatique, Ecole Normale Supérieure, Paris, France
pietrzak@di.ens.fr

Abstract. The Feistel-network is a popular structure underlying many
block-ciphers where the cipher is constructed from many simpler rounds,
each defined by some function which is derived from the secret key.

Luby and Rackoff showed that the three-round Feistel-network – each
round instantiated with a pseudorandom function secure against adap-
tive chosen plaintext attacks (CPA) – is a CPA secure pseudorandom
permutation, thus giving some confidence in the soundness of using a
Feistel-network to design block-ciphers.

But the round functions used in actual block-ciphers are – for effi-
ciency reasons – far from being pseudorandom. We investigate the se-
curity of the Feistel-network against CPA distinguishers when the only
security guarantee we have for the round functions is that they are secure
against non-adaptive chosen plaintext attacks (nCPA). We show that in
the information-theoretic setting, four rounds with nCPA secure round
functions are sufficient (and necessary) to get a CPA secure permutation.
Unfortunately, this result does not translate into the more interesting
pseudorandom setting. In fact, under the so-called Inverse Decisional
Diffie-Hellman assumption the Feistel-network with four rounds, each
instantiated with a nCPA secure pseudorandom function, is in general
not a CPA secure pseudorandom permutation.

1 Introduction

Feistel-network. The Feistel-network is a popular design approach for block-
ciphers where the cipher over {0, 1}2n is constructed by cascading simpler per-
mutations, each constructed from a round function {0, 1}n → {0, 1}n. The secret
key of the cipher is only used to choose the particular round functions.
� Most of this work was done while the author was a PhD student at ETH where

he was supported by the Swiss National Science Foundation, project No. 200020-
103847/1. Currently the author is partially supported by the Commission of the
European Communities through the IST program under contract IST-2002-507932
ECRYPT.

�� This work was partially supported by the Zurich Information Security Center. It
represents the views of the authors.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 391–408, 2006.
c© International Association for Cryptologic Research 2006

392 U. Maurer et al.

Luby-Rackoff Ciphers. In their celebrated paper [LR86] Luby and Rackoff
prove that the three-round Feistel-network is an adaptive chosen plaintext (CPA)
secure block-cipher – i.e. a pseudorandom permutation (PRP) – if each round is
instantiated with an independent CPA secure pseudorandom function (PRF), and
with one extra round even adaptive chosen ciphertext (CCA) security is achieved.

Besides reducing PRPs to PRFs, this result also gives some confidence in
the soundness of using a Feistel-network to design block-ciphers. But unlike in
the Luby-Rackoff ciphers, in most block-ciphers based on Feistel-networks the
round functions are not independent (in order to keep the secret key short) and
also far from being pseudorandom (for efficiency reasons). Instead, the number
of rounds is much larger than four. (which was sufficient for the Luby-Rackoff
constructions).

In order to achieve more efficient constructions of PRPs from PRFs, many
researcher have investigated the security of weakened versions of the Luby-
Rackoff ciphers. Several variations of the ciphers were proven to be pseudo-
random where for example the round functions were not required to be inde-
pendent [Pie90], some round functions were replaced by weaker primitives than
PRFs [Luc96, NR02] or the distinguisher was given direct oracle access to some
of the round functions [RR00]. These results further fortify the confidence in
using Feistel-networks to design block ciphers.

All these relaxed constructions need at least some of the round functions to
be CPA secure PRFs in order to get a CPA secure PRP. In this paper, we in-
vestigate for the first time – to the best of our knowledge – the CPA security
of the permutation one gets by a Feistel-network where none of the round func-
tions is guaranteed to be CPA secure. In particular, we investigate the security of
the Feistel-network where each round is instantiated with a non-adaptive chosen
plaintext (nCPA) secure round function. Although nCPA security is still a strong
requirement, this was the weakest natural class of attacks we could imagine which
does not make the Feistel-network trivially insecure against CPA attackers. For
example round functions which are only secure against known-plaintext attacks
(KPA), i.e. look random on random inputs, are too weak.1

Pseudo- and Quasirandomness. Informally, a pseudorandom function PRF
is a family of functions which can be efficiently computed, and where a random
member from the family cannot be distinguished from a uniform random func-
tion (URF) by any efficient adversary. Pseudorandom permutations (PRP) are
defined analogously. As usual in cryptography, an adversary is efficient if he is
in P/poly, i.e. in non-uniform polynomial time (but almost all our results also
hold when considering uniform adversaries; the only exception is addressed in
Footnote 13). A quasirandom function (QRF) (similarly for a quasirandom per-
mutation (QRP)) is defined similar to a pseudorandom one but where one does
not require the distinguisher or the function to be efficient, only the number of

1 Just consider a function f which satisfies f(0 . . . 0) = 0 . . . 0 but otherwise looks
random. This f is KPA secure as a random query is unlikely to be the all zero
string. But a Feistel-network build from such functions will output 0 . . . 0 on input
0 . . . 0 and thus is easily seen not to be CPA (or even nCPA) secure.

Luby-Rackoff Ciphers from Weak Round Functions? 393

queries the distinguisher is allowed to make is bounded. Quasirandomness can be
seen as an extension of the concept of statistically close distributions to systems
which can be queried interactively.

In order to prove that some system – which is built from pseudorandom com-
ponents – is pseudorandom itself, it is often enough to prove it to be quasirandom
when the components are replaced by the corresponding ideal systems. In par-
ticular, to prove the security of the original three-round Luby-Rackoff cipher it
is enough to prove – the purely information-theoretic result – that the network
instantiated with URFs is a CPA secure QRP. It then immediately follows that
the construction is a CPA secure PRP when the URFs are replaced by CPA se-
cure PRFs, since if it was not a CPA secure PRP, we could use the distinguisher
for it to build a distinguisher for the CPA secure PRF (via a standard hybrid
argument). Similarly one can easily show that if the round functions are only
nCPA or only KPA secure PRFs, the construction is a PRP, but only against the
same class of attacks – i.e. nCPA or KPA.

2 Contributions

Our results and related work are summarized in Fig. 2 on page 395. Due to
space limitations, some proofs are provided in the full version of this paper only
[MOPS06].

(In)secure Relaxations of the Three-Round Luby-Rackoff Cipher.
In the pseudo- and quasirandom setting, the three-round Feistel-network is – as
mentioned above – ATK ∈ {CPA, nCPA, KPA} secure when the round functions
are ATK secure. Moreover it is known that one can replace the first round with
a pairwise independent permutation [Luc96, NR99].2 We further relax this by
showing that the function in the last round only needs to be secure against known
plaintext attacks (KPA). This resolves an open question posed by Minematsu and
Tsunoo in [MT05]. Furthermore, for ATK = KPA we show that the first round
is not necessary – as opposed to when ATK ∈ {CPA, nCPA} – and that it is
sufficient to instantiate the (two) round functions with a single instantiation of
a KPA secure function.

But the second round seems to be the crucial one for ATK ∈ {CPA, nCPA}.
We show that for constructing a CPA secure permutation – i.e. PRP or QRP
depending on the setting – one cannot in general instantiate the second round
with a function which is only nCPA secure by constructing a counter-example,
i.e. a nCPA secure function such that the three-round Feistel-network with this
function in the second, and any random functions in the first and third round
can easily be distinguished from a uniformly random permutation (URP) with
only three adaptively chosen queries. Similarly, if one instantiates the second
round with a KPA secure function, then the construction will in general not even
be nCPA secure.
2 In fact, the permutation must only be such that on any two values, the collision

probability on one half of the domain is small. For example one can use one normal
Feistel round instantiated with an almost XOR-universal function.

394 U. Maurer et al.

Four Rounds with non-adaptive Round Functions. As a consequence,
three rounds with nCPA secure round functions are not enough to get CPA secu-
rity. On the positive side, we show that one extra nCPA secure round is sufficient
(and necessary) in the quasirandom setting. Note that for the translation of a
security proof from quasi- to pseudorandom systems – as described at the end
of the previous section – it is crucial that we can construct a distinguisher for
the components from a distinguisher for the whole system. But here the com-
ponents have a weaker security guarantee (i.e. nCPA) than what we prove for
the whole system (i.e. CPA). So even when we have a CPA distinguisher for the
four-round Feistel-network, we cannot construct a nCPA distinguisher for any
round function. This is not just a shortcoming of the used approach, but indeed,
in the pseudorandom setting the situation is different: we show that here four
rounds are not enough to get CPA security. To show this we construct a nCPA
secure PRF, such that the four-round Feistel-network with such round functions
can easily be distinguished from URP with only three adaptive queries.

This phenomenon – i.e. that some construction implies adaptive security for
quasirandom but not for pseudorandom systems – has already been proven
[MP04, MPR06, Pie05] for two simple constructions: the sequential composi-
tion f � g(.) def= g(f(.)) and the parallel composition f � g(.) def= f(.) � g(.) (where
� stands for any group operation). The security proofs from [MP04] in the qua-
sirandom setting crucially use the fact that the sequential composition of two
permutations is a URPs whenever at least one of the permutations is a URP,
similarly the parallel composition of two functions is a URF whenever one of
the components is a URF. The Feistel-network does not have this nice prop-
erty of being ideal whenever one of the components is ideal, and we have to
work harder here (using a more general approach from [MPR06]). Our counter-
example for the pseudorandom setting – i.e. a four-round Feistel-network with
nCPA secure PRFs as round functions that is not a CPA secure PRP – is sim-
ilar to the counter-examples for sequential and parallel composition shown in
[Pie05, Ple05]. In [Ple05], it is shown that the sequential composition of arbitrar-
ily many nCPA secure PRFs will not be a CPA secure PRF in general, whereas for
the parallel composition only a counter-example with two components is known
[Pie05]. For the Feistel-network we also could only find a counter-example for
four rounds. So we cannot rule out the possibility that five or more rounds im-
ply adaptive security. However, if this was the case, then it seems likely that
– like for sequential composition [Mye04] – there is no black-box proof for this
fact.3

Unconditional vs. Conditional Counter-examples. The counter-
example showing that the three-round Feistel-network with a nCPA secure PRF

3 Myers [Mye04] constructs an oracle relative to which there exist PRPs that are
nCPA secure, but for which their sequential composition is not a CPA secure PRP.
The idea behind this oracle is quite general, and we see no reason (besides being
technically challenging) why one should not be able to construct a similar oracle for
the Feistel-network, and thus also rule out a black-box proof for showing that the
Feistel-network with nCPA secure PRFs as round functions is a CPA secure PRP.

Luby-Rackoff Ciphers from Weak Round Functions? 395

Construction Quasirandom Pseudorandom Reference

ψ[RRR] CPA [LR86, Mau02]
ψ[NNN] nCPA §4
ψ[KKK] KPA §4
H � ψ[RR] CPA [Luc96, NR02]
H � ψ[RK] CPA §4
H � ψ[NK] nCPA §4
H � ψ[KK] KPA §4

ψ[RR] KPA (and NOT nCPA) [MT05] (and §4)
ψ[K2] KPA §4

ψ[RNR] NOT CPA §5
ψ[RKR] NOT nCPA §5

ψ[NNNN] CPA NOT CPA (under IDDH) §6 and §7

Fig. 1. Security of the Feistel-network ψ with various security guarantees on the round
functions. Here ψ[f1 · · · fk](·) denotes the k-round Feistel-network with fi in the i’th
round, and ψ[f2] def= ψ[ff] – i.e. the same function f in both rounds. Each occur-
rence of R, N , and K stands for an independent CPA, nCPA, and KPA secure function
(i.e. a PRF or a QRF depending on the setting) respectively. The same holds for H
which is any “lightweight” permutation from which we only require that the collision
probability be small on the left half of the output, an almost pairwise independent per-
mutation or a Feistel round instantiated with an almost XOR-universal function is thus
sufficient.

F in the second round is not adaptively secure is unconditional4 and black-box;
with this we mean that we can construct F starting from any (nCPA secure)
PRF via a reduction which uses this PRF only as a black-box.5 As four rounds
are enough to get adaptive security for quasirandom systems, there cannot be a
black-box counter-example (like for three rounds) for the four (or more) round
case. Thus it is not surprising that our counter-example for four rounds is not
unconditional. It relies on the so-called Inverse Decisional Diffie-Hellman as-
sumption. The fact that there is no black-box counter-example can be used to
show that there is in some sense no “generic” adversary which breaks the adap-
tive security of the four-round Feistel-network with non-adaptive round func-
tions. What “generic” actually means will not be the topic of this paper, but see
Sect. 4 from [Pie06] (in this proceedings) for the corresponding statement for
sequential composition.

4 I.e. we make no other assumption besides the trivially necessary one that pseudo-
random functions – which are equivalent to one-way functions [HILL99, GGM86] –
exist at all.

5 We build F from a pseudorandom involution (PRI), how to construct a PRI from a
PRP (via a black-box reduction) has been shown in [NR02].

396 U. Maurer et al.

3 Basic Definitions and Random Systems

We use capital calligraphic letters like X to denote sets, capital letters like X to
denote random variables and small letters like x denote concrete values. To save
on notation we write X i for (X1, X2, . . . , Xi).

For x ∈ {0, 1}2n we denote with Lx and Rx the left and right half of x
respectively, so x = Lx‖Rx. Similarly for any function f with range {0, 1}2n, we
denote with Lf (Rf) the function one gets by ignoring the right (left) half of the
output of f . For two functions f(.) and g(.) we denote with f �g(.) def= g(f(.)) the
sequential composition of f and g.6 For a (randomized) function f we denote
with collk(f) the collision probability of any fixed k-tuple of distinct inputs, i.e.

collk(f) = max
x1,...,xk

P(∃i, j; 1 ≤ i < j ≤ k : f(xi) = f(xj)).

If f denotes a uniform random function with range {0, 1}n, then collk(f) ≤
k2/2n+1, this is called the birthday bound which we will use quite often.

Definition 1 (Feistel-network). The (one round) Feistel-network ψ[f] :
{0, 1}2n → {0, 1}2n based on a function f : {0, 1}n → {0, 1}n is defined as

ψ[f](x) def= (f(Lx) ⊕ Rx)‖Lx.

With ψ[f1 · · · fk] def= ψ[f1]�ψ[f2]�· · ·�ψ[fk] we denote the k-round Feistel-network
based on (randomized) round functions f1, . . . , fk, here the randomness used by
any function is always assumed to be independent of the randomness of the other
round functions. The k round Feistel-network where the same instantiation of a
function f is used for all rounds is denoted by ψ[fk] def= ψ[f · · · f︸ ︷︷ ︸

k times

].

Random Systems. Many results from this paper are stated and proven in the
random systems framework of [Mau02]. A random system is a system which takes
inputs X1, X2, . . . and generates, for each new input Xi, an output Yi which de-
pends probabilistically on the inputs and outputs seen so far. We define random
systems in terms of the distribution of the outputs Yi conditioned on X iY i−1 (i.e.
the actual query Xi and all previous input/output pairs X1Y1, . . . , Xi−1Yi−1).

Definition 2 (Random systems). An (X ,Y)-random system F is a sequence
of conditional probability distributions PF

Yi|XiY i−1 for i ≥ 1. Here we denote by
PF

Yi|XiY i−1(yi, x
i, yi−1) the probability that F will output yi on input xi condi-

tioned on the fact that F did output yj on input xj for j = 1, . . . , i − 1.

As special classes of random systems we will consider random functions (which
are exactly the stateless random systems) and random permutations.

Definition 3 (Random functions and permutations). A random function
X → Y (random permutation on X) is a random variable which takes as values
functions X → Y (permutations on X).
6 Note that f � g is usually denoted with g ◦ f .

Luby-Rackoff Ciphers from Weak Round Functions? 397

A uniform random function (URF) R : X → Y (A uniform random permu-
tation (URP) P on X) is a random function with uniform distribution over all
functions from X to Y (permutations on X). Throughout, the symbols R and P
are used for the systems defined above (X ,Y to be understood).

Indistinguishability of random systems. The distinguishing advantage of
a computationally unbounded distinguisher for two random variables A and B is
simply the statistical distance of A and B. It is more intricate to define what we
mean by the indistinguishability of random systems as here one must specify how
the systems can be accessed. For this we define the concept of a distinguisher.

Definition 4. A (Y,X)-distinguisher is a (Y,X)-random system which is one
query ahead; i.e. it is defined by PD

Xi|Y i−1Xi−1 instead of PD

Xi|Y iXi−1 for all i. In
particular the first output PD

X1
is defined before D is fed with any input.

We can now consider the random experiment where a (Y,X)-distinguisher queries
a (X ,Y)-random system

Definition 5. With D♦F we denote the random experiment where a distin-
guisher D interactively queries a compatible random system F.

We divide distinguishers into classes by posing restrictions on how the distin-
guisher can access his inputs and produce his queries. In particular the following
attacks will be of interest to us:

– CPA: Adaptively Chosen Plaintext Attack; here the adversary can choose
the i’th query after receiving the (i − 1)’th output.

– nCPA: Non-Adaptively Chosen Plaintext Attack; here the distinguisher must
choose all queries in advance.

– KPA: Known Plaintext Attack; the queries are chosen uniformly at random.

If F is a permutation, its inverse F−1 is well-defined and we can consider a

– CCA: Chosen Ciphertext Attack.

which is defined like a CPA but where the attacker can additionally make queries
from the inverse direction.

Definition 6. For k ≥ 1, the two random experiments D♦F and D♦G define a
distribution over X k ×Yk. The advantage of D after k queries in distinguishing
F from G, denoted ΔD

k (F,G), is the statistical difference between those distrib-
utions7

ΔD

k (F,G) def=
1
2

∑
Xk×Yk

∣∣PD♦F

XkY k − PD♦G

XkY k

∣∣ . (1)

7 This definition has a natural interpretation in the random experiment where we
first toss a uniform random coin C ∈ {0, 1}. Then we let D (which has no a priori
information on C) make k queries to a system H where H ≡ F if C = 0 and H ≡ G
if C = 1. Here the expected probability that an optimal guess on C based on the k
inputs and outputs of H will be correct is 1/2 + ΔD

k (F,G)/2.

398 U. Maurer et al.

The advantage of the best ATK-distinguisher making k queries for F and G is

ΔATK
k (F,G) def= max

ATK−distinguisher D

ΔD

k (F,G).

Pseudorandomness. We denote with AdvATK
PRP (F, t, k) the distinguishing ad-

vantage of the best oracle circuit for F from a URP P where the circuit must
be of size at most t and make at most k ATK-queries to its oracle. So Adv is
defined similarly to Δ but with an additional restriction on the size of the dis-
tinguisher. In particular AdvATK

PRP (F,∞, k) = ΔATK
k (F,P). AdvATK

PRF is defined
similarly, but with P replaced by R.

Informally, a family of keyed functions F indexed by a security parame-
ter γ ∈ N is an ATK-secure pseudorandom function (PRF) if F (with security
parameter γ) can be computed in uniform polynomial (in γ) time, and for any
polynomial p(.) the distinguishing advantage AdvATK

PRF (F, p(γ), p(γ)) is negligible
in γ (for a key chosen uniformly at random). Pseudorandom permutations (PRP)
are defined similarly but using AdvATK

PRP , and where we additionally require that
F (for any security parameter and key) is a permutation.

We usually use sans-serif fonts like F to denote systems which can be efficiently
computed (in particular pseudorandom systems), and bold fonts like F to denote
quasirandom and ideal systems.

4 Relaxations of the Three-Round Luby-Rackoff Cipher

Let us first state some results for the three-round Feistel-network.

Proposition 1. For any ATK ∈ {CPA, nCPA, KPA} and function F

ΔATK
k (ψ2n[FFF],P) ≤ 3 · ΔATK

k (F,R) + 2 · k2

2n+1 . (2)

The analogous statement also holds in the computational case: for any ATK ∈
{CPA, nCPA, KPA} and any efficient function F

AdvATK
PRP (ψ2n[FFF], t, k) ≤ 3 · AdvATK

PRF (F, t′, k) + 2 · k2

2n+1 , (3)

where t′ = poly(t, k) for some polynomial poly which accounts for the overhead
implied by the reduction we make.

The classical result of Luby and Rackoff [LR86], states that the Feistel-network
with three independent PRF rounds is a CPA secure PRP – i.e (3) for CPA.

Luby and Rackoff proved this result directly. One gets a simpler proof by first
showing that the three-round Feistel-network with URFs R is a CPA secure QRP
as this is a purely information-theoretic statement. In particular it was shown
in [Mau02] that8

ΔCPA
k (ψ2n[RRR],P) ≤ 2 · k2

2n+1 , (4)

8 This bound has been improved – for various number of rounds – in a series of papers.
The latest [Pat04] by Patarin presents the best possible security for up to k � 2n

(and not just k � 2n/2) queries, using five rounds which is also necessary.

Luby-Rackoff Ciphers from Weak Round Functions? 399

from which Proposition 1 directly follows using a standard hybrid argument.9

Lucks showed [Luc96] (see also [NR02]) that the first round in the three-round
Luby-Rackoff cipher can be replaced with a much weaker primitive which only
must provide some guarantee on the collision probability on the left half of the
output (for any two fixed inputs). In particular, an almost pairwise independent
permutation or a Feistel-round with an almost XOR-universal function will do.

Proposition 2. For any ATK ∈ {CPA, nCPA, KPA}, any functions F, G, and
any permutation H

ΔATK
k (H � ψ2n[FG],P) ≤ ΔATK

k (F,R)+2·ΔKPA
k (G,R)+collk(LH)+2 · k2

2n+1 . (5)

The analogous statement also holds in the computational case: for any ATK ∈
{CPA, nCPA, KPA}, any efficient functions F, G, and any efficient permutation H

AdvATK
PRP (H � ψ2n[FG], t, k) (6)

≤ AdvATK
PRF (F, t′, k) + 2 · AdvKPA

PRF (G, t′, k) + collk(LH) + 2 · k2

2n+1 ,

where t′ = t+poly(n, k) for some polynomial poly which accounts for the overhead
implied by the reduction we make.

Let us stress that (6) does not directly follow from (5).10 The proof of
Proposition 2 is given in the full version of this paper [MOPS06].

We relax the construction further for ATK = KPA by showing that the first
round can be removed completely (as opposed to when ATK ∈ {CPA, nCPA})11.
The round functions can also be replaced by a single instantiation of a KPA
secure function. Note that the resulting construction is an involution, i.e. has the
structural property of being self inverse. This result also generalizes Lemma 2.2
of [MT05] which states that the two round Feistel-network with CPA secure
PRFs is a KPA secure PRP.

9 The argument goes as follows for pseudorandom systems: suppose there is an ef-
ficient ATK ∈ {CPA, nCPA, KPA} distinguisher A for ψ2n[FFF] and P, then by
(4) this A will also distinguish ψ2n[FFF] from ψ2n[RRR]. Consider the hybrids
H0 = ψ2n[FFF], H1 = ψ2n[RFF], . . . , H3 = ψ2n[RRR]. By the triangle inequality
there is an 0 ≤ i ≤ 2 (say i = 1) such that A can distinguish Hi from Hi+1. Now,
the distinguisher which – with access to an oracle G (implementing either F or R) –
simulates A♦ψ2n[RGF] and outputs the output of A is an efficient ATK-distinguisher
for F with the same advantage as A’s advantage for H1 and H2. The corresponding
argument also holds in the quasirandom setting.

10 The reason why a reduction – like the simple argument to show that Proposition 1
follows from (4) – fails here, is that the KPA security guarantee for one of the com-
ponents is weaker than the CPA security for the whole construction. But fortunately
the proof of (5) is such that it easily translates to the pseudorandom setting.

11 ψ2n[RR] can be distinguish from P with two non-adaptively chosen queries: query
0n‖0n �→Ly‖Ry and 0n‖1n �→Ly′‖Ry′, and output 1 if Ry⊕Ry′ = 1n and 0 otherwise.

400 U. Maurer et al.

Proposition 3. For any function F

ΔKPA
k (ψ2n[F2],P) ≤ ΔKPA

2k (F,R) + 4 · k2

2n+1 . (7)

The analogous statement also holds in the computational case: for any function F
(in particular any efficient function F)

AdvKPA
PRP (ψ2n[F2], t, k) ≤ AdvKPA

PRF (F, t′, 2k) + 4 · k2

2n+1 , (8)

where t′ = t+poly(n, k) for some polynomial poly which accounts for the overhead
implied by the reduction we make.

The proof is in the full version of this paper [MOPS06]. Note that unlike in the
previous propositions, here we do not require the round function F to be efficient
in the computational case (the reason is that in the proof we do not need the
distinguisher to simulate any round function).

5 The Second Round Is Crucial

In the previous section we have seen that in the classical three-round Luby-
Rackoff cipher the first and third round function need not be CPA secure. In this
section we will see that the security requirements for the second round cannot be
relaxed. We only give proof sketches for the propositions of this section. Detailed
proofs can be found in the full version.

The following proposition states that to achieve CPA security in general it is
not sufficient that the second round function is nCPA secure. There exists a nCPA
secure function, such that the three-round Feistel-network with this function in
the second, and any random functions in the first and third round, is not CPA
secure.

Proposition 4. There exists a function F such that for any functions G and
G′ (in particular for G = R and G′ = R)

ΔnCPA
k (F,R) ≤ 4 · k2

2n+1 and ΔCPA
2 (ψ2n[GFG′],P) ≥ 1 − 2−n+1.

The analogous statement also holds in the computational case: (informal) there
is a nCPA secure PRF F such that ψ2n[GFG′] is not a CPA secure PRP for any
(not necessarily efficient) functions G and G′.

Proof (sketch). Let us first consider the quasirandom statement. Let I be a
uniform random involution, i.e. I(I(x)) = x for all x. Now, F is simply defined
as F(x) = x ⊕ I(x), note that this F satisfies F(x) = F(x ⊕ F(x)) for all x.

The nCPA security of F (which is simply the nCPA security of I) can be
bounded as stated in the proposition by standard techniques. Furthermore,
ψ2n[GFG′] can easily be distinguished from P with two adaptively chosen

Luby-Rackoff Ciphers from Weak Round Functions? 401

queries as follows. After a first query 0n‖0n, the output LY ‖Z contains the
output Z of the internal function F. Now make a second query 0n‖Z. If the
(unknown) input to F in the first query was some value V , then in this query it
will be V ⊕Z, and as F satisfies F(V) = F(V ⊕F(V)) = F(V ⊕Z), the output of
F will again be Z, and the overall output will be (LY ⊕ Z)‖Z. The proposition
follows as the output of P will satisfy such a relation with probability at most
2−n+1.

The corresponding statement for the pseudorandom setting is proven almost
identically. The only difference is that we need to use a CPA secure pseudorandom
involution instead of the uniform random involution. It is shown in [NR02] how
to construct a pseudorandom involution from any CPA secure PRF. ��

The next proposition states that the network will in general not (even) be nCPA
secure when the second round function is only secure against KPAs.

Proposition 5. There exists a function F such that for any functions G and G′

ΔKPA
k (F,R) ≤ k2

2n+1 , and ΔnCPA
2 (ψ2n[GFG′],P) ≥ 1 − 2−n+2.

The analogous statement also holds in the computational case: (informal) there
is a KPA secure PRF F such that ψ2n[GFG′] is not a nCPA secure PRP for any
(not necessarily efficient) functions G and G′.

Proof (sketch). Let us first consider the statement in the quasirandom setting.
Let F be a URF which ignores the first input bit, i.e. for all x ∈ {0, 1}n−1 we
have F(0‖x) = F(1‖x). The KPA security of F follows from the fact that F looks
completely random unless we happen to query two queries of the form 0‖x and
1‖x. By the birthday bound the probability that this happens after k queries is
at most k2

2n+1 . Furthermore, ψ2n[GFG′] can be distinguished from P with two
non-adaptively chosen queries. For instance on input 0n‖0n and 0n‖(1‖0n−1),
the right half of the output will be identical.

The corresponding statement in the pseudorandom setting is proven exactly
as above, except that we have to use a PRF F instead of F. ��

6 Four nCPA Secure Rounds, the Quasirandom Case

In this section we will show that the four-round Feistel-network with nCPA secure
QRFs is a CPA secure QRP. This is also the best possible as in Sect. 5 we showed
that four rounds are also necessary. The theorem is even stronger as the third
and fourth round function must only be KPA secure QRFs.

Theorem 1. For any functions F and G

ΔCPA
k (ψ2n[FFGG],P) ≤ 4 · ΔnCPA

k (F,R) + 3 · ΔKPA
k (G,R) + 9 · k2

2n+1 .

402 U. Maurer et al.

To prove this theorem we use Theorem 2 from [MPR06] which, for the special
case of the four-round Feistel-network, is given as Proposition 6 below. The
proposition bounds the security of a composition against a “strong” attacker
sATK (in particular CPA) in terms of the security of the components against
“weak” attackers wATKi (in particular nCPA or KPA).

The proposition uses the concept of conditions defined for random systems
which we only define informally here (see [MPR06] for a formal definition): With
FA we denote the random system F, but which additionally defines an internal
binary random variable after each query (called a condition). Let Ai ∈ {0, 1}
denote the condition after the i’th query. We set A0 = 0 and require the condition
to be monotone which means that Ai = 1 ⇒ Ai+1 = 1 (i.e. when the condition
failed, it will never hold again). Let ai denote the event Ai = 1, then

νATK(FA, ak) def= max
ATK−distinguisher D

PD♦F
A

ak
, (9)

denotes the advantage of the best ATK distinguisher to make the condition fail
after at most k queries to FA.

Proposition 6. If for any ({0, 1}n, {0, 1}n)-random system with a condition FA

νsATK(ψ2n[FARRR], ak) ≤ νwATK1(FA, ak) + α1 (10)
νsATK(ψ2n[RFARR], ak) ≤ νwATK2(FA, ak) + α2 (11)
νsATK(ψ2n[RRFAR], ak) ≤ νwATK3(FA, ak) + α3 (12)
νsATK(ψ2n[RRRFA], ak) ≤ νwATK4(FA, ak) + α4 (13)

for some attacks wATK1, wATK2, wATK3, wATK4, sATK and some α1, α2, α3,
α4 ≥ 0, then for any F1,F2,F3,F4

ΔsATK
k (ψ2n[F1F2F3F4], ψ2n[RRRR]) ≤

4∑
i=1

(ΔwATKi

k (Fi,R) + αi).

To apply this proposition we must show that equations (10), (11), (12) and (13)
hold for some attack wATKi and αi for i = 1, 2, 3, 4.

In the full version [MOPS06] we prove the following claim, from which
Theorem 1 now follows.

Claim 1. Equation (10) - (13) are satisfied for any function with a condition
FA, sATK = CPA, and

(
wATKi, αi

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
nCPA, 2 · k2

2n+1

)
if i = 1(

nCPA, 2 · k2

2n+1 + 2 · ΔnCPA
k (F,R)

)
if i = 2(

KPA, 3 · k2

2n+1 + ΔKPA
k (F,R)

)
if i = 3(

KPA, 2 · k2

2n+1

)
if i = 4 .

Luby-Rackoff Ciphers from Weak Round Functions? 403

7 Four nCPA Secure Rounds, the Pseudorandom Case

In this section we again investigate the CPA security of the four-round Feistel-
network with nCPA secure round functions, but this time for pseudorandom
systems. We show that here the situation is dramatically different from the
quasirandom setting by constructing a nCPA secure PRF where the four-round
Feistel-network with this PRF as round function is not CPA secure.

This PRF is defined over some group, and to prove the nCPA security we
assume that the so-called inverse decisional Diffie-Hellman (IDDH) is hard in
this group. Informally, the IDDH assumption requires that for a generator g and
random x, y it is hard do distinguish the triple (g, gx, gy) from (g, gx, gx−1

).

Theorem 2. (Informal) Under the IDDH assumption there exists a nCPA se-
cure PRF F such that the four-round Feistel-network where each round is in-
stantiated with F (with independent keys) is not a CPA secure pseudorandom
permutation.

This theorem follows from Lemma 1 below which states that there exist nCPA
secure PRFs F1, F2, F3 such that the left half of the three round Feistel-network
Lψ2n[F1F2F3] is not a CPA secure PRF. This implies that also ψ2n[F1F2F3G] is
not a CPA secure PRP for any G (and thus proves Theorem 2) as follows. By
the so-called PRF/PRP Switching Lemma any CPA secure PRP P is also a CPA
secure PRF. Clearly, then also LP must be a CPA secure PRF. Now, by Lemma 1
Lψ2n[F1F2F3] = Rψ2n[F1F2F3G] is not a CPA secure PRF, so ψ2n[F1F2F3G] can-
not be a CPA secure PRP.12

Lemma 1. Under the IDDH-assumption there exist nCPA secure PRFs F1, F2, F3
such that Lψ2n[F1F2F3] is not a CPA secure PRF: it can be distinguished effi-
ciently from a URF with only three (adaptive) queries with high probability.

Outline For this Section. In §7.1 we give a more formal definition of the
IDDH assumption. Then, in §7.2 we first show the construction from [Ple05] of
a nCPA secure PRF whose sequential composition will not be CPA secure. This
extremely simple and intuitive construction is the basis for the (more involved)
counter-example for the Feistel-network (i.e. Lemma 1) given in §7.3.

7.1 The Non-uniform IDDH Assumption

Below we define the IDDH assumption which is similar (and easily seen to im-
ply) the well known decisional Diffie-Hellman assumption. Throughout, we will
work with hardness assumptions in a non-uniform model of computation (i.e. we

12 The lemma talks about three different Fi’s (and in the proof we really construct a
different Fi for every round), but the theorem is stated for a single F. This does
not really make a difference. For example this single F can be defined as behaving
like Fi with probability 1/3 for i ∈ {1, 2, 3}. Then with constant probability 3−3 the
ψ2n[FFF] behaves like ψ2n[F1F2F3].

404 U. Maurer et al.

require hardness against polynomial size circuit families and not just any fixed
Turing machine).13

Let G denote an efficiently computable family of groups indexed by a security
parameter n ∈ N. By efficiently computable we mean that one can efficiently (i.e.
in time polynomial in n) sample a group (together with a generator) from the
family, and efficiently compute the group operations therein. Abusing notation
we denote with (G, g) = G(n) any group/generator pair for security parameter n.

The IDDH assumption is hard in G if for (G, g) = G(n) polynomial size circuits
have negligible advantage guessing whether for a given triple (g, gx, gy) the y is
random or computed as y = x−1, more formally

Definition 7 (non-uniform IDDH). For a group G and a generator g of G

AdvIDDH(G, g, s) def= max
C,|C|≤s

∣∣∣∣Pr
x

[
C(g, gx, gx−1

)= true
]
− Pr

x,y
[C(g, gx, gy)= true]

∣∣∣∣ ,
where the probability is over the random choice of x, y ∈ [1, . . . , |G|]. We say that
IDDH is hard in G if for any polynomial p(.)

AdvIDDH(G(n), p(n)) = negl(n).

7.2 Counter-Example for Sequential Composition from [Ple05]

In this section we construct a simple PRF F, but where the sequential composi-
tion of (arbitrary many) such F (with independent keys) is not CPA secure.

F is based on some prime order cyclic group (G, g) = G(n) where the IDDH
problem is hard and where the elements of the group can be efficiently and
densely encoded into {0, 1}n (with dense we mean that all but a negligible frac-
tion of the strings should correspond to an element of the group).14 For example
we can take the subgroup of prime order q of Z∗

p where p is a safe prime (i.e.
2q + 1) and q is close to 2n ([Dam04] describes how to embed such a G into
{0, 1}n).

Let [.] : G(n) → {0, 1}n denote an (efficient) embedding of G into bitstrings
(to save on notation we let [a, b] denote the concatenation of [a] and [b]). Let
13 In cryptography security usually means security against non-uniform (and not just

uniform) adversaries, and thus also the hardness assumptions used are usually non-
uniform, though this is sometimes not explicitly stated as the security proofs work
in both settings – i.e. a uniform (non-uniform) assumption implies hardness against
uniform (non-uniform) adversaries. But here this is not quite the case, we do not
know how to prove a uniform version of Lemma 1. (But one can do so under a
somewhat stronger assumption than IDDH. Loosely speaking, this assumption is
IDDH but where the attacker can also choose the generators to be used in the
challenge.)

14 For this construction we actually do not need this embedding, we could define F
directly over the group. But we will need it (or more precisely, the fact that if X is in
the range of F, also X⊕R for a random bitstring R is in the range with overwhelming
probability) when we extend this construction to get the counter-example for the
Feistel-network in the next section.

Luby-Rackoff Ciphers from Weak Round Functions? 405

R : K × {0, 1}4n → Z4
q be any nCPA secure PRF. Now consider the following

definition of a nCPA secure PRF F : {0, 1}4n → {0, 1}4n with secret key (k1 ∈
K, x ∈ Z∗

q).
The first thing F does on input (α, β, γ, δ) ∈ {0, 1}4n is to generate some

pseudorandom values using R, i.e.

(r1, r2, r3, r4) ← R(ki, α, β, γ, δ). (14)

Further, if there exists (a, b, c, d) ∈ G4 s.t. α = [a], β = [b], γ = [c], δ = [d] then F
outputs (here x−1 is the inverse of x in Z∗

q)

F([a, b, c, d]) → ([axr1 , br1 , cx−1r2 , dr2]), (15)

with r1, r2 generated as in (14). On the remaining inputs (which are a negligible
fraction of {0, 1}4n) F outputs just the (pseudo) random values [gr1 , gr2 , gr3 , gr4].

Now consider the cascade F′ � F′′ � F′′′ of three independent F’s (with corre-
sponding keys (x1, k1), (x2, k2), and (x3, k3)). Make a first query [g, g, g, g]

F′ � F′′ � F′′′([g, g, g, g]) → [gx1x2x3r, gr, gx−1
1 x−1

2 x−1
3 r′

, gr′
].

Then the output will have the form gx1x2x3r, gr, gx−1
1 x−1

2 x−1
3 r′

, gr′
for some

r, r′. Now exchange the right and the left half of this output and use it as the
second query

F′ � F′′ � F′′′([gx−1
1 x−1

2 x−1
3 r′

, gr′
, gx1x2x3r, gr]) → [gr′′

, gr′′
, gr′′′

, gr′′′
]

so the output is of the form [u, u, v, v] for some u, v and thus can be distinguished
from random. Therefore F′ � F′′ � F′′′ is not a CPA secure PRF. This proves that
the sequential composition of nCPA secure PRFs does not yield a CPA secure
function in general. Note that this distinguishing attack works for any number
of rounds, not just three. In the full version of this paper [MOPS06] we prove
the following lemma which states that F is an nCPA secure PRF if IDDH is hard
in G and R is a nCPA secure PRF.

Lemma 2. Let g be any generator of the group over which F is defined, then

AdvnCPA
PRF (F, k, s) ≤ 6k · AdvIDDH(F, g, s′) + AdvnCPA

PRF (R, k, s′),

where s′ = s + poly(k, n) for some polynomial poly which accounts for the over-
head implied by the reduction we make.

7.3 Proof of Lemma 1

The Feistel-network can be seen as a sequential composition of the round func-
tions, but where one additionally XORs the input to the i’th round function to
the output of the (i + 1)’th round function. So it is not surprising that we can
use Fi’s similar to the F from the previous section to prove Lemma 1. But the
F1, F2, and F3 (from the statement of the lemma) are a bit more complicated as

406 U. Maurer et al.

we have to “work around” this additional XORs. Like F, each Fi has a ki ∈ K
as part of its secret key. Moreover F1 has a x ∈ Z∗

q and s, t ∈ {0, 1}n, F2 has a
y ∈ Z∗

q , and F3 a z ∈ Z∗
q as keys. On input (α, β, γ, δ) = [a, b, c, d] the Fi’s are

defined as (with the ri’s generated as in (14))

F1([a, b, c, d]) →

⎧⎪⎪⎨⎪⎪⎩
[gxr1 , gr1], s, t if [a, b, c, d] = [0, 0, 0, 0];
[0, 0, 0, 0] elseif c = dx;
[gxr1 , gr1 , ([γ ⊕ s]−1)x−1r2 , ([δ ⊕ t]−1)r2] elseif [a, b] = [0, 0];
[gr1 , gr2 , gr3 , gr4] otherwise.

F2([a, b, c, d]) → [cy−1r1 , dr1 , ayr2 , br2]

F3([a, b, c, d]) →
{

[0, 0, 0, 0] if bz = a;
[az−1r1 , br1 , czr2 , dr2] otherwise.

Proof (of Lemma 1). The lemma follows from Claim 2 and 3 below. ��

Claim 2. One can distinguish Lψ2n[F1F2F3] from a URF with three adaptively
chosen queries with advantage almost 1.

Proof (sketch). In Fig. 2 we demonstrate an adaptive three query distinguishing
attack on Lψ2n[F1F2F3]. In the figure, values which are not relevant for the attack
are denoted by ∗. All r′i values are random, but not necessarily equal to a random
value generated by a round function (i.e. as in (14)).15 To see that this is a legal
attack note that every query Qi can be computed from the previous output
Oi−1. That the values will really have the form as described in the attack can
be verified from the definition of the Fi’s.16 Since the third output starts with
[0, 0] it can be distinguished from a random output with high probability. ��

Claim 3. F1, F2, and F3 are nCPA secure PRFs if IDDH is hard in G.

Proof (sketch). The nCPA security of the Fi’s follows from the nCPA security
of F from the previous section as stated in Lemma 2: F2 is exactly F, so there
is nothing else to prove here. The function F3 behaves exactly as F unless it
is queried on an input [a, b, c, d] which satisfies bz = a for a random z. The
probability that this happen on any (non-adaptive) query is just |G|−1 (and
thus exponentially small even after taking the union bound over all polynomially
many queries). For the somewhat longer argument for F1, we refer to the full
version [MOPS06]. ��
15 For instance, r′

1 is the first random value generated by F1 and r′
2 is the product of

r′
1 and the second random value generated by F2.

16 Actually, there is an exponentially small probability that the values will not have
that form, namely when the input to some round function “by chance” satisfies a
condition that is checked. E.g. when R3

1 is of the form [bz, b, c, d], then the “bz =
a” case of F3 applies, which is only supposed to happen in the second and third
query.

Luby-Rackoff Ciphers from Weak Round Functions? 407

LQ1 : [0, 0, 0, 0] RQ1 : [0, 0, 0, 0]
R2

1 : [gxr′
1 , gr′

1], s, t
R3

1 : ∗, ∗, [gxyr′
2 , gr′

2]
O1 : ∗, ∗, [gxyzr′

3] ⊕ s, [gr′
3] ⊕ t

LQ2 : [0, 0], [gxyzr′
3]⊕ s, [gr′

3]⊕ t RQ2 : [0, 0, 0, 0]
R2

2 : [gxr′
4 , gr′

4 , gyzr′
5 , gr′

5]
R3

2 : [gzr′
6 , gr′

6], ∗, ∗
O2 : [gxr′

4 , gr′
4 , gyzr′

5 , gr′
5]

LQ3 : [0, 0, gxr′
4 , gr′

4] RQ3 : [0, 0, gyzr′
5 , gr′

5]
R2

3 : [0, 0, gyzr′
5, gr′

5]
R3

3 : [gzr′
7 , gr′

7], ∗, ∗
O3 : [0, 0, gyzr′

5, gr′
5]

LQi RQi

F1 ⊕

R2
i F2 ⊕

R3
i F3 ⊕

Oi

Fig. 2. An adaptive three query distinguishing attack for Lψ2n[F1F2F3]

8 Some Remarks on CCA Security

We have shown that the four-round Feistel-network with nCPA secure round
functions is CPA secure in the information-theoretic, but in general not in the
computational setting. A natural question is to ask how many rounds are
necessary/not sufficient to achieve CCA security. In this section we state some
observations. The full version of this paper addresses this question in more detail.

In order to get a CCA secure quasirandom permutations (QRP), it is enough –
by the following statement (taken from [MPR06]) – to cascade two nCPA secure
QRPs (the second in inverse direction)

ΔCCA
k (F � G−1,P) ≤ ΔnCPA

k (F,P) + ΔnCPA
k (G,P).

With this and Proposition 1 we directly get that six rounds with nCPA secure
QRFs give a CCA secure QRP, i.e.

ΔCCA
k (ψ2n[FFFFFF],P) ≤ 6 · ΔnCPA

k (F,R) +
k2

2n−1 .

So six nCPA secure round functions are sufficient to get CCA security, and by
Proposition 4 we know that at least four rounds are necessary. Using Proposi-
tion 5 we can further relax the requirements for the round functions as

ΔCCA
k (H � ψ2n[FGGF] � H−1,P)

≤ 2 · ΔnCPA
k (F,R)+4·ΔKPA

k (G,R)+2 · collk(LH)+2 · k2

2n+1 .

As to the (in)security of the Feistel-network with nCPA secure round-functions
in the computational setting, we do not know anything beyond what is already
implied by CPA security alone, i.e. four rounds are not enough to get CCA security
(as it is not enough to get CPA security by Theorem 2).

408 U. Maurer et al.

References

[Dam04] Ivan Damg̊ard. Discrete log based cryptosystems, 2004. Manuscript,
www.daimi.au.dk/ivan/DL.pdf.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. J. ACM, 33(4):792–807, 1986.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function. SIAM J. Comput.,
28(4):1364–1396, 1999.

[LR86] Michael Luby and Charles Rackoff. Pseudo-random permutation genera-
tors and cryptographic composition. In Proc, 18th ACM Symposium on
the Theory of Computing (STOC), pages 356–363, 1986.

[Luc96] Stefan Lucks. Faster Luby-Rackoff ciphers. In Fast Software Encryption,
volume 3557 of LNCS, pages 189–203. Springer-Verlag, 1996.

[Mau02] Ueli Maurer. Indistinguishability of random systems. In Advances in
Cryptology — EUROCRYPT ’02, volume 2332 of LNCS, pages 110–132.
Springer-Verlag, 2002.

[MOPS06] For the full version of this paper see www.crypto.ethz.ch/publications
[MP04] Ueli Maurer and Krzysztof Pietrzak. Composition of random systems:

When two weak make one strong. In Theory of Cryptograpy — TCC ’04,
volume 2951 of LNCS, pages 410–427. Springer-Verlag, 2004.

[MPR06] Ueli Maurer, Krzysztof Pietrzak, and Renato Renner. Indistinguishability
amplification, 2006. Manuscript.

[MT05] Kazuhiko Minematsu and Yukiyasu Tsunoo. Hybrid symmetric encryption
using known-plaintext attack-secure components. In ICISC ’05, LNCS.
Springer-Verlag, 2005.

[Mye04] Steven Myers. Black-box composition does not imply adaptive security.
In Advances in Cryptology — EUROCRYPT ’04, volume 3027 of LNCS,
pages 189–206. Springer-Verlag, 2004.

[NR99] Moni Naor and Omer Reingold. On the construction of pseudorandom
permutations: Luby-Rackoff revisited. J. Cryptology, 12(1):29–66, 1999.

[NR02] Moni Naor and Omer Reingold. Constructing pseudo-random permuta-
tions with a prescribed structure. J. Cryptology, 15(2):97–102, 2002.

[Pat04] Jacques Patarin. Security of random feistel schemes with 5 or more rounds.
In Advances of Cryptology — CRYPTO ’04, volume 3152 of LNCS, pages
106–122. Springer-Verlag, 2004.

[Pie90] Josef Pieprzyk. How to construct pseudorandom permutations from single
pseudorandom functions. In Advances in Cryptology — EUROCRYPT ’90,
volume 537 of LNCS, pages 140–150. Springer-Verlag, 1990.

[Pie05] Krzysztof Pietrzak. Composition does not imply adaptive security. In
Advances in Cryptology — CRYPTO ’05, volume 3621 of LNCS, pages
55–65. Springer-Verlag, 2005.

[Pie06] Krzysztof Pietrzak. Composition implies adaptive security in minicrypt.
In Advances in Cryptology — EUROCRYPT ’06, LNCS. Springer-Verlag,
2006.

[Ple05] Patrick Pletscher. Adaptive security of composition, 2005. Semester The-
sis. www.pletscher.org/eth/minor/adapt sec.pdf

[RR00] Zulfikar Ramzan and Leonid Reyzin. On the round security of symmetric-
key cryptographic primitives. In Advances in Cryptology — CRYPTO ’00,
volume 1880 of LNCS, pages 376–393. Springer-Verlag, 2000.

The Security of Triple Encryption and a
Framework for Code-Based Game-Playing Proofs

Mihir Bellare1 and Phillip Rogaway2

1 Dept. of Computer Science & Engineering University of California at San Diego,
9500 Gilman Drive, La Jolla, California 92093 USA

2 Dept. of Computer Science, University of California, Davis, California 95616, USA

Abstract. We show that, in the ideal-cipher model, triple encryption
(the cascade of three independently-keyed blockciphers) is more secure
than single or double encryption, thereby resolving a long-standing open
problem. Our result demonstrates that for DES parameters (56-bit keys
and 64-bit plaintexts) an adversary’s maximal advantage against triple
encryption is small until it asks about 278 queries. Our proof uses code-
based game-playing in an integral way, and is facilitated by a framework
for such proofs that we provide.

1 Introduction

Triple encryption. Given a blockcipher E : {0, 1}k × {0, 1}n → {0, 1}n with
inverse D consider blockciphers Cascadeeee

E (K0K1K2, X) = EK2(EK1(EK0(X)))
and Cascadeede

E (K0K1K2, X) = EK2(DK1(EK0(X))). Our results are the same
for both constructions. Following [14, 6, 9], we model E as a family of random
permutations, one for each key, and we provide the adversary with oracle access
to the blockcipher E(·, ·) and its inverse E−1(·, ·). Given such oracles, the adver-
sary is asked to distinguish between (a) Cascadeeee

E (K0K1K2, ·) and its inverse,
for a random key K0K1K2, and (b) a random permutation on n bits and its
inverse. We show that the adversary’s advantage in making this determination,
Adveee

k,n(q), remains small until it asks about q = 2k+0.5min{k,n} queries (the ac-
tual expression is more complex). The bound we get is plotted as the rightmost
curve of Fig. 1 for DES parameters k = 56 and n = 64. In this case an adver-
sary must ask more than 278.5 queries to get advantage 0.5. Also plotted are the
security curves for single and double encryption, where the adversary must ask
255 and 255.5 queries to get advantage 0.5. For a blockcipher with k = n = 64,
the adversary must ask more than 289 queries to get advantage 0.5. As there
are matching attacks and security bounds for single and double encryption [4, 1]
our result proves that, in the ideal-cipher model, triple encryption is much more
secure than single or double encryption.

As background for the above, note that the security of the cascade construc-
tion, where two or more independently keyed blockciphers are composed with
one another, is a long-standing open problem [4, 12]. Even and Goldreich refer
to it as a “critical question” in cryptography [5, p. 109]. They showed that the

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 409–426, 2006.
c© International Association for Cryptologic Research 2006

410 M. Bellare and P. Rogaway

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90 100 110 120

Fig. 1. Upper bound on adversarial advantage (proven security) verses log2 q (where
q=number of queries) for the cascade construction, assuming key length k = 56 and
block length n = 64. Single encryption is the leftmost curve, double encryption is the
middle curve [1], and triple encryption in the rightmost curve, as given by Theorem 1.

cascade of ciphers is at least as strong as the weakest cipher in the chain [5],
while Maurer and Massey showed that, in a weaker attack model, it is at least
as strong as the first cipher in the chain [11]. Aiello, Bellare, Di Crescenzo, and
Venkatesan [1] prove the security of double-encryption (the two-stage cascade)
in the same model as we use in this paper, showing that the maximal adversary
advantage in q queries is q2/22k. The meet-in-the-middle attack [4] implies that
this is the best possible. So the adversary’s advantage for double-encryption is
only small until q ≈ 2k, just as for single encryption (although it grows as a
slower rate). Thus triple encryption is the shortest potentially “good” cascade.
And, indeed, triple DES is the cascade that is widely standardized and used [13].

The best published attack on three-key triple-encryption is due to Lucks [10].
He does not work out an explicit lower bound for Adveee

k,n(q), but in the case of
triple-DES, the adversary’s advantage becomes large at around q = 290 queries
(using enormous time and memory, too). We prove security to about 278 queries,
so there is no contradiction.

As for the cascade of 	 ≥ 4 blockciphers, the maximal advantage in our attack
model is no worse than it is for triple encryption, so our result proves that
cascade “works” for all 	 ≥ 3. It is open if security increases with increasing 	.

Game-playing framework. Our proof for triple-encryption uses game-playing
in an integral way, first to recast the advantage we wish to bound via a simpler
game, and later to analyze that game via others. Ultimately one is left with a
game where conventional probabilistic reasoning can be applied.

What constitutes a game-playing proof is a matter of perspective. To some,
a game-playing proof in cryptography is any proof where one conceptualizes
the adversary’s interaction with its environment as a kind of game, the proof
proceeding by constructing a “chain” of such games. Viewed in this way, game-
playing proofs have their origin in the earliest hybrid arguments, which began
with Goldwasser and Micali [7] and Yao [16]. Bellare and Goldwasser [2] provide
an early example of the use of a game-chain to prove security of a construction
that uses multiple different cryptographic primitives.

The Security of Triple Encryption and a Framework 411

In our treatment, games are code (ie, programs), not abstract environments; as
we develop it, game-playing centers around making disciplined transformations
to code. This approach begins with Kilian and Rogaway [9], and was used by
Rogaway in many subsequent works. The framework of Section 2 develops this
approach, and in particular our Fundamental Lemma (Lemma 1) is about the
probability that an adversary can distinguish between games (programs) that
differ in a certain syntactic way.

Shoup has independently and contemporaneously prepared a manuscript on
game playing [15], advocating the use of game chains to make proofs more ac-
cessible. Shoup has often used game-playing over the years. His approach is not
code-based. Shoup’s [15, Lemma 1] functions like our Fundamental Lemma, but
the former is cast in terms of conditional probabilities while the latter talks of
programs that differ only after the setting of a flag bad .

Following the web distribution of this paper, Halevi argues for the creation
of an automated tool to help write and verify game-based proofs [8]. We agree.
The possibility for such tools has always been one of our motivations, and one
of the reasons we focus on code-based games.

Our broader paper [3] contains further illustrations of game-based proofs (the
PRP/PRF Switching Lemma, the CBC MAC, and OAEP) and a discussion of
general techniques for code-based game-playing.

2 The Game-Playing Framework

Games are programs, written in pseudocode or in some formalized programming
language. We describe some elements of the language we use. The semantics
of a boolean variable, which we will also call a flag, is that once true it stays
true. A random-assignment statement has the form s

$← S where S is a finite
set. This is the only source of randomness in programs. A game consists of
an initialization procedure (Initialize), a finalization procedure (Finalize), and
named oracles (each a procedure). The adversary, which we also regard as code,
makes calls to the oracles, passing in values from some finite domain associated
to each oracle. The initialization or finalization procedures may be absent, and
often are, and there may be any number of oracles, including none. All variables
in a game are global, and they are not visible to the adversary.

We can run a game G with an adversary A. To begin, variables are given initial
values. Integer variables are initialized to 0; boolean variables are initialized
to false; string variables are initialized to the empty string ε; set variables are
initialized to the empty set ∅; and array variables hold the value undefined at
every point. These conventions often enable omitting explicit initialization code.
When used in a boolean expression, undefined values are regarded as false.

The Initialize procedure is the first to execute, possibly producing an output
inp. This is provided as input to the Adversary procedure A, which now runs. The
adversary code can make oracle queries via statements of the form y ← P (· · ·)
for any oracle P that has been defined in the game. The result is to assign to y the
value returned by the procedure call. We assume that the game and adversary

412 M. Bellare and P. Rogaway

match syntactically, meaning that all the oracle calls made by the adversary are
to oracles specified in the game, and with arguments that match in quantity
and type. The semantics of a call is call-by-value; the only way for an oracle to
return a value to the adversary is via a return statement. When adversary A
halts, possibly with some adversary output, we call Finalize, providing it any such
output. The Finalize procedure returns a string that we call the game output.
If we omit specifying Initialize or Finalize, or their return-statements, it means
that the procedure returns its input. The game output and adversary output are
often the same, because Finalize (or a return-statement for it) is unspecified.

The adversary and game outputs can be regarded as random variables. We
write Pr[AG ⇒1] for the probability that the adversary output is 1 when we run
game G with adversary A, and Pr[GA ⇒ 1] for the probability that the game
output is 1 when we run game G with adversary A.

Advantages. If G and H are games and A is an adversary, let Adv(AG, AH) =
Pr[AG ⇒1]−Pr[AH ⇒1] and Adv(GA, HA) = Pr[GA ⇒1]−Pr[HA ⇒1]. These
represent the advantage of the adversary in distinguishing the games, the first
measured via adversary output and the second via game output. We refer to the
first as the adversarial advantage and the second as the game advantage. We say
that G, H are adversarially indistinguishable if for any adversary A it is the case
that Adv(AG, AH) = 0, and equivalent if for any adversary A it is the case that
Adv(GA, HA) = 0. We will often use the fact that

Adv(AG, AI) = Adv(AG, AH) + Adv(AH , AI) (1)
Adv(GA, IA) = Adv(GA, HA) + Adv(HA, IA) (2)

for any games G, H, I and any adversary A. These follow simply from the fact
that (a− b) + (b− c) = a− c. These will be referred to as the triangle equalities.

The fundamental lemma. Let G and H be games and let bad be a flag
that occurs in both of them. Then we say that G and H are identical-until-bad if
their code is the same except that there might be places where G has a statement
bad ← true, S while game H has a corresponding statement bad ← true, T for
some T that may be different from S. (One could also say that G and H are
are identical-until-bad if one has the statement if bad then S where the other
has the empty statement, for this can be rewritten in the form above.) The
identical-until-bad predicate is an equivalence relation.

We write Pr[AG sets bad] or Pr[GA sets bad] to refer to the probability that
the flag bad is true at the end of the execution of the adversary A with game G
(that is, when Finalize terminates). The fundamental lemma says that the advan-
tage that an adversary can obtain in distinguishing a pair of identical-until-bad
games is at most the probability that its execution sets bad in one of them.

Lemma 1. [Fundamental lemma of game-playing] Let G and H be identical-
until-bad games and let A be an adversary. Then

Adv(AG, AH) ≤ Pr[AG sets bad] and Adv(GA, HA) ≤ Pr[GA sets bad] .

The Security of Triple Encryption and a Framework 413

More generally, if G, H, and I are identical-until-bad games then∣∣Adv(AG, AH)
∣∣ ≤ Pr[AI sets bad] and

∣∣Adv(GA, HA)
∣∣ ≤ Pr[IA sets bad].

One of the most common manipulations of games along a game chain is to change
what happens after bad gets set to true. Any modification following the setting
of bad leaves unchanged the probability of setting bad .

Proposition 1. [After bad is set, nothing matters] Let G and H be identical-
until-bad, and A an adversary. Then Pr[GA sets bad] = Pr[HA sets bad].

3 The Security of Three-Key Triple-Encryption

Definitions. Let E : {0, 1}k × {0, 1}n → {0, 1}n be a blockcipher with key
length k and block length n. For K ∈ {0, 1}k and X ∈ {0, 1}n let EK(X) =
E(K, X). Let E−1 : {0, 1}k × {0, 1}n → {0, 1}n be the blockcipher that is the
inverse of E. We associate to E two blockciphers formed by composition; de-
noted Cascadeeee

E , Cascadeede
E : {0, 1}3k × {0, 1}n → {0, 1}n, these were defined

in Section 1. These blockciphers have key length 3k and block length n and are
sometimes referred to as the three-key forms of triple encryption. We will call
the two methods EEE and EDE, respectively. There is also a two-key variant
of triple encryption, obtained by setting K0 = K2, but we do not investigate it
since the method admits comparatively efficient attacks [12].

We will be working in the ideal-blockcipher model, as in works like [6, 9, 1].
Let Bloc(k, n) be the set of all blockciphers E : {0, 1}k×{0, 1}n → {0, 1}n. Thus
E

$← Bloc(k, n) means that EK : {0, 1}n → {0, 1}n is a random permutation on
n-bit strings for each K ∈ {0, 1}k. We consider an adversary A that can make
four types of oracle queries: T (X), T −1(Y), E(K, X), and E−1(K, Y), where
X, Y ∈ {0, 1}n and K ∈ {0, 1}k. (As for our syntax, T , T −1, E, E−1 are
formal symbols, not specific functions.) The advantage of A against EEE and
the maximal advantage against EEE obtainable using q queries are defined as

Adveee
k,n(A) = Adv(AC0 , AR0) and Adveee

k,n(q) = max
A

{
Adveee

k,n(A)
}

where the games C0, R0 are shown in Fig. 2 and the maximum is over all ad-
versaries A that make at most q oracle queries (that is, a total of q across all
four oracles). The advantage of A measures its ability to tell whether T (·) is a
random permutation or is Cascadeeee

E (K0K1K2, ·) for K0K1K2 chosen indepen-
dently at random from {0, 1}3k and where E realizes a random blockcipher and
T −1, E−1 realize inverses of T , E, respectively.

Define the query threshold QTheee
1/2(k, n) as the largest integer q for which

Adveee
k,n(q) ≤ 1/2. We will regard EEE as being secure up to QTheee

1/2(k, n)
queries. Let Advede

k,n(A),Advede
k,n(q), and QThede

1/2(k, n) be defined in the analo-
gous way.

Results. We are now ready to state our result about the security of triple
encryption.

414 M. Bellare and P. Rogaway

Theorem 1. [Security of triple-encryption] Let k, n ≥ 2. Let α = max(2e2k−n,
2n + k). Then

Adveee
k,n(q) ≤ 4α

q2

23k
+10.7

(q

2k+n/2

)2/3
+

12
2k

. (3)

We display the result graphically in Fig. 1 for DES parameters k = 56 and n =
64. Our bound implies that QTheee

1/2(k, n) is, very roughly, about 2k+min(k,n)/2,
meaning that EEE is secure up to this many queries.

For EDE the result is the same, meaning that Advede
k,n(q) is also bounded

by the quantity on the right-hand-side of (3). This can be shown by mostly-
notational modifications to the proof of Theorem 1.

4 Proof of Theorem 1

Overview. The first step in our proof reduces the problem of bounding the
advantage of an adversary A against EEE to bounding certain quantities that
relate to a different, simplified adversary B. By a simplified adversary we mean
one that makes no T (·), T −1(·) queries, meaning it only has oracles E(·, ·) and
E−1(·, ·). We will consider two games, both involving random, distinct keys
K0, K1, K2. In one game (R3) EK2 is random, while in the other (DS), it is
correlated to EK0 , EK1 . The quantities we will need to bound are the ability
of our simplified adversary to either distinguish these games without extending
a 2-chain, or to extend a 2-chain in one of the games, where what it means to
extend a 2-chain is explained below. We will be able to provide these two bounds
via two lemmas. The first considers a simplified game in which an adversary has
only three permutation oracles, either all random or one correlated to the rest,
and has to distinguish them without extending a 2-chain. The second bounds
the probability that the adversary can extend a 2-chain in R3.

Conventions. We begin with some conventions. An adversary A against EEE
can make oracle queries T (X), T −1(Y), E(K, X), or E−1(K, Y) for any X, Y ∈
{0, 1}n and K ∈ {0, 1}k. We will assume that any adversary against EEE is
deterministic and never makes a redundant query. A query is redundant if it has
been made before; a query T −1(Y) is redundant if A has previously received Y
in answer to a query T (X); a query T (X) is redundant if A has previously
received X in answer to a query T −1(Y); a query E−1(K, Y) is redundant
if A has previously received Y in answer to a query E(K, X); a query E(K, X)
is redundant if A has previously received X in answer to a query E−1(K, Y).
Assuming A to be deterministic and not to ask redundant queries is without
loss of generality in the sense that for any A that asks q queries there is an A′

asking at most q queries that satisfies these assumptions and achieves the same
advantage as A. Our general conventions about games imply that A never asks a
query with arguments outside of the intended domain, meaning {0, 1}k for keys
and {0, 1}n for messages.

The Security of Triple Encryption and a Framework 415

procedure Initialize
K0, K1, K2

$←{0, 1}k, E
$← Bloc(k, n), T

$← Perm(n), T ← EK2 ◦ EK1 ◦EK0

procedure T (P) procedure T −1(S)
return T [P] return T −1[S]

procedure E(K, X) procedure E−1(K, Y) Game R0

return EK [X] return E−1
K [Y] Game C0

procedure Initialize
(K0, K1, K2)

$←Distinctk
3 , E

$←Bloc(k, n), T
$←Perm(n), EK2 ←T ◦E−1

K0
◦E−1

K1

procedure T (P) procedure T −1(S)
return T [P] return T −1[S]

procedure E(K, X) procedure E−1(K, Y) Game R1

return EK [X] return E−1
K [Y] Game C1

procedure Initialize
(K0, K1, K2)

$←Distinctk
3 , E

$←Bloc(k, n), EK2 ← T ◦E−1
K0

◦ E−1
K1

procedure E(K, X) procedure E−1(K, Y) Game R2

return EK [X] return E−1
K [Y] Game CT

procedure Initialize

(K0, K1, K2)
$←Distinctk

3 , E
$←Bloc(k, n), EK2 ← S ◦ E−1

K0
◦ E−1

K1

procedure E(K, X)
if ∃ i ∈ {0, 1, 2} such that K = Ki then Game R3

Q ← E−1
Ki+2

[X], P ← E−1
Ki+1

[Q] Game DS

if P
i+1−→Q

i+2−→X then x2ch ← true

Add arc X
i−→EK [X]

return EK [X]

procedure E−1(K, Y) procedure Finalize(out)
if ∃ i ∈ {0, 1, 2} such that K = Ki then if x2ch then return 1 else return out

Q ← EKi+1 [Y], R ← EKi+2 [Q]
if Y

i+1−→Q
i+2−→R then x2ch ← true

Add arc E−1
K [Y] i−→Y

return E−1
K [Y]

Fig. 2. The CX or DX games include the boxed statements while the Ri games do not

4.1 Reduction to Simplified Adversary

Consider the games in Fig. 2. The R-games (where R stands for random) omit
the boxed assignment statements while the C-games and D-game include them.
Distinctk

3 denotes the set of all triples (K0, K1, K2) ∈ ({0, 1}k)3 such that
K0 �= K1 and K1 �= K2 and K0 �= K2. Games R0, R1, C0, C1 will be run

416 M. Bellare and P. Rogaway

with an adversary against EEE. The rest of the games will be run with a sim-
plified adversary. Game CT is parameterized by a permutation T ∈ Perm(n),
meaning we are effectively defining one such game for every T , and similarly
DS is parameterized by a permutation S ∈ Perm(n). Game DS grows an (ini-
tially without edges) edge-labeled directed graph with vertex set {0, 1}n. An arc
X

i−→Y is created when a query EKi(X) returns the value Y or a query E−1
Ki

(Y)
returns the value X . The boolean flag x2ch is set if the adversary extends a
2-chain, meaning that a path P

i+1−→Q
i+2−→R exists in the graph and the adversary

asks either EKi(R) or E−1
Ki

(P), where the indicated addition is modulo 3. Note
that DS has an explicit Finalize procedure, indicating we will be interested in
the game output rather than the adversary output.

Lemma 2. Let A be an adversary that makes at most q queries. Then there
is a permutation S ∈ Perm(n) and a simplified adversary B making at most q
queries such that Adveee

k,n(A) is at most

Adv(DB
S , RB

3) + Pr
[
DB

S sets x2ch
]
+ Pr

[
RB

3 sets x2ch
]
+

6
2k

.

Proof (Lemma 2). Game C0 defines T as E2 ◦ E1 ◦ E0 for random E0, E1, E2,
while game C1 defines E2 as T ◦ E−1

K0
◦ E−1

K1
for random T, EK0 , EK1 . However,

these processes are identical. With this factored out, the difference between C1
and C0 is that the former draws the keys K0, K1, K2 from Distinctk

3 while the
latter draws them from ({0, 1}k)3. Games R1 and R0 differ in only the latter
way. So using (1) we have

Adveee
k,n(A) = Adv(AC0 , AR0) ≤ Adv(AC1 , AR1) +

6
2k

.

Game CT is parameterized by a permutation T ∈ Perm(n). For any such T
we consider an adversary AT that has T hardwired in its code and is simpli-
fied, meaning can make queries E(K, X) and E−1(K, Y) only. This adversary
runs A, answering the latter’s E(K, X) and E−1(K, Y) queries via its own or-
acles, and answering T (X) and T −1(Y) queries using T . Note that AT makes
at most q oracle queries. Choose S ∈ Perm(n) such that Adv(ACS

S , AR2
S) is the

maximum over all T ∈ Perm(n) of Adv(ACT

T , AR2
T) and let B = AS . We now

have Adv(AC1 , AR1) ≤ Adv(BCS , BR2). Now by (2) we have

Adv(BCS , BR2) ≤ Adv(CB
S , DB

S) + Adv(DB
S , RB

3) + Adv(RB
3 , RB

2) .

Game CS (resp. game R2) can be easily transformed into an equivalent game such
that this game and game DS (resp. R3) are identical-until-x2ch, so by the Funda-
mental Lemma we have Adv(CB

S , DB
S) ≤ Pr[DB

S sets x2ch] and Adv(RB
3 , RB

2)
≤ Pr[RB

3 sets x2ch]. Putting all this together completes the lemma’s proof.

Letting p = Pr
[
RB

3 sets x2ch
]
, we now need to bound

Adv(DB
S , RB

3) + (Pr
[
DB

S sets x2ch
]− p) + 2p . (4)

The Security of Triple Encryption and a Framework 417

We will be able to bound the first two terms by bounding the advantages of
a pair B1, B2 of adversaries, related to B, in distinguishing between a pair of
games that involve only three permutation oracles, the first two random, and the
third either random or correlated to the first two. We will bound p separately
via a combinatorial argument. We now state the lemmas we need, conclude the
proof of Theorem 1 using them in Section 4.4, and then return to provide the
proofs of the two lemmas.

4.2 Pseudorandomness of Three Correlated Permutations

We posit a new problem. Consider games G and H defined in Fig. 3. Game G
grows an edge-labeled graph, which we shall describe shortly. An adversary may
make queries Π(i, X) or Π−1(i, Y) where i ∈ {0, 1, 2} and X, Y ∈ {0, 1}n. The
oracles realize three permutations and their inverses, the function realized by
Π−1(i, ·) being the inverse of that realized by Π(i, ·). In both games permu-
tations π0, π1 underlying Π(0, ·) and Π(1, ·) are uniform and independent. In
game G the permutation π2 underlying Π(2, ·) is also uniform and independent
of π0 and π1, but in game H it is equal to π−1

1 ◦ π−1
0 .

procedure Initialize Game G

π0, π1, π2
$← Perm(n), π2 ← π−1

1 ◦ π−1
0 Game H

procedure Π(i, X) procedure Π−1(i, Y)
if ∃ P

i+1−→Q
i+2−→X ∈ G then x2ch ← true if ∃ Y

i+1−→Q
i+2−→R ∈ G then x2ch ← true

add X
i−→ πi[X] to G add π−1

i [Y] i−→ Y to G
return πi[X] return π−1

i [Y]

procedure Finalize(out)
if x2ch then return 1 else return out

Fig. 3. Game H includes the boxed statement, game G does not

Notice that it is easy for an adversary to distinguish between games G and H
by making queries that form a “chain” of length three: for any P ∈ {0, 1}n, let
the adversary ask and be given Q ← π0(P), then R ← π1(Q), then P ′ ← π2(R),
and then have the adversary output 1 if P = P ′ (a “triangle” has been found)
or 0 if P �= P ′ (the “three-chain” is not in fact a triangle). What we will establish
is that, apart from such behavior—extending a known “2-chain”—the adversary
is not able to gain much advantage. To capture this, as the adversary A makes its
queries and gets replies, the games grow an (initially without edges) edge-labeled
directed graph G with vertex set. An arc X

i−→Y is created when a query Π(i, X)
returns the value Y or a query Π−1(i, Y) returns the value X . The boolean flag
x2ch is set in the games if the adversary extends a 2-chain, meaning that a
path P

i+1−→Q
i+2−→R exists in the graph and the adversary asks either Π(i, R) or

Π−1(i, P), where the indicated addition is modulo 3. We will be interested in
the game outputs rather than the adversary outputs. Again using a game-based
proof, we prove the following in Section 4.5:

418 M. Bellare and P. Rogaway

procedure E(K, X) procedure E−1(K, Y) Game L

return EK [X] $← image(EK) E−1
K [Y] $← domain(EK)

procedure Finalize
K0, K1, K2

$←{0, 1}k

if (∃P) [EK2 [EK1 [EK0 [P]]]] then bad ← true

Fig. 4. Game L captures improbability of making three chains

Lemma 3. If Pr
[
BG makes ≥ h oracle queries

] ≤ δ then Adv(HB, GB) ≤
2.5 h2/2n + δ.

We remark that the lemma makes no (explicit) assumption about the probability
that BH makes h or more oracle queries.

4.3 The Improbability of Forming a 3-Chain

Consider an adversary B that can make E(K, X) or E−1(K, Y) queries. Game L
of Fig. 3 implements the oracles as a random blockcipher and its inverse, re-
spectively, but samples these lazily, defining points as they are needed. Write
X

K−→Y to mean that that B has made query E(K, X) and obtained Y as a re-
sult, or made query E−1(K, Y) and obtained X as a result, for K ∈ {0, 1}k and
X, Y ∈ {0, 1}n. The Finalize procedure picks keys K0, K1, K2 at random, and
sets bad if the adversary’s queries have formed a three chain, meaning that there
exist points P, Q, R, S ∈ {0, 1}n such that P

K0−→Q
K1−→R

K2−→S: the conditional
which is the last line of Finalize means that there is a P for which EK0 [P] is
defined and EK1 [EK0 [P]] is defined and EK2 [EK1 [EK0 [P]]] is defined. Our next
lemma bounds the probability of this happening. The proof is in Section 4.6.

Lemma 4. Let k, n ≥ 1. Let B be an adversary that asks at most q queries. Let
α = max(2e 2k−n, 2n + k). Then Pr[BL sets bad] < 2αq2/23k.

4.4 Putting Together the Pieces to Conclude Theorem 1

Let B be a simplified adversary and S ∈ Perm(n) a permutation. We associate
to B, S a pair of adversaries BS,1 and BS,2 that make Π(i, X) or Π−1(i, Y)
queries, where i ∈ {0, 1, 2} and X, Y ∈ {0, 1}n, as follows. For b ∈ {1, 2}, adver-
sary BS,b picks (K0, K1, K2) at random from Distinctk

3 and picks E at random
from Bloc(k, n). It then runs B, replying to its oracle queries as follows. If B
makes a query E(K, X), adversary BS,b returns EK(X) if K �∈ {K0, K1, K2};
returns Π(i, X) if K = Ki for i ∈ {0, 1}; and returns S ◦ Π(2, X) if K = K2.
Similarly, if B makes a query E−1(K, Y), adversary BS,b returns E−1

K (Y) if
K �∈ {K0, K1, K2}; returns Π−1(i, Y) if K = Ki for i ∈ {0, 1}; and returns
Π−1(2, Y) ◦ S−1 if K = K2. Adversaries BS,1, BS,2 differ only in their output,
the first always returning 0 and the second returning the output out of B.

The Security of Triple Encryption and a Framework 419

Lemma 5. Let B be a simplified adversary that makes at most q oracle queries,
and let S ∈ Perm(n). Let BS,1, BS,2 be defined as above. Let K = 2k. Then for
b ∈ {1, 2} and any c > 0, Pr[BG

S,b makes ≥ 3cq/K oracle queries] ≤ 1/c.

Proof (Lemma 5). The oracles B sees when it is run by BS,b are exactly a random
block cipher and its inverse. (A random permutation composed with a fixed one
is still random so the composition by S does not change anything.) Now let X
be the random variable that is the number of queries by B that involve keys
K0, K1, or K2 in the experiment where we first run B with oracles E, E−1 for
E

$← Bloc(k, n) and then pick (K0, K1, K2)
$← Distinctk

3 . Then the probability
that BG

S,b makes ≥ 3cq/K oracle queries is exactly the probability that X ≥
3cq/K. Now assume wlog that B always makes exactly q distinct oracle queries
rather than at most q. Then

E[X] = q ·
[
1 −

(
1 − 1

K

)(
1 − 1

K − 1

)(
1 − 1

K − 2

)]
= q ·

[
1 − K − 1

K

K − 2
K − 1

K − 3
K − 2

]
= q ·

[
1 − K − 3

K

]
=

3q

K
.

We can conclude via Markov’s inequality.

Proof (Theorem 1). Let A be an adversary against EEE that makes at most q
oracle queries. Let B be the simplified adversary, and S the permutation, given
by Lemma 2, and let p = Pr

[
RB

3 sets x2ch
]
. Let BS,1, BS,2 be the adversaries

associated to B as described above. Note that

Pr[DB
S sets x2ch]=Pr[HBS,1 ⇒ 1] and Pr[RB

3 sets x2ch]=Pr[GBS,1 ⇒ 1]
Pr[DB

S ⇒ 1]=Pr[HBS,2 ⇒ 1] and Pr[RB
3 ⇒ 1]=Pr[GBS,2 ⇒ 1] .

(5)

Combining (4) and (5) we have:

Adveee
k,n(A) ≤ 2p + Adv(HBS,1 , GBS,1) + Adv(HBS,2 , GBS,2) +

6
2k

. (6)

Let α = max(2e2k−n, 2n + k) and let c be any positive real number. Since the
probability that RB

3 extends a 2-chain is at most the probability that LB forms
a 3-chain we have p ≤ 3 · 2−k + Pr[BL sets bad]. (The extra term is because L
picks the keys K0, K1, K2 independently at random while R3 picks them from
Distinctk

3 .) Applying Lemma 4 we get p ≤ 3·2−k+2αq2·2−3k. Applying Lemma 3
in conjunction with Lemma 5 we have

Adv(HBS,b , GBS,b) ≤ 2.5
2n

(
3cq

2k

)2

+
1
c

for both b = 1 and b = 2. Putting everything together we have

Adveee
k,n(A) ≤ 2

(
3
2k

+ 2α
q2

23k

)
+

5
2n

(
3cq

2k

)2

+
2
c

+
6
2k

.

420 M. Bellare and P. Rogaway

Now, since the above is true for any c > 0, we pick a particular one that min-
imizes the function f(c) = 45 c2q2 2−n−2k + 2c−1. The derivative is f ′(c) =
90 cq2 2−n−2k − 2c−2, and the only real root of the equation f ′(c) = 0 is c =
(2n+2k/45q2)1/3, for which we have f(c) = 3(45q2/2n+2k)1/3. Plugging this into
the above yields (3) and concludes the proof of Theorem 1.

4.5 Proof of Lemma 3

We prove Lemma 3 as a corollary of:

Lemma 6. If A asks at most q queries then
∣∣Adv(GA, HA)

∣∣ ≤ 2.5 q2/2n.

Proof (Lemma 3). We construct an adversary A that has the same oracles as B.
Adversary A runs B, answering B’s oracle queries via its own oracles. It also
keeps track of the number of oracle queries that B makes. If this number hits h,
it stops and outputs 1; else it outputs whatever B outputs. Then we note that
Pr[HB ⇒ 1] ≤ Pr[HA ⇒ 1] and Pr[GA ⇒ 1] ≤ Pr[GB ⇒ 1] + δ. Thus we have

Adv(HB, GB) = Pr[HB ⇒ 1] − Pr[GB ⇒ 1]
≤ Pr[HA ⇒ 1] − (

Pr[GA ⇒ 1] − δ
)

= Adv(HA, GA) + δ .

As A makes ≤ h queries, conclude by applying Lemma 6 to A with q = h.

Proof (Lemma 6). We assume that the adversary A never repeats a query, never
asks a query Π−1(i, Y) having asked some Π(i, X) that returned Y , and never
asks a query Π(i, X) having asked some Π−1(i, Y) that returned X . Call an
adversary valid if it never extends a two-chain.

We begin by noting that to bound A’s advantage in distinguishing games G
and H we may assume that A is valid. Why? Because for any adversary A∗ mak-
ing at most q0 queries there exists a valid A that makes at most q0 queries and the
advantage of A is at least that of A∗. Adversary A runs A∗, answering A∗’s oracle
queries via its own oracles, but at any point that A∗ would extend a two chain,
adversary A simply halts and outputs 1. So now assuming A’s validity, our task is
to show that |Adv(AG1 , AH1)| ≤ 2.5 q2/2n where the games G1, H1 are shown in
Fig. 5. We show that games G1 and H1 are close by showing that both are close
to game G3 (defined in the same figure). First, we claim that

∣∣Adv(AG1 , AG3)
∣∣ ≤

0.5 q2/N where, here and in the rest of this proof, N = 2n. Rewrite game G1
to game G1.5 (not shown) by lazily growing π0, π1, π2, setting the flag bad
whenever there is a collision; that is, game G1.5 is identical to game G2 ex-
cept, after setting bad at line 211, set Y

$← image(πi), and after setting bad at
line 221, set X

$← domain(πi). Then modify game G1.5 to not re-sample after
setting bad , obtaining game G2. Now

∣∣Adv(AG1 , AG3)
∣∣ =

∣∣Adv(AG1.5 , AG3)
∣∣ =∣∣Adv(AG1.5 , AG2)

∣∣ ≤ Pr[AG2 sets bad]. Then note that on the ith query the
probability that bad will be set in game G2 is at most (i − 1)/N since the size
of domain(πj) and image(πj) will be at most i − 1 for each j ∈ {0, 1, 2}. So

The Security of Triple Encryption and a Framework 421

procedure Initialize Game G1

100 π0, π1, π2
$← Perm(n), π2 ← π−1

1 ◦ π−1
0 Game H1

procedure Π(i, X) procedure Π−1(i, Y)
110 return πi[X] 120 return π−1

i [Y]

procedure Π(i, X) procedure Π−1(i, Y) Game G2

210 Y
$←{0, 1}n 220 X

$←{0, 1}n

211 if Y ∈ image(πi) then bad ← true 221 if X∈domain(πi) then bad ← true
213 π[X] ← Y 223 π[X] ← Y
214 return Y 224 return X

procedure Π(i, X) procedure Π−1(i, Y) Game G3

310 return Y
$←{0, 1}n 320 return X

$←{0, 1}n

procedure Π(i, X) Game G4

410 if ∃ (i, X, Y) ∈ C then return Y
411 Xi ← X

412 Xi+1
$←{0, 1}n, if Xi+1 ∈ Si+1 then bad ← true, Xi+1

$←{0, 1}n \ Si+1

413 Xi+2
$←{0, 1}n, if Xi+2 ∈ Si+2 then bad ← true, Xi+2

$←{0, 1}n \ Si+2

414 Si ← Si ∪ {Xi}, Si+1 ← Si+1 ∪ {Xi+1}, Si+2 ← Si+2 ∪ {Xi+2}
415 C ← C ∪ {(i, Xi, Xi+1), (i + 1, Xi+1, Xi+2), (i + 2, Xi+2, Xi)}
416 return Xi+1

procedure Π−1(i, Y)
420 if ∃ (i, X, Y) ∈ C then return X
421 Xi+1 ← Y

422 Xi
$←{0, 1}n, if Xi ∈ Si+1 then bad ← true, Xi

$←{0, 1}n \ Si+1

423 Xi+2
$←{0, 1}n, if Xi+2 ∈ Si+2 then bad ← true, Xi+2

$←{0, 1}n \ Si+2

424 Si ← Si ∪ {Xi}, Si+1 ← Si+1 ∪ {Xi+1}, Si+2 ← Si+2 ∪ {Xi+2}
425 C ← C ∪ {(i, Xi, Xi+1), (i + 1, Xi+1, Xi+2), (i + 2, Xi+2, Xi)}
426 return Xi

Fig. 5. Games for bounding the probability of distinguishing (π0, π1, π2) and
(π0, π1, π

−1
1 ◦ π−1

0) by an adversary that never extends a two-chain

over all q queries, the probability that bad ever gets set in game G2 is at most
0.5q(q − 1)/N ≤ 0.5q2/N . To establish Lemma 6 we now claim that∣∣Adv(AH1 , AG3)

∣∣ ≤ 2 q2/N . (7)

First rewrite game H1 as game G4 (again in Fig. 5). Addition (+1 and +2)
is again understood to be modulo 3. Game G4 uses a form of lazy sampling,
but it is not maximally lazy; on each query, not only is its answer chosen, but
answers for some related queries are chosen and stored. In particular, the game
maintains a set C of commitments. Initially there are no commitments, but every
time a query Π(i, X) or Π−1(i, Y) is asked, one of two things happens: if a
commitment has already been made specifying how to answer this query, we
answer according to that commitment; else we not only answer the query asked,

422 M. Bellare and P. Rogaway

but commit ourselves to all of the queries in a “triangle” containing the queried
point. In greater detail, (i, X, Y) ∈ C (for i ∈ {0, 1, 2} and X, Y ∈ {0, 1}n) means
that it has already been decided that πi(X) = Y , so a forward query Π(i, X)
will need to be answered by Y and a backward query Π−1(i, Y) will need to be
answered by X . In effect, we grow permutations π0, π1, and π2 but store their
values in C and their domains in S0, S1, and S2.

We claim that games H1 and G4 are adversarially indistinguishable even by an
adversary that is not valid and asks all 6N possible queries. From this we know
that Pr[AG4 ⇒1] = Pr[AH1 ⇒1]. To show this equivalence we claim that whether
the queries are answered by game G4 or by game H1 the adversary gets the same
view: any of (N !)2 possible outcomes, each with probability 1/(N !)2, the answers
correspond to a pair of permutations π0, π1 along with π2 = π−1

1 ◦ π−1
0 . This is

obviously the case when playing game H1; we must show it is so for game G4.
Note that sets S0, S1, S2, and C begin with no points in them, then they grow
to 1, 1, 1, and 3 points; then to 2, 2, 2, and 6 points; and so forth, until they
have N , N , N , and 3N points. Not every query changes the sizes of these sets;
it either leaves the sets unaltered or changes them as indicated. The first query
that augments C extends the partial functions (π0, π1, π2) in any of N2 different
ways, each with the same probability; the second query that augments C extends
(π0, π1, π2) in any of (N − 1)2 different ways, each with the same probability;
and so forth, until we have extended (π0, π1, π2) in any of (N !)2 different ways,
each with the same probability. This establishes the claim.

Now let us go back to assuming that the adversary is valid. We make a change
to game G4 to arrive at game G5, shown in Fig. 6. In the transition, we drop
the first commitment from each group of three, since our assumptions about the
adversary’s behavior mean that these queries cannot be asked. We also drop the
sequels to bad getting set at lines 412, 413, 422, and 423. More interestingly, in
game G5 we maintain a set of “poisoned” queries P . As with game G4, when the
adversary asks Π(i, Xi) we return a random Xi+1, and when the adversary asks
Π−1(i, Xi+1) we return a random Xi, and in either case we choose a random
Xi+2 and “complete the triangle” using this point. We don’t expect the adversary
to ask about Xi+2, and, what is more, his asking will cause problems. So we
record the unlikely but problematic queries involving Xi2 in P . If the adversary
makes a poisoned query then we set bad . The changes we have made can only
increase the probability that bad gets set: Pr[AG4 sets bad] ≤ Pr[AG5 sets bad].

We claim that game G5 is adversarially indistinguishable from game G3. Re-
member that our adversary is valid: it does not ask queries whose answers are
trivially known and it does not ask to extend any 2-chain. Suppose first that the
adversary asks a query whose answer has not been memoized in a commitment.
Then for a forward query, we choose a uniform value Xi+1 at line 514 and return
it at line 519. Likewise for a backward query, we choose a uniform value Xi at
line 524 and return it at line 529. So consider instead a query for which a commit-
ment has been memoized. The code executes at lines 511–512 or lines 521–522.
If the memoized query was poisoned—added to set P by an earlier execution
of lines 518 or 528—then we return a random string (at line 511 or 521). If the

The Security of Triple Encryption and a Framework 423

procedure Π(i, X) Game G5

510 if ∃ (i, X, Y) ∈ C then
511 if (+1, i, X) ∈ P then bad ← true, Y

$←{0, 1}n

512 return Y
513 Xi ← X

514 Xi+1
$←{0, 1}n, if Xi+1 ∈ Si+1 then bad ← true

515 Xi+2
$←{0, 1}n, if Xi+2 ∈ Si+2 then bad ← true

516 Si ← Si ∪ {Xi}, Si+1 ← Si+1 ∪ {Xi+1}, Si+2 ← Si+2 ∪ {Xi+2}
517 C ← C ∪ {(i + 1, Xi+1, Xi+2), (i + 2, Xi+2, Xi)}
518 P ← P ∪ {(1, i + 2, Xi+2), (−1, i + 1, Xi+2)}
519 return Xi+1

procedure Π−1(i, Y)
520 if ∃ (i, X, Y) ∈ C then
521 if ∃ (−1, i, Y) ∈ P then bad ← true, X

$←{0, 1}n

522 return X
523 Xi+1 ← Y

524 Xi
$←{0, 1}n, if Xi ∈ Si+1 then bad ← true

525 Xi+2
$←{0, 1}n, if Xi+2 ∈ Si+2 then bad ← true

526 Si ← Si ∪ {Xi}, Si+1 ← Si+1 ∪ {Xi+1}, Si+2 ← Si+2 ∪ {Xi+2}
527 C ← C ∪ {(i + 1, Xi+1, Xi+2), (i + 2, Xi+2, Xi)}
528 P ← P ∪ {(1, i + 2, Xi+2), (−1, i + 1, Xi+2)}
529 return Xi

Fig. 6. Game G5

memoized query was not poisoned, then we are extending a 1-chain, providing
a value Xi+2 that was selected uniformly from {0, 1}n at an earlier execution
of line 515 or 525, with this value not yet having influenced the run. Thus we
return a uniform random value, independent of all oracle responses so far, and
Pr[AG5 ⇒ 1] = Pr[AG3 ⇒ 1].

Finally, we must bound the probability that bad gets set in game G5. The
probability that bad ever gets set at any of lines 514, 515, 524, or 525 is at
most 2(1 + 2 + · · · + (q − 1))/N ≤ q2/N . The probability that it gets set at
lines 511 or 521 is at most 2(1 + 2 + · · · + (q − 1))/N because no information
about the poisoned query is surfaced to the adversary. Overall we have that
Pr[AG5 sets bad] ≤ 2q2/N . Putting everything together we have (7) and the
proof of the lemma is complete.

4.6 Proof of Lemma 4

To prove this lemma we can assume without loss of generality that B is deter-
ministic. For any particular blockcipher E ∈ Bloc(k, n) we consider the game
in which B is executed with oracles E, E−1, which it queries, adaptively, un-
til it halts. Note that there is no randomness involved in this game, since E is
fixed and B is deterministic. Recall that X

K→ Y means that B has either made
query E(K, X) and obtained Y as a result, or it has made query E−1(K, Y) and

424 M. Bellare and P. Rogaway

obtained X as a result, for K ∈ {0, 1}k and X, Y ∈ {0, 1}n. Now we let

ChE,B
3 =

∣∣∣{ (K0, K1, K2, P) : ∃ Q, R, S [P K0→ Q
K1→ R

K2→ S] }
∣∣∣ .

This is the number of 3-chains created by B’s queries. Here K0, K1, K2 ∈ {0, 1}k

are keys, and P, Q, R, S ∈ {0, 1}n. As the notation indicates, ChE,B
3 is a number

that depends on E and B. Regarding it as a random variable over the choice
of E we have the following lemma, from which Lemma 4 will follow.

Lemma 7. Let α = max(2e2k−n, 2n + k). Then E[ChE,B
3] < 2α · q2, the expec-

tation over E
$← Bloc(k, n).

Proof (Lemma 4). Consider the following game LE parameterized by a blockci-
pher E ∈ Bloc(k, n): adversary B is executed with oracles E, E−1 until it halts,
then K0, K1, K2 are chosen at random from {0, 1}k, and flag bad is set if there
exist P, Q, R, S such that P

K0→ Q
K1→ R

K2→ S. Let pE,B = Pr[LE
B sets bad],

the probability being over the random choices of K0, K1, K2. Then for any
E ∈ Bloc(k, n) we have

pE,B = Pr
[
∃ P, Q, R, S : P

K0→ Q
K1→ R

K2→ S
]

=
|{ (K0, K1, K2) : ∃ P, Q, R, S : P

K0→ Q
K1→ R

K2→ S }|
23k

≤
∑

P |{ (K0, K1, K2) : ∃ Q, R, S : P
K0→ Q

K1→ R
K2→ S }|

23k
=

ChE,B
3

23k
.

By Lemma 7 we have Pr[BL sets bad] = E[pE,B] ≤ E[ChE,B
3]·2−3k < 2αq2 2−3k

where α = max(2e2k−n, 2n + k) and the expectation is over E
$← Bloc(k, n).

Towards the proof of Lemma 7, for E ∈ Bloc(k, n) and Q, R ∈ {0, 1}n we let

KeysE(Q, R) = |{ K : E(K, Q) = R }| and KeysE = max
Q,R

{KeysE(Q, R)} .

The first is the number of keys for which Q maps to R under E, and the second
is the maximum value of KeysE(Q, R) over all Q, R ∈ {0, 1}n. No adversary
is involved in this definition; KeysE is simply a number associated to a given
blockcipher. Viewing it as a random variable over the choice of blockcipher we
have the following.

Lemma 8. Suppose β ≥ 2e2k−n. Then Pr
[
KeysE ≥ β

]
< 22n+1−β, where the

probability is over E
$← Bloc(k, n).

Proof (Lemma 8). We claim that for any Q, R ∈ {0, 1}n

Pr
[
KeysE(Q, R) ≥ β

]
< 21−β . (8)

The Security of Triple Encryption and a Framework 425

The lemma follows via the union bound. We prove (8) using an occupancy-
problem approach. Let b = �β . Then

Pr
[
KeysE(Q, R) ≥ β

]
=

∑2k

i=b

(
2k

i

)(
1
2n

)i (
1 − 1

2n

)2k−i

≤ ∑2k

i=b

(
2ke

i

)i (1
2n

)i

≤ ∑2k

i=b

(
2ke

2nb

)i

.

Let x = (e/b)2k−n. The assumption β ≥ 2e2k−n gives x ≤ 1/2. So the above is

=
∑2k

i=bx
i < xb ·∑∞

i=0x
i =

xb

1 − x
≤ 2−b

1 − 1/2
= 21−b ≤ 21−β

as desired.

Proof (Lemma 7). For any Q, R ∈ {0, 1}n we let

ChE,B
2 (R) = |{ (K0, K1, P) : ∃ Q [P K0→ Q

K1→ R] }|
ChE,B

1 (Q) = |{ (K0, P) : P
K0→ Q }|

ChE,B
0 (R) = |{ K2 : ∃ S [R K2→ S] }| .

Then for any E ∈ Bloc(k, n) we have

ChE,B
3 =

∑
RChE,B

2 (R) · ChE,B
0 (R)

≤ ∑
R

(∑
QChE,B

1 (Q) · KeysE(Q, R)
)
· ChE,B

0 (R)

≤ ∑
R

(∑
QChE,B

1 (Q) · KeysE
)
· ChE,B

0 (R)

= KeysE ·
(∑

QChE,B
1 (Q)

)
·
(∑

RChE,B
0 (R)

)
≤ KeysE · q · q = q2 · KeysE .

Using the above and Lemma 8, we have the following, where the probability and
expectation are both over E

$← Bloc(k, n):

E[ChE,B
3] < E

[
ChE,B

3 | KeysE < α
]

+ E
[
ChE,B

3 | KeysE ≥ α
]
· 22n+1−α

≤ q2 · α + q2 · 2k · 22n+1−α .

The last inequality above used the fact that KeysE is always at most 2k. Since
α = max(2e2k−n, 2n+k) > 2 we get E[ChE,B

3] < q2α+ q2 ·2 < 2α ·q2 as desired.

Acknowledgments

We thank the Eurocrypt 2006 PC for their comments. Mihir Bellare was sup-
ported by NSF grants CCR-0208842 and CNS-0524765. Phil Rogaway was sup-
ported by NSF 0208842 and a gift from Intel Corp. Much of the work on this
paper was carried out while Phil was hosted by Chiang Mai University, Thailand.

426 M. Bellare and P. Rogaway

References

1. W. Aiello, M. Bellare, G. Di Crescenzo, and R. Venkatesan. Security amplification
by composition: the case of doubly-iterated, ideal ciphers. Advances in Cryptol-
ogy — CRYPTO ’98, Lecture Notes in Computer Science, vol 1462, Springer,
pp. 390–407, 1998.

2. M. Bellare and S. Goldwasser. New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. Advances in Cryp-
tology — CRYPTO ’89, Lecture Notes in Computer Science, vol. 435, Springer,
pp. 194–211, 1990.

3. M. Bellare and P. Rogaway. Code-based game-playing proofs and the security of
triple encryption. Cryptology ePrint archive report 2004/331, 2006.

4. W. Diffie and M. Hellman. Exhaustive cryptanalysis of the data encryption stan-
dard. Computer, vol. 10, pp. 74–84, 1977.

5. S. Even and O. Goldreich. On the power of cascade ciphers. ACM Transactions
on Computer Systems, vol. 3, no. 2, pp. 108–116, 1985.

6. S. Even and Y. Mansour. A construction of a cipher from a single pseudoran-
dom permutation. Advances in Cryptology — ASIACRYPT ’91, Lecture Notes in
Computer Science, vol.739, Springer, pp. 210–224, 1993.

7. S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
vol. 28, no. 2, pp. 270–299, 1984. Earlier version in STOC ’82.

8. S. Halevi. A plausible approach to computer-aided cryptographic proofs. Cryptol-
ogy ePrint archive report 2005/181, 2005.

9. J. Kilian and P. Rogaway. How to protect DES against exhaustive key search (an
analysis of DESX). J. of Cryptology, vol. 14, no. 1, pp. 17–35, 2001. Earlier version
in Crypto ’96.

10. S. Lucks. Attacking triple encryption. Fast Software Encryption (FSE ’98), Lecture
Notes in Computer Science, vol. 1372, Springer, pp. 239–253, 1998.

11. U. Maurer and J. Massey. Cascade ciphers: the importance of being first. J. of
Cryptology, vol. 6, no. 1, pp. 55–61, 1993.

12. R. Merkle and M. Hellman. On the security of multiple encryption. Communica-
tions of the ACM, vol. 24, pp. 465–467, 1981.

13. National Institute of Standards and Technology. FIPS PUB 46-3, Data Encryp-
tion Standard (DES), 1999. Also ANSI X9.52, Triple Data Encryption Algorithm
modes of operation, 1998, and other standards.

14. C. Shannon. Communication theory of secrecy systems. Bell Systems Technical
Journal, vol. 28, no. 4, pp. 656–715, 1949.

15. V. Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint archive report 2004/332, 2006.

16. A. Yao. Theory and applications of trapdoor functions. IEEE Symposium on the
Foundations of Computer Science (FOCS 1982), IEEE Press, pp. 80–91, 1982.

Compact Group Signatures Without
Random Oracles

Xavier Boyen1 and Brent Waters2

1 Voltage Inc.
xb@boyen.org

2 SRI International
bwaters@csl.sri.com

Abstract. We present the first efficient group signature scheme that
is provably secure without random oracles. We achieve this result by
combining provably secure hierarchical signatures in bilinear groups with
a novel adaptation of the recent Non-Interactive Zero Knowledge proofs
of Groth, Ostrovsky, and Sahai. The size of signatures in our scheme
is logarithmic in the number of signers; we prove it secure under the
Computational Diffie-Hellman and the Subgroup Decision assumptions
in the model of Bellare, Micciancio, and Warinshi, as relaxed by Boneh,
Boyen, and Shacham.

1 Introduction

Group signatures allow any member of a group to sign an arbitrary number
of messages on behalf of the group, moreover the identity of the signer will
be hidden from all members of the system. Preserving the anonymity of the
signer can be important in many applications where the signer does not want
to be directly identified with the message that he signed. However, there exist
situations where it can be deemed desirable to revoke a signer’s anonymity. For
example, if a signature certified a malicious program, one would want to identify
the party that made the malicious statement. Therefore, in group signatures
there exists a special party known as the group manager which has the ability
to trace the signer of any given signature.

Almost all group signatures schemes are only provably secure in the random
oracle model, where we can only make a heuristic argument about security. Addi-
tionally, efficient constructions are based on strong assumptions ranging from the
Strong Diffie-Hellman [BBS04, BS04] and Strong RSA [ACJT00, AST02, CL02]
assumptions to the LRSW [CL04, LRSW99] assumption, which itself has the
challenger act as an oracle. The first construction proved secure in the standard
model is due to Bellare et. al. [BMW03]. They give a method of construct-
ing group signatures from any signature scheme by using Non-Interactive Zero
Knowledge (NIZK) techniques. However, since they use generic NIZK techniques
their scheme is too inefficient to be useful in practice.

We approach the problem of group signatures with the goal of creating an
efficient group signature scheme that is provably secure without random oracles

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 427–444, 2006.
c© International Association for Cryptologic Research 2006

428 X. Boyen and B. Waters

under reasonable assumptions. In particular we at least wish to avoid “oracle-
like” assumptions that are difficult to falsify [Nao03], since the value of removing
random oracles from the proofs of security while using these types of assumptions
is dubious.

In order to solve this problem we combine two recent ideas from pairing-based
cryptography. First, we derive our underlying signature scheme from the Wa-
ters [Wat05] signature scheme that was proven secure under the computational
Diffie-Hellman assumption in bilinear groups. We create a two-level signature
scheme where the first level is the signer identity and the second level is the
message to be signed. For example, user ID is given a signature on the first level
message “ID” as his private key. Group member ID can sign message M by cre-
ating the two-level hierarchical signature on “ID.M”. Clearly, the signature σ
on “ID.M” from the Waters signature scheme will give away the identity of the
signer. To protect his anonymity, a signer, in our scheme, will encrypt the signa-
ture components of σ using the Boneh-Goh-Nissim [BGN05] encryption system.
Additionally, the signer will attach a NIZK proof that the encrypted signature is
a signature on “X.M” for 1 ≤ X ≤ 2k, where 2k is the number of signers in the
system. Adapting the recent techniques of Groth, Ostrovsky, and Sahai we are
able to get efficient NIZKs for our scheme scheme with O(k) complexity in the
signature size, signing time, and verification time, i.e., logarithmic in the number
of users. We achieve this efficiency by taking advantage of special properties of
the NIZK scheme of Groth, Ostrovsky, and Sahai and avoid the general method
of circuit construction. The security of these techniques is proven based on the
relatively new subgroup decision problem, which was introduced by Boneh, Goh,
and Nissim [BGN05]. However, recent work [GOS06a] has shown that the tech-
niques of Groth, Ostrovsky, and Sahai can be generalized to work only with the
decision linear assumption, introduced by Boneh, Boyen, and Shacham [BBS04].

1.1 Related Work

Group signatures were first introduced by Chaum and Van Heyst [CvH91] as a
way to provide anonymity for signers within a group. The anonymity, however,
could be revoked by a special third party if necessary. Since then, there have been
several works on this subject [ACJT00, AST02, CL02, CG04, Cam97, Son01,
BBS04, KY03, KY05, BSZ05, BMW03].

Until recently, the most efficient group signature constructions [ACJT00,
AST02, CL02] were proved secure under the Strong-RSA assumption intro-
duced by Baric and Pfitzman [BP97]. Boneh, Boyen, and Shacham [BBS04]
showed how to construct “short” group signatures using bilinear maps under
an assumption they introduced called the Strong Diffie-Hellman assumption.
Concurrently, Camenish and Lysyanskaya [CL04] gave another group signature
scheme that used bilinear maps. Their scheme was proven secure under the in-
teractive LRSW [LRSW99] assumption. All of the above schemes, however, were
only proved secure in the random oracle model.

Bellare, Micciancio, and Warinschi [BMW03] gave the first construction that
was provably secure in the standard model. Additionally, they provided formal

Compact Group Signatures Without Random Oracles 429

definitions of the security properties of group signatures, which to that point
were only informally understood. Since their methods use general NIZK proof
techniques, the resulting schemes are inherently too inefficient to be used in
practice.

Recently, Ateniese et. al. [ACHdM05] proposed an efficient group signature
scheme in the standard model that has the strong exculpability property and is
anonymous under CCA attacks. However, they proved their scheme under new
strong assumptions.

2 Background

We review a number of useful notions from the recent literature on pairing-based
cryptography, which we shall need in later sections. First, we briefly review the
properties that constitute a group signature scheme and define its security.

We take this opportunity to clarify once and for all that, in this paper, the
word “group” by default assumes its algebraic meaning, except in contexts such
as “group signature” and “group manager” where it designates a collection of
users. There should be no ambiguity from context. We give a detailed description
of the background of group signatures in Appendix A.

2.1 Bilinear Groups of Composite Order

We review some general notions about bilinear maps and groups, with an empha-
sis on groups of composite order which will be used in most of our constructions.
We follow [BGN05] in which composite order bilinear groups were first intro-
duced in cryptography.

Consider two finite cyclic groups G and GT of same order n, in which the
respective group operation is efficiently computable and denoted multiplicatively.
Assume the existence of an efficiently computable function e : G×G → GT , with
the following properties:

– (Bilinearity) ∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab, where the product
in the exponent is defined modulo n;

– (Non-degeneracy) ∃g ∈ G such that e(g, g) has order n in GT . In other words,
e(g, g) is a generator of GT , whereas g generates G.

If such a function can be computed efficiently, it is called a (symmetric) bilinear
map or pairing, and the group G is called a bilinear group. We remark that
the vast majority of cryptosystems based on pairings assume for simplicity that
bilinear groups have prime order. In our case, it is important that the pairing
be defined over a group G containing |G| = n elements, where n = pq has a
(hidden) factorization in two large primes, p �= q.

We denote by Gp and Gq the subgroups of G of respective orders p and q.

Complexity Assumptions. We shall make use of two complexity assumptions:
the first, computational in the prime order subgroup Gp, the second, decisional
in the full group G.

430 X. Boyen and B. Waters

The first one is the familiar Computational Diffie-Hellman assumption in bi-
linear groups, which states that there is no probabilistic polynomial time (PPT)
adversary that, given a triple (g, ga, gb) ∈ G3

p for random exponents a, b ∈ Zp,
computes gab ∈ Gp with non-negligible probability (i.e., with polynomial prob-
ability in the bit-size of the algorithm’s input). We shall require the CDH as-
sumption in Gp to remain true when the factorization of n is known.

The second assumption we need is the subgroup decision assumption, intro-
duced in [BGN05]; it is based on the hardness of factoring, and is recalled next.

2.2 Subgroup Decision Assumption

Informally, the subgroup decision assumption posits that for a bilinear group G
of composite order n = pq, the uniform distribution on G is computationally
indistinguishable from the uniform distribution on a subgroup of G (say, Gq, the
subgroup of order q). The formal definition is based on the subgroup decision
problem, which is as follows [BGN05].

The Subgroup Decision Problem. Consider an “instance generator” algorithm
GG that, on input a security parameter 1λ, outputs a tuple (p, q, G, GT , e), in
which p and q are independent uniform random λ-bit primes, G and GT are
cyclic groups of order n = pq with efficiently computable group operations (over
their respective elements, which must have a polynomial size representation in
λ), and e : G × G → GT is a bilinear map. Let Gq ⊂ G denote the subgroup of
G of order q. The subgroup decision problem is as follows:

On input a tuple (n = pq, G, GT , e) derived from a random execution of
GG(1λ), and an element w selected at random either from G or from Gq,
decide whether w ∈ Gq.

The advantage of an algorithm A solving the subgroup decision problem is de-
fined as A’s excess probability, beyond 1

2 , of outputting the correct solution. The
probability is defined over the random choice of instance and the random bits
used by A.

We use composite order groups in order to leverage the recent Non-Interactive
Zero Knowledge proof techniques of Groth, Sahai, and Ostrovsky [GOS06b].

2.3 Hierarchical Signatures

In an Λ-level hierarchical signature, a message is a tuple of Λ message com-
ponents. The crucial property is that a signature on a message, M1. · · · .Mi,
can act as a restricted private key that enables the signing of any extension,
M1. · · · .Mi. · · · .Mj, of which the original message is a prefix. In a Λ-level sig-
nature scheme, the messages must obey the requirement that 1 ≤ i ≤ j ≤ Λ.

We note that this is essentially equivalent to the notion of (Λ−1)-hierarchical
identity-based signature, or HIBS [GS02], in which the first Λ − 1 levels are
viewed as the components of a hierarchical identity, and the last level (which

Compact Group Signatures Without Random Oracles 431

in HIBS parlance is no longer deemed part of the hierarchy) is for the message
proper. Our basic group signature uses a two-level hierarchy, though in Section 5
we shall discuss how additional levels can be used to achieve delegation in group
signatures.

3 Group Signature Scheme

In this section, we present our group signature scheme, which is based solely on
the CDH and the Subgroup Decision assumptions. It is built upon a two-level
hierarchical signature scheme, which we describe first.

3.1 Simple Two-Level Hierarchical Signatures

Waters [Wat05] recently offered an efficient identity-based encryption system
provably secure under “full” adaptive attacks. The system generalizes easily to a
hierarchical IBE of logarithmically bounded depth Λ ≤ O(log λ). Here, λ is the
security parameter and Λ the maximum depth of the HIBE. It is then a triviality
to observe that any Λ-level HIBE scheme also gives an Λ-level hierarchical sig-
nature functionality. We describe below the 2-level hierarchical signature scheme
(or 1-level IBS) that results from these transformations.

We assume that identities are strings of k bits, and messages strings of m bits.
To fix ideas, for group signatures one would have, k (m ≈ λ. The description
that follows assumes that g is a generator of Gp, so that all elements in G and
GT are in fact in the respective subgroups of prime order p.

Setup(1λ): To setup the system, first, a secret α ∈ Zp is chosen at random,
from which the value A = e(g, g)α is calculated. Next, two random integers
y′ ∈ Zp and z′ ∈ Zp and two random vectors y = (y1, . . . , yk) ∈ Zk

p and
z = (z1, . . . , zm) ∈ Zm

p are selected. The public parameters of the system
and the master secret key are then given by,

PP =
(
g,u′ = gy′

, u1 = gy1 , . . . , uk = gyk ,

v′ = gz′
, v1 = gz1 , . . . , vm = gzm , A = e(g, g)α

)
∈ Gk+m+3 × GT ,

MK = gα ∈ G.

The public parameters, PP, also implicitly include k, m, and a description
of (p, G, GT , e).

Extract(PP, MK, ID): To create a private key for a user whose binary identity
string is ID = (κ1 . . . κk) ∈ {0, 1}k, first select a random r ∈ Zp, and return,

KID =
(

gα · (u′
k∏

i=1

uκi

i

)r
, g−r

)
∈ G2.

Sign(PP, KID, M): To sign a message represented as a bit string M = (μ1 . . . μm)
∈ {0, 1}m, using a private key KID = (K1, K2) ∈ G2, select a random s ∈ Zp,
and output,

432 X. Boyen and B. Waters

S =
(

K1 · (v′ m∏
j=1

v
μj

j

)s
, K2, g−s

)

=
(

gα · (u′
k∏

i=1

uκi

i

)r(
v′

m∏
j=1

v
μj

j

)s
, g−r, g−s

)
∈ G3.

Verify(PP, ID, M, σ): To verify a signature S = (S1, S2, S3) ∈ G3 against an
identity ID = (κ1 . . . κk) ∈ {0, 1}k and a message M = (μ1 . . . μm) ∈ {0, 1}m,
verify that,

e(S1, g) · e(S2, u
′

k∏
i=1

uκi

i) · e(S3, v
′

m∏
j=1

v
μj

j) ?= A.

If the equality holds, output valid; otherwise, output invalid.

Security from CDH. The scheme’s existential unforgeability against adaptive
chosen message attacks follows from the Waters’s signature scheme. We provide
a reduction to CDH in the full version of our paper [BW05].

3.2 Logarithmic-Size Group Signature Scheme

We are now in a position to describe our actual group signature scheme. It is
composed of the following algorithms.

Setup(1λ): The input is a security parameter in unary, 1λ. Suppose we wish to
support up to 2k signers in the group, and sign messages in {0, 1}m, where
k and m are polynomially related functions of λ.
The setup algorithm first chooses n = pq where p and q are random primes
of bit size Θ(λ). Let G be a bilinear group of order n and denote by Gp and
Gq its subgroups of respective order p and q. Next, the algorithm chooses
generators g ∈ G, and h ∈ Gq. It chooses a random exponent α ∈ Zn.
Finally, it chooses generators u′, u1, . . . , uk ∈ G and v′, v1, . . . , vm ∈ G.
The bilinear group, (n, G, GT , e), is published together with the public pa-
rameters,

PP =
(

g, h, u′, u1, . . . , uk, v′, v1, . . . , vm, A = e(g, g)α
)

∈ G × Gq × Gk+m+2 × GT .

The master key for user enrollment, MK, and the group manager’s tracing
key, TK, are,

MK = gα ∈ G, TK = q ∈ Z.

Enroll(PP, MK, ID): Suppose we wish to create a group signature key for user
ID where 0 ≤ ID < 2k. We denote by κi the i-th bit of ID. The algorithm
chooses a random s ∈ Zn and creates the key for user ID as,

KID = (K1, K2, K3) =

(
gα ·

(
u′

k∏
i=1

uκi

i

)s

, g−s, hs

)
∈ G3.

Compact Group Signatures Without Random Oracles 433

The key for user ID is essentially a private key for identity ID in the Waters
IBS scheme, except that we are working in a bilinear group G of composite
order, and are adjoining the additional element hs ∈ Gq.

Sign(PP, ID, KID, M): To sign a message M = (μ1 . . . μm) ∈ {0, 1}m, user ID
first chooses random exponents t1, . . . , tk ∈ Zn, and, for all i = 1, . . . , k, it
creates,

ci = uκi

i · hti , πi = (u2κi−1
i · hti)ti .

The signer also defines t =
∑k

i=1 ti and c = u′∏k
i=1 ci = (u′∏k

i=1 uκi

i) · ht.
The set of values, ci and πi, are proof that c is well formed. It also lets
V = v′

∏m
i=1 vμi

i . Then, it picks two random exponents s̃1, s2 ∈ Zn, and
creates,

σ1 = K1 · Kt
3 · cs̃1 · V s2 , σ2 = K2 · g−s̃1 , σ3 = g−s2 .

If we let s1 = s̃1 + s, with s as in the Enroll procedure, then we have,

σ1 = gα·
(
u′

k∏
i=1

uκi

i

)s1 ·
(
v′

m∏
i=1

vμi

i

)s2 ·hs1t =gα·cs1 ·V s2 , σ2 = g−s1 , σ3 = g−s2 .

The final signature is output as:

σ =
(

σ1, σ2, σ3, c1, . . . , ck, π1, . . . , πk

) ∈ G2k+3.

Verify(PP, ID, M, σ): The verification proceeds in two phases. In the first phase
the verifier will reconstruct c and check to make sure that it is well formed.
To do this, it computes,

c = u′
k∏

i=1

ci, and checks that, ∀i = 1, . . . , k : e(ci, u
−1
i ci)

?= e(h, πi).

This proof shows that all ci = uκi

i hti for κi ∈ {0, 1}, and thus that c is well
formed. Next, the verifier focuses on the actual signature. To do so, it derives
V = v′

∏m
i=1 vμi

i from the message, and checks that,

e(σ1, g) · e(σ2, c) · e(σ3, V) ?= A.

This proof shows that (σ1, σ2, σ3) is a valid two-level hierarchical signature,
after the blinding factors hs1t and ht cancel each other out in the product
after they are respectively paired with g and g−s1 .
If all tests are successful, the verifier outputs valid; otherwise, it outputs
invalid.

Trace(PP, TK, σ): Suppose the tracing algorithm wishes to trace a signature
σ, assumed to pass the verification test for some message M that is not
needed here. Let κi denote the i-th bit of the signer’s identity ID that is to
be determined. To recover the bits of ID, for each i = 1, . . . , k, the tracer
sets,

κi =

{
0 if (ci)q = g0,

1 otherwise.

The reconstituted signer identity is output as ID = (κ1 . . . κk) ∈ {0, 1}k.

434 X. Boyen and B. Waters

4 Proofs of Security

We now prove the main security properties of our group signature scheme.

4.1 Full Anonymity (Under CPA Attack)

We prove the security of our scheme in the anonymity game against chosen
plaintext attacks. We refer to [BMW03] for the game description, which should
also be clear from the proof.

Intuitively, our proof follows from two simple arguments. First, we show that
an adversary cannot tell whether h is a random generator of Gq or G by reduction
from the subgroup decision problem. Next, we show that if h is chosen from G
then the identity of a signer is perfectly hidden.

Theorem 1. Suppose no t-time adversary can solve the subgroup decision prob-
lem with advantage at least εsd. Then for every t′-time adversary A where t′ ≈ t
we have that AdvA < 2εsd.

We first introduce a hybrid game H1 in which the public parameters are the
same as in the original game except that h is chosen randomly from G instead
of Gq. We denote the adversary’s advantage in this game as AdvA,H1 .

Lemma 1. For all t′-time adversaries as above, AdvA − AdvA,H1 < 2 εsd.

Proof. Consider an algorithm B that plays the subgroup decision problem. Upon
receiving a subgroup decision challenge (n, G, GT , e, w) the algorithm B first
creates public parameters for our scheme by setting h = w and choosing all other
parameters as the scheme does. It then sends the parameters to A and plays the
anonymity game with it. If w is randomly chosen from Gq then the adversary
is playing the normal anonymity game, otherwise, if w is chosen randomly from
G then it plays the hybrid game H1. The algorithm B will be able to answer all
chosen plaintext queries—namely, issue private signing keys for, and sign any
message by, any user—, since it knows the master key.

At some point the adversary will choose a message M and two identities ID1
and ID2 it wishes to be challenged on (under the usual constraints that it had
not previously made a signing key query on IDx or a signature query on IDx.M).
The simulator B will create a challenge signature on M , and A will guess the
identity of the signer. If A answers correctly, then B outputs b = 1, guessing
w ∈ Gq; otherwise it outputs b = 0, guessing w ∈ G.

Denote by AdvB the advantage of the simulator B in the subgroup decision
game. As we know that Pr[w ∈ G] = Pr[w ∈ Gq] = 1

2 , we deduce that,

AdvA − AdvA,H1 = Pr[b = 1|w ∈ Gq] − Pr[b = 1|w ∈ G]
= 2 Pr[b = 1, w ∈ Gq] − 2 Pr[b = 1, w ∈ G] = 2 AdvB < 2 εsd,

since by our hardness assumption AdvB must be lesser than εsd, given that B
runs in time t ≈ t′.

Compact Group Signatures Without Random Oracles 435

Lemma 2. For any algorithm A, we have that AdvA,H1 = 0.

Proof. We must argue that when h is chosen uniformly at random from G,
instead of Gq in the real scheme, then the challenge signature is statistically
independent of the signer identity, ID, in the adversary’s view (which might
comprise answers to earlier signature queries on ID). Consider the challenge
signature,

σ =
(

σ1, σ2, σ3, c1, . . . , ck, π1, . . . , πk

)
,

and let us determine what such an adversary might deduce from σ.
First, observe that σ2 and σ3 by themselves do not depend on (any of the bits

κi comprising) the signer identity ID. However, since the adversary is computa-
tionally unbounded, we must assume that they reveal s1 and s2.

Next, consider ci = uκi

i hti and the corresponding πi = (u2κi−1
i hti)ti =

(uκi

i uκi−1
i hti)ti for each i. There are two competing hypotheses that may be

formulated by the adversary: κi = 0 ∨ κi = 1. For either hypothesis, there is a
solution for the ephemeral exponent ti that explains the observed value of ci. In
other words, in the adversary’s view,

∀i ∈ {1, . . . , k} : ∃τ0, τ1 ∈ Zn s.t. (κi, ti) = (0, τ0) ∨ (κi, ti) = (1, τ1)
and ci = hτ0 = uih

τ1 .

Using the last equality we find that the observed value of πi is compatible with
both hypotheses:(
πi

∣∣
κi=0

)
=(u−1

i hτ0)τ0 =(u−1
i uih

τ1)τ0 = hτ0τ1 =(hτ0)τ1 = (uih
τ1)τ1 =

(
πi

∣∣
κi=1

)
.

This all means that, the knowledge of ci and πi does not disambiguate the
relevant bit κi ∈ {0, 1}. Taken together, all the ci and πi do not reveal anything
about ID.

Last, we consider σ1 = gα · cs1 · V s2 . But this value is just redundant in the
eyes of the adversary, since he already knows all the values that determine it,
including α = loge(g,g) A.

Therefore, ID is statistically independent of the entire signature σ, which
proves the lemma.

4.2 Full Traceability

We show how to reduce the full traceability of our scheme to the two-level sig-
nature scheme described in Section 3.1. We create a simulator that will interact
with a challenger for the security game of the Waters signature scheme. If the
adversary asks for the secret key of user ID, the simulator will simply ask for a
first-level signature on ID and give this to the adversary. If the adversary asks
for a signature of message M by user ID the simulator will ask the challenger for
a second-level signature on ID.M and then blind the signature itself.

The adversary will finally output a signature σ∗ on some message M∗. In order
for the adversary to be successful the signature will need to verify. By the perfect

436 X. Boyen and B. Waters

binding properties of the underlying NIZK techniques, a signature can be traced
to some user ID∗ and we can recover from it a Waters two-level signature on
ID∗.M∗; the simulator will submit this as its forgery in its own attack against the
underlying signature scheme. The adversary will only be considered successful
if he had not asked for the private key of user ID∗ and had not queried for a
signature on M∗ from user ID∗. However, these are precisely the conditions that
the simulator needs to abide by to be successful in its own game.

One tricky point in our reduction is that the simulator will play the signa-
ture game in the subgroup Gp, however the parameters for the group signature
scheme are to be given in the group G, and so will be the forgery produced by
the adversary. In addition, we note that the adversary is effectively given the
factorization n = pq, as required by the full traceability security definition which
demands that the tracing key TK = q be disclosed for this attack. Our formal
reduction follows.

Theorem 2. If there exists a (t, ε) adversary for the full tracing game then there
exists a (t̃, ε) UF-CMA adversary against the two-level signature scheme, where
t ≈ t̃.

Proof. Suppose there exists an algorithm A that is successful in the tracing
game of our group signature scheme with advantage ε. Then we can create a
simulator B that existentially forges signatures in an adaptive chosen message
attack against the two-level signature scheme, with advantage ε.

The simulator will be given the factorization n = pq of the group order |G| =
n. As usual, denote by Gp and Gq the subgroups of G of respective order p and
q, and by analogy let GTp and GTq be the subgroups of GT of order p and q.
The simulator begins by receiving from its challenger the public parameters of
the signature game, all in subgroups of order p,

P̃P =
(

g̃ , ũ′ = g̃y′
, ũ1 = g̃y1 , . . . , ũk = g̃yk ,

ṽ′ = g̃z′
, ṽ1 = g̃z1, . . . , ṽm = g̃zm , Ã = e(g̃, g̃)α

)
∈ Gk+m+3

p × GTp.

The simulator then picks random generators (f, h, γ′, γ1, . . . , γk, ν′, ν1, . . . , νm) ∈
Gk+m+4

q and a random exponent β ∈ Zq. The simulator publishes the group
signature public parameters as,

PP =
(

g = g̃ f , h , u′ = ũ′ γ′, u1 = ũ1 γ1, . . . , uk = ũk γk,

v′ = ṽ′ ν′, v1 = ṽ1 ν1, . . . , vm = ṽk νm, A = Ã · e(f, f)β
)
.

The distribution of the public key is the same is in the real scheme. The simulator
also gives the tracing key TK = q to the adversary.

Suppose the adversary asks for the private key of user ID. To answer the query,
the simulator first asks the challenger for a first-level signature on message ID,
and receives back K̃ID = (K̃1, K̃2) ∈ G2

p. As before, κi denotes the i-th bit of ID.
The simulator then chooses a random r ∈ Zq and creates the requested key as,

Compact Group Signatures Without Random Oracles 437

KID =
(

K1 = K̃1 · fβ · (γ′
k∏

i=1

γκi

i)r , K2 = K̃2 · f−r , K3 = h−r
)
.

This is a well formed private key in our scheme.
Suppose the simulator is asked for a signature on message M = (μ1 . . . μm) ∈

{0, 1}m by user ID = (κ1 . . . κk) ∈ {0, 1}k. The simulator starts as in the real
scheme, by choosing random t1, . . . , tk ∈ Zn, defining t =

∑k
i=1 ti, and creating

the values ci = uκi

i · hti and πi = (u2κi−1
i · hti)ti for all i = 1, . . . , k. Next,

the simulator requests a two-level signature on ID.M and receives in return
S = (S1, S2, S3) ∈ G3

p. It then chooses random r1, r2 ∈ Zq and creates the
remaining components,

σ1 =S1·fβ ·(γ′
k∏

i=1

γκi

i)r1 ·(ν′
m∏

i=1

νμi

i)r2 ·hr1t, σ2 = S2·f−r1 , σ3 = S3·f−r2 .

The simulator gives the full signature σ = (σ1, σ2, σ3, c1, . . . , ck, π1, . . . , πk) to
the adversary. Again, this is a well-formed signature in our scheme.

Finally, the adversary gives the simulator a forgery σ∗ = (σ1, σ2, σ3, c1, . . . , ck

, π1, . . . , πk) on message M∗ = (μ1 . . . μm). The simulator first checks that the
signature verifies, otherwise the adversary is not successful and the simulator can
abort. Next, it sets out to trace the identity, ID∗, of the forgery. Let κi denote
the i-th bit of the string ID∗ that is to be determined. For each i = 1, . . . , k,
the tracer sets κi = 0 if (ci)q = g0, and κi = 1 otherwise. It then reconstitutes
ID∗ = (κ1 . . . κk). If either the key for ID∗ or a signature on M∗ by ID∗ was
previously requested by the adversary, the simulator can safely abort since the
adversary was not successful. Otherwise the adversary was successful and the
simulator must produce its own forgery.

To see how, recall that for all i we have that e(ci, u
−1
i ci) = e(h, πi), which

has order q in GT . Therefore, either ci ∈ Gq or ci u−1
i ∈ Gq. It follows that

ci = uκi

i f r′
i for the previously determined κi ∈ {0, 1} for some unknown r′i, and

therefore, that c = u′∏k
i=1 ci = (ũ′∏k

i=1 ũκi

i)f r′
for some r′. Let then δ ∈ Zn be

an integer which is 0 (mod q) and 1 (mod p). The verification equation entails,

e(σδ
1 , g̃) · e(σδ

2 , ũ
′

k∏
i=1

ũκi

i) · e(σδ
3 , ṽ

′
m∏

j=1

ṽ
μj

j)

= Aδ = e(g̃, g̃)αδ e(f, f)βδ = e(g̃, g̃)α = Ã.

This, however, leaves S∗ = (σδ
1 , σ

δ
2 , σ

δ
3) ∈ G3

p as the sought forgery on ID∗.M∗ in
the underlying hierarchical signature scheme, which the simulator gives to the
challenger. Therefore, our simulator will be successful whenever the adversary is.

5 Extensions

Our framework of creating group signature schemes from hierarchical signature
schemes allows us to extend our basic scheme in some interesting ways. We
outline a few of these applications in the present section.

438 X. Boyen and B. Waters

5.1 Fast Verification

Perhaps the main drawback of our scheme in terms of practicality, is that, taken
at face value, signature verification requires 2k + 3 pairing computations. How-
ever, in all known realizations of the pairing, it turns out that when computing
multiple pairings in a product, the cost incurred by adding each extra pairing is
significantly lesser than the cost of the first pairing. The reason is because the
sequence of doublings in Miller’s algorithm [Mil04] can be amortized over all the
pairings in a given product, in a very similar way to the multi-exponentiation
algorithm. To push this idea further, it is possible to batch the k remaining
equations into a single “multi-pairing”, using randomization, at the cost of k
extra exponentiations in G: to check that ∀i = 1, . . . , k : e(ci, u

−1
i ci) = e(h, πi),

the verifier would pick r1, . . . , rk ∈ Zn, and test,

k∏
i=1

(
e(cri

i , u−1
i ci) · e(h−ri , πi)

)
?= 1.

Probabilistic signature verification can thus be performed with a total of 2
multi-pairings and k exponentiations for the cri . Notice that since h is constant
across all signers for the life of the system, the h−ri can be computed compara-
tively very quickly using a few amortized pre-computations.

5.2 Long Messages

Once we have a signature scheme that can sign messages in {0, 1}m for large
enough m = Θ(λ), it is easy to sign arbitrary messages with the help of a
Universal One-Way Hash Function (UOWHF) family H, a description of which
is added to the public key. To sign M ∈ {0, 1}∗, first pick a random index h
into the family, which determines a function Hh ∈ H. Next, let M ′ = h‖Hh(M),
and compute σ′ = Sign(PP, ID, KID, M

′), a signature on M ′ in the initial scheme.
The signature on M is then given by σ = (h, σ′).

Since |h| and |Hh(M)| both grow linearly in the security parameter, it suffices
to let m = Θ(λ) with a constant factor large enough to accommodate the two. A
standard argument shows that the new scheme is existentially unforgeable under
adaptive chosen message attacks whenever the old one was. Also, it is easy to see
that this transformation does not affect anonymity or tracing, since it operates
only on the message, and does so in a “public” way.

5.3 Delegation

Using a hierarchical signature scheme we can allow for a group signature scheme
where a signer can delegate its authority down in a hierarchical manner. Sup-
pose we have an (Λ + 1)-level hierarchical signature scheme where at each level
identities can be at most d bits long (except the last level, which must support
messages of sufficient size m, as discussed above). Then we can extend the tech-
niques from our basic scheme to create a new group signature scheme that allows

Compact Group Signatures Without Random Oracles 439

for hierarchical identities of up to Λ levels, where someone with an identity at
level l can delegate down to a new user at level l + 1.

To do this we simply extend our scheme to hide identities at all levels. How-
ever, this will come with an O(Λ d + m) cost in signing time, verification time,
and signature size.

5.4 Revocation

Keys can be revoked in any group signature scheme in a very generic manner,
in which the group master sends a revocation message linear in the number of
remaining signers. Upon enrollment, each user is assigned an additional, unique,
long-lived decryption key. Then, to revoke a user, the group master would re-
key the group signature sub-system, and form a public revocation message that
contains the new public key as well as the signing key of each remaining user
encrypted under that user’s long-term key. (Alternatively, the group master could
broadcast a constant size revocation message containing only the new PK, and
privately communicate a new key to each signer.)

Using an extension of our methods we can have a constant size revocation
message along with an O(r) overhead for our group signature scheme, where r
is the number of revoked users. Essentially, the idea is for the signers to attach
an additional proof for each revoked user that they are not that user.

These two techniques can be used in conjunction. Most revocation messages
can be kept short using the second technique. However, when the number of
revoked users becomes too large, the group master issues out a long revocation
message to re-key the system.

5.5 Partial Revelation of Identities

A user might also wish to selectively reveal parts of his identity. For example,
suppose there are two classes of users in a system where one class of users
consists of administrators whose extra privilege is important in some, but not
all applications. We could then organize the identities in such a way that a user’s
identity consisted of his class bit followed by a unique bitstring.

For some types signatures it might be important for a user to reveal his
privilege, while keeping his identity secret within this class. In our signature
scheme a signer can do this by simply not encrypting the class bit of his identity,
while hiding all of the other bits.

Using selective revelation will be preferable to the alternative of creating a new
group signature scheme for each possible group of users. This type of technique
can be generalized to more complicated types of selective revelation by using the
NIZK techniques in more complicated ways, although the signature overhead will
likely become larger with more complicated proofs.

5.6 Using Prime Order Groups

In our current scheme we work in composite order groups and the anonymity
of our scheme rests on the hardness of the Subgroup-Decision problem. An

440 X. Boyen and B. Waters

interesting extension of our work would be to apply our techniques to work
in prime order groups. This would give us a wider range of underlying ellip-
tic curve implementations to choose from and allow us to explore alternative
complexity assumptions. Recent work [GOS06a] has shown that the NIZK tech-
niques of Groth, Sahai, and Ostrovsky can be realized in prime order groups
under the Decision-Linear Assumption [BBS04]. We can plug these new NIZK
techniques into our group signature framework and realize our scheme in prime
order groups.

6 Conclusion

In this paper we presented the first efficient group signature scheme that is prov-
ably secure without random oracles, based on bilinear maps. We built our group
signature scheme from the Waters two-level hierarchical signatures scheme,
where the first level is the identity of the signer and the second level is the
signed message. Additionally, we applied the recent NIZK proof techniques of
Groth, Ostrovsky, and Sahai in a novel manner to hide the identity of the signer.

We proved the security of our scheme using the subgroup decision and the
computational Diffie-Hellman assumptions. Its signing time, verification time,
and signature size are all logarithmic in the number of signers.

Our method of using a hierarchical signature scheme allowed us to create
clean, modular proofs of security. Additionally, it had the added benefit of al-
lowing for a hierarchical identity structure. We expect our new framework of
creating group signatures to enable many other extensions in the future.

Acknowledgments

We thank Dawn Song for suggesting the concept of signature delegation and
Dan Boneh for useful comments and suggestions.

References

[ACHdM05] Giuseppe Ateniese, Jan Camenisch, Susan Hohenberger, and
Breno de Medeiros. Practical group signatures without ran-
dom oracles. Cryptology ePrint Archive, Report 2005/385, 2005.
http://eprint.iacr.org/.

[ACJT00] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A
practical and provably secure coalition-resistant group signature scheme.
In Proceedings of Crypto 2000, volume 1880 of Lecture Notes in Computer
Science, pages 255–70. Springer-Verlag, 2000.

[AST02] Giuseppe Ateniese, Dawn Song, and Gene Tsudik. Quasi-efficient re-
vocation of group signatures. In Proceedings of Financial Cryptography
2002, 2002.

[AT99] G. Ateniese and G. Tsudik. Some open issues and directions in group
signatures. In Proceedings of Financial Cryptography 1999, volume 1648
of Lecture Notes in Computer Science, pages 196–211. Springer-Verlag,
1999.

Compact Group Signatures Without Random Oracles 441

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signa-
tures. In Advances in Cryptology—CRYPTO 2004, volume 3152 of Lec-
ture Notes in Computer Science, pages 41–55. Springer-Verlag, 2004.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas
on ciphertexts. In Proceedings of TCC 2005, Lecture Notes in Computer
Science. Springer-Verlag, 2005.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations
of group signatures: Formal definitions, simplified requirements, and a
construction based on general assumptions. In Advances in Cryptology—
EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science,
pages 614–29. Springer-Verlag, 2003.

[BP97] Niko Baric and Birgit Pfitzman. Collision-free accumulators and fail-
stop signature schemes without trees. In Advances in Cryptology—
EUROCRYPT 1997, Lecture Notes in Computer Science, pages 480–94.
Springer-Verlag, 1997.

[BS04] Dan Boneh and Hovav Shacham. Group signatures with verifier-local
revocation. In Proceedings of ACM CCS 2004, pages 168–77. ACM Press,
2004.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signa-
tures: The case of dynamic groups. In Proceedings of CT-RSA 2005, Lec-
ture Notes in Computer Science, pages 136–153. Springer-Verlag, 2005.

[BW05] Xavier Boyen and Brent Waters. Compact group signatures without
random oracles. Cryptology ePrint Archive, Report 2005/381, 2005.
http://eprint.iacr.org/.

[Cam97] Jan Camenisch. Efficient and generalized group signatures. In Advances
in Cryptology—EUROCRYPT 1997, Lecture Notes in Computer Science,
pages 465–479. Springer-Verlag, 1997.

[CG04] Jan Camenisch and Jens Groth. Group signatures: Better efficiency and
new theoretical aspects. In Proceedings of SCN 2004, pages 120–133,
2004.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and ap-
plication to efficient revocation of anonymous credentials. In Advances in
Cryptology—CRYPTO 2002, volume 2442 of Lecture Notes in Computer
Science, pages 61–76. Springer-Verlag, 2002.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anony-
mous credentials from bilinear maps. In Advances in Cryptology—
CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science.
Springer-Verlag, 2004.

[CvH91] David Chaum and Eugène van Heyst. Group signatures. In Advances in
Cryptology—EUROCRYPT 1991, volume 547 of Lecture Notes in Com-
puter Science, pages 257–65. Springer-Verlag, 1991.

[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and
new techniques for NIZK. Manuscript, 2006.

[GOS06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive
zero knowledge for NP. In Advances in Cryptology—EUROCRYPT 2006,
Lecture Notes in Computer Science. Springer-Verlag, 2006. To appear.

[GS02] Craig Gentry and Alice Silverberg. Hierarchical ID-based cryptography.
In Advances in Cryptology—ASIACRYPT 2002, Lecture Notes in Com-
puter Science. Springer-Verlag, 2002.

442 X. Boyen and B. Waters

[KY03] Aggelos Kiayias and Moti Yung. Extracting group signatures from traitor
tracing schemes. In Advances in Cryptology—EUROCRYPT 2003, Lec-
ture Notes in Computer Science, pages 630–648. Springer-Verlag, 2003.

[KY04] Aggelos Kiayias and Moti Yung. Group signatures: Provable security,
efficient constructions and anonymity from trapdoor-holders. Cryptology
ePrint Archive, Report 2004/076, 2004. http://eprint.iacr.org/.

[KY05] Aggelos Kiayias and Moti Yung. Group signatures with efficient con-
current join. In Advances in Cryptology—EUROCRYPT 2005, Lecture
Notes in Computer Science, pages 198–214. Springer-Verlag, 2005.

[LRSW99] Anna Lysyanskaya, Ron Rivest, Amit Sahai, and Stefan Wolf.
Pseudonym systems. In Proceedings of SAC 1999, volume 1758 of Lecture
Notes in Computer Science, pages 184–99. Springer-Verlag, 1999.

[Mil04] Victor Miller. The Weil pairing, and its efficient calculation. Journal of
Cryptology, 17(4), 2004.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Advances
in Cryptology—CRYPTO 2003, Lecture Notes in Computer Science,
pages 96–109. Springer-Verlag, 2003.

[Son01] Dawn Xiaodong Song. Practical forward secure group signature schemes.
In ACM Conference on Computer and Communications Security—CCS
2001, pages 225–234, 2001.

[Wat05] Brent Waters. Efficient identity-based encryption without random ora-
cles. In Advances in Cryptology—EUROCRYPT 2005, volume 3494 of
Lecture Notes in Computer Science. Springer-Verlag, 2005.

A Group Signatures

A group signature scheme consists of a pentuple of PPT algorithms:

– A group setup algorithm, Setup, that takes as input a security parameter
1λ (in unary) and the number of signers in the group, for simplicity taken
as a power of two, 2k, and outputs a public key PK for verifying signatures,
a master key MK for enrolling group members, and a tracing key TK for
identifying signers.

– An enrollment algorithm, Enroll, that takes the master key MK and an
identity ID, and outputs a unique identifier sID and a private signing key KID

which is to be given to the user.
– A signing algorithm, Sign, that takes a group member’s private signing key

KID and a message M , and outputs a signature σ.
– A (usually deterministic) verification algorithm, Verify, that takes a message

M , a signature σ, and a group verification key PK, and outputs either valid
or invalid.

– A (usually deterministic) tracing algorithm, Trace, that takes a valid sig-
nature σ and a tracing key TK, and outputs an identifier sID or the failure
symbol ⊥.

There are four types of entities one must consider:

– The group master, which sets up the group and issues private keys to the
users. Often, the group master is an ephemeral entity, and the master key

Compact Group Signatures Without Random Oracles 443

MK is destroyed once the group is set up. Alternatively, techniques from dis-
tributed cryptography can be used to realize the group master functionality
without any real party becoming in possession of the master key.

– The group manager, which is given the ability to identify signers using the
tracing key TK, but not to enroll users or create new signing keys for existing
users.

– Regular member users, or signers, which are each given a distinct private
signing key KID.

– Outsiders, or verifiers, who can only verify signatures using the public key
PK.

We require the following correctness and security properties.

Consistency. The consistency requirements are such that, whenever, (for a group
of 2k users),

(PK, MK, TK) ← Setup(1λ, 2k), (sID, KID) ← Enroll(MK, ID), σ ← Sign(KID, M),

we have, (except with negligible probability over the random bits used in Verify
and Trace),

Verify(M, σ, PK) = valid, and Trace(σ, TK) = sID.

The unique identifier sID can be used to assist in determining the user ID from
the transcript of the Enroll algorithm; sID may but need not be disclosed to the
user; it may be the same as ID.

Security. Bellare, Micciancio, and Warinschi [BMW03] characterize the funda-
mental properties of group signatures in terms of two crucial security properties
from which a number of other properties follow. The two important properties
are:

Full Anonymity which requires that no PPT adversary be able to decide (with
non-negligible probability in excess of one half) whether a challenge signature
σ on a message M emanates from user ID1 or ID2, where ID1, ID2, and
M are chosen by the adversary. In the original definition of [BMW03], the
adversary is given access to a tracing oracle, which it may query before and
after being given the challenge σ, much in the fashion of IND-CCA2 security
for encryption.

Boneh, Boyen, and Shacham [BBS04] relax this definition by withholding
access to the tracing oracle, thus mirroring the notion of IND-CPA security
for encryption. We follow [BBS04] and speak of CCA2-full anonymity and
CPA-full anonymity respectively.

Full Traceability which requires that no coalition of users be able to generate,
in polynomial time, a signature that passes the Verify algorithm but fails
to trace to a member of the coalition under the Trace algorithm. According
to this notion, the adversary is allowed to ask for the private keys of any

444 X. Boyen and B. Waters

user of its choice, adaptively, and is also given the secret key TK meant for
tracing—but of course not the enrollment master key MK.

It is noted in [BMW03] that this property implies that of exculpabil-
ity [AT99], which is the requirement that no party, not even the group man-
ager, should be able to frame a honest group member as the signer of a
signature he did not make. However, the model of [BMW03] does not con-
sider the possibility of a (long-lived) group master, which could act as a
potential framer. To address this problem and achieve the notion of strong
exculpability, introduced in [ACJT00] and formalized in [KY04, BSZ05], one
would need an interactive enrollment protocol, call Join, at the end of which
only the user himself knows his full private key. We do not further consider
exculpability issues in this paper.

We refer the reader mainly to [BMW03] for more precise definitions of these and
related notions.

Practical Identity-Based Encryption
Without Random Oracles

Craig Gentry�

Stanford University
cgentry@cs.stanford.edu

Abstract. We present an Identity Based Encryption (IBE) system that
is fully secure in the standard model and has several advantages over
previous such systems – namely, computational efficiency, shorter public
parameters, and a “tight” security reduction, albeit to a stronger as-
sumption that depends on the number of private key generation queries
made by the adversary. Our assumption is a variant of Boneh et al.’s
decisional Bilinear Diffie-Hellman Exponent assumption, which has been
used to construct efficient hierarchical IBE and broadcast encryption
systems. The construction is remarkably simple. It also provides recip-
ient anonymity automatically, providing a second (and more efficient)
solution to the problem of achieving anonymous IBE without random
oracles. Finally, our proof of CCA2 security, which has more in com-
mon with the security proof for the Cramer-Shoup encryption scheme
than with security proofs for other IBE systems, may be of independent
interest.

Keywords: Identity Based Encryption.

1 Introduction

An Identity Based Encryption (IBE) system [25, 8] is a public key encryption
system in which a user’s public key may be an arbitrary string, such as an email
address or other identifier. The user’s private key is generated by a trusted au-
thority, called a Private Key Generator (PKG), which applies its master key to
the user’s identity after the user authenticates itself. Shamir [25] proposed the
notion of IBE in 1984 as a way to simplify public key and certificate manage-
ment. Rather than obtaining the disparate public keys of its intended recipients
separately, a message sender who knows the identities of its recipients needs
only to obtain the public parameters of the PKG; public key certificates are
eliminated altogether.

Boneh and Franklin [8, 9] described the first secure and truly practical IBE
system. Their system uses bilinear maps (or “pairings”), and they proved its
security in the random oracle model. Canetti et al. [15] presented an IBE system
whose security could proven without random oracles, but in a weaker “selective-
ID” model, in which the adversary must declare at the beginning of its attack
� Supported by the Herbert Kunzel Stanford Graduate Fellowship.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 445–464, 2006.
c© International Association for Cryptologic Research 2006

446 C. Gentry

which identity it will target. Boneh and Boyen [4] provided more practical IBE
systems in the selective-ID model. Shortly thereafter, Boneh and Boyen [5] pre-
sented a fully secure scheme – i.e., one in which the adversary may choose the
target identity adaptively – without random oracles. Waters [27] simplified the
scheme described in [5], substantially improving its efficiency.

Previous IBE Systems. Moni Naor observed that every IBE system secure
against an adaptive-ID attack (as defined by Boneh and Franklin in [8]) implies
a signature scheme secure against existential forgery under a chosen-message at-
tack. The generic transformation is as follows: the PKG’s parameters correspond
to the public key of the signature scheme; private key generation queries to the
PKG correspond to signature queries. If an adversary of the signature scheme
can forge a signature on an unqueried message, it can generate a private key for
an unqueried identity, thus breaking the IBE system. So, to design a secure IBE
system, one begins (in some sense) by designing a secure signature scheme.

A common strategy for proving the security of a signature scheme in the
random oracle model – e.g., for RSA with full-domain-hash – is as follows. The
simulator responds to hash queries in such a way that it can generate a signature
on most messages, but not all. The simulator aborts if the adversary requests
a signature on a message that it cannot sign, or if the adversary’s forgery is
on a message that the simulator knows how to sign already. One can also use
this strategy to design a secure private key generation procedure for an IBE
system. Boneh and Franklin [8] did precisely that; the private key generation
procedure in their system is essentially equivalent to the BLS signature scheme
[12], which uses the proof strategy just described. (Though, inconveniently for
our narrative, Boneh and Franklin’s IBE system slightly pre-dates its associated
signature scheme.)

When Boneh and Boyen [5] and later Waters [27] devised IBE systems fully
secure without random oracles, their main innovation was in the private key gen-
eration procedures. Each of these procedures corresponds to a signature scheme
that is fully secure (i.e., against a chosen-message attack) without random ora-
cles. Interestingly, though, the (implicit) proof strategy for these standard-model
signature schemes is still basically the same as above – i.e., the simulator con-
structs its public key in such a way that it can generate a signature on most
messages, but not all. Since, intuitively speaking, the simulator follows the same
strategy except for using its control of the public key (or public parameters, for
an IBE system) to compensate for not controlling a random oracle, it should not
be surprising that the public parameters for these IBE systems are quite large.

Another side effect of the above proof strategy is that the reduction is loose.
If δ is the probability that the simulator can generate a private key for a ran-
dom identity, then the probability that the simulator does not abort is at most
δq(1 − δ), where q is the number of private key generation queries made by the
adversary. Setting δ ≈ 1 − 1/q maximizes this probability at O(1/q). Thus, the
reduction loses a multiplicative factor of q. A lossy reduction is not merely a
theoretical problem; if we take the lossiness seriously, we should augment the
security parameter to compensate, making the system less efficient.

Practical Identity-Based Encryption Without Random Oracles 447

Almost all of the IBE systems since Boneh-Franklin follow the “common strat-
egy” for proving security; consequently, they suffer from long parameters (when
security is proven in the standard model) and lossy reductions (in the standard
model or the random oracle model). However, we note a couple of exceptions.
The IBE systems described in [4] have short parameters and achieve a tight
reduction, but this is because they are proven secure only against selective-ID
attacks. As noted in [4], one can generally transform a selective-ID scheme into
a fully secure scheme by having the simulator guess which identity the adver-
sary will ultimately select, but this transformation loosens the reduction by
huge multiplicative factor – namely, by the total number of identities – that is
super-polynomial and (much) larger than q. This transformation is also a very
unsatisfying approach from a theoretical point of view. A second exception is
the IBE system by Katz and Wang [23], which achieves a tight reduction in the
random oracle model. In their system, the encryption of M under identity ID ef-
fectively consists of two ciphertexts under each of the derived identities H(ID, 0)
and H(ID, 1) (for hash function H modeled as random oracle). Through its con-
trol of the random oracle, the simulator ensures that, for each ID, it knows the
private key for exactly one of H(ID, 0) and H(ID, 1). It can thus answer any
key generation query. The successful adversary partially decrypts the challenge
ciphertext with the “wrong” private key with probability 1/2, giving the simula-
tor useful information. Though this system relies heavily on the random oracle
model, it illustrates how a tight reduction for an IBE system can be achieved
when the simulator can generate a private key for every identity. A recent paper
[2] discusses the Katz-Wang system in detail.

Currently, there is no IBE system that is fully secure without random oracles,
yet has short public parameters, or has a tight security reduction. Given this state
of affairs, several papers [4, 5, 27] have encouraged work on the open problem
of tight security; Waters posed [27] the open problem regarding compact public
parameters.

Our Contributions. We present an IBE system that is fully secure without
random oracles and has several advantages over previous such systems, including:

– Short public parameters (5 group elements for CCA2 security)
– A tight reduction, albeit based on a stronger assumption (see below)
– Recipient-anonymity

Our constructions are simple and efficient. For example, in the construction
described in Section 4.1, which we prove secure against adaptive-ID and adaptive
chosen-ciphertext attacks, a ciphertext consists of four group elements. Encryp-
tion and decryption require only a small constant number of group operations,
while user private keys and the PKG’s public parameters are compact. Compare,
for example, the public parameters in our IBE system (five group elements and
a hash function) to those in [27] (n + 4 group elements, where an identity is a
bitstring of length n).

An IBE system is recipient-anonymous, roughly speaking, if it hard for an
eavesdropper to distinguish which identity was used to generate a given

448 C. Gentry

ciphertext. Boneh et al. [7] discuss how anonymous IBE is useful in the con-
text of searchable public key encryption; Abdalla et al. [1] propose the open
problem of finding an anonymous IBE system secure without random oracles.
Boyen and Waters recently presented the first such anonymous IBE system at
the rump session of Crypto 2005 (see [14]). Our IBE system represents a second,
but more efficient, solution to this problem; it gives recipient-anonymity basi-
cally “for free.” The security proof for our scheme is also much simpler. However,
we note that the Boyen-Waters approach offers hierarchical anonymous IBE.

Regarding the open problem of constructing an IBE system with a tight secu-
rity reduction, our contribution is less clear. Our decision q-ABDHE assumption,
discussed in Section 2.3, is related to the q-BDHE assumption, which has been
used to construct efficient hierarchical IBE and broadcast encryption systems
[6, 10], but it is stronger than the decision BDH assumption used in [5, 27]. We
obtain a tight reduction based on q-ABDHE in the sense that the simulator’s
time complexity and success probability are identical to that of the adversary
in breaking the system, except for additive factors depending on q. However,
since our assumption is stronger, we cannot claim that a tighter reduction is
necessarily an improvement. Moreover, it is not obvious what it means to have
an asymptotically tight reduction based on the q-ABDHE assumption, since this
assumption varies as q varies. However, we can analyze the concrete security of
our system for specific values of q, as we do in Section 3.3. One conclusion of
this analysis is that if we assume decision q-ABDHE is no easier than decision
BDH (which may or may not be true), then our tighter reduction (for specific
reasonable values of q) allows us to choose a smaller security parameter, adding
to the efficiency advantages of our scheme. But perhaps this is not a very satis-
fying “solution” to the open problem; certainly, it would be preferable to obtain
a tight reduction under a more natural assumption, such as decision BDH.

A final contribution of this paper is our proof technique, which differs sub-
stantially from the “common strategy” described above. Interestingly, our proof
strategy draws inspiration from the Cramer-Shoup signature scheme [18] (and
strong-RSA based signature schemes, generally) for our private key generation
procedure, as well as from the Cramer-Shoup encryption scheme [17] for our
approach to proving security against chosen-ciphertext attacks.

Strong-RSA based signatures typically achieve a tight reduction and have
short public keys. Intuitively, this is related to the fact that, in the reduction, the
simulator can produce a signature for any message. Similarly, unlike in previous
IBE systems fully secure in the standard model, the simulator in our reduction
can generate a private key for any identity. One can view our private key gener-
ation procedure as a strongly existentially unforgeable signature scheme that is
“tightly” secure in the standard model under the q-strong DH assumption: that it
is hard to compute a pair (c, g1/(α−c)) given {gαi

: i ∈ [0, q]}, where q corresponds
to the anticipated number of queries. The savvy reader may notice that this sig-
nature scheme has direct analogue based on strong RSA. In the procedure, the
PKG (signer) publishes groups G and GT , and bilinear map e : G × G → GT ,
along with generators g, g1, h ∈ G, where g1 = gα. A private key for identity
ID ∈ Zp is a pair (rID, hID), where rID ∈ Zp and hID = (hg−rID)1/(α−ID); if the

Practical Identity-Based Encryption Without Random Oracles 449

private key for ID is requested more than once, the PKG uses the same value
of rID each time. In the reduction, the simulator is given gi = g(αi) for all
i ∈ [0, q], where q is (roughly) the anticipated number private key generation
queries. Given {gi}, the simulator computes h by generating a random q-degree
polynomial f(x) ∈ Zp[x], and setting h = gf(α). To generate a private key for
ID, it sets rID = f(ID) and hID = (hg−rID)1/(α−ID) = g(f(α)−f(ID))/(α−ID); the sim-
ulator can compute the latter value from {gi}, since (f(x)− f(ID))/(x− ID) is a
(q − 1)-degree polynomial in x. The values of rIDi

in the simulation for i ∈ [1, q]
appear uniformly random, since f(x) is a random polynomial of degree q. If the
adversary can generate a private key (r′ID, h′

ID) for ID for which r′ID �= rID, the
simulator can efficiently compute g1/(α−ID).

The fact that the simulator in our system can generate exactly one pri-
vate key for any identity dovetails nicely with the proof strategy used in the
Cramer-Shoup encryption scheme, where the simulator actually knows exactly
one valid decryption key: its scalars (x1, y1, z1), along with the dependent values
(x2, y2, z2). Roughly speaking, in their proof, Cramer and Shoup show that these
scalars remain unconditionally hidden from the adversary (with overwhelming
probability), and thus the adversary cannot (except with negligible probability)
construct an invalid ciphertext that passes the simulator’s validity test, or guess
with advantage how the simulator would decrypt its own challenge ciphertext
when that challenge ciphertext is incorrectly distributed. How do we adapt their
technique to our (multi-user) IBE system? We augment the public parameters
to include group elements h1, h2, h3 ∈ G (rather than just h), where hi = gfi(α)

and fi(x) ∈ Zp[x] is a random and independent q-degree polynomial. The three
scalars rID,i = fi(ID), which a user receives as part of its private key, play a role
analogous to the scalars z1, x1, and y1, respectively, in Cramer-Shoup; the values
rID,2 and rID,3 are used in a projective-hash ciphertext validity test. The three
scalars remain hidden from the adversary with overwhelming probability, even
if the adversary obtains the scalars rID′,i = fi(ID′) for less than q − 1 identities
ID′ �= ID, since fi(x) is random and has degree q. Interestingly, previous IBE
systems fully secure without random oracles use an entirely different approach
to proving chosen-ciphertext security. They employ results by Canetti et al. [16]
(later improved by Boneh and Katz [11] and further by Boyen, Mei and Waters
[13]) that a chosen-ciphertext-secure IBE system follows from a chosen-plaintext-
secure 2-level hierarchical IBE system.

2 Preliminaries

Below, we review the definition of security for an IBE system. We also review
the definition of a bilinear map and discuss the complexity assumption on which
the security of our system is based.

2.1 Security Model for Identity-Based Encryption

An IBE system consists of four algorithms [25, 8]: Setup, KeyGen, Encrypt,
and Decrypt. Setup establishes the PKG’s parameters params and a master

450 C. Gentry

key master-key. KeyGen applies the master-key to an identity to generate the
private key for that identity. Encrypt takes a message, an identity and params
as input, and outputs a ciphertext. Decrypt decrypts a ciphertext for an identity
using a private key for that identity.

Boneh and Franklin [8, 9] define chosen ciphertext security for IBE systems
under a chosen identity attack via the following game.

Setup: The challenger runs Setup, and forwards params to the adversary.
Phase 1: Proceeding adaptively, the adversary issues queries q1, . . . , qm where

qi is one of the following:
– Key generation query 〈IDi〉: the challenger runs KeyGen on IDi and for-
wards the resulting private key to the adversary.
– Decryption query 〈IDi, Ci〉. The challenger runs KeyGen on IDi, decrypts
Ci with the resulting private key, and sends the result to the adversary.

Challenge: The adversary submits two plaintexts M0, M1 ∈ M and an identity
ID. ID must not have appeared in any key generation query in Phase 1. The
challenger selects a random bit b ∈ {0, 1}, sets C =Encrypt(params, ID, Mb),
and sends C to the adversary as its challenge ciphertext.

Phase 2: This is identical to Phase 1, except that the adversary may not request
a private key for ID or the decryption of (ID, C).

Guess: The adversary submits a guess b′ ∈ {0, 1}. The adversary wins if b = b′.

We call an adversary A in the above game a IND-ID-CCA adversary.

Definition 1. An IBE system is (t, qID, qC , ε) IND-ID-CCA secure if all t-time
IND-ID-CCA adversaries making at most qID private key queries and at most qC

chosen ciphertext queries have advantage at most ε in winning the above game.

IND-ID-CPA security is defined similarly, but with the restriction that the ad-
versary cannot make decryption queries.

Definition 2. An IBE system is (t, qID, ε) IND-ID-CPA secure if it is (t, qID, 0, ε)
IND-ID-CCA secure.

Recipient-Anonymity. Informally, we say that an IBE system is anonymous if
an adversary cannot distinguish the public key ID under which a ciphertext was
generated. More formally, we can incorporate anonymity into our game above
through the following simple modification. In the Challenge phase, the adversary
outputs two identities ID0 and ID1 not queried in Phase 1 and two messages M0
and M1. The challenger picks two random bits b, c ∈ {0, 1}, uses IDb to encrypt
Mc, and sends the resulting ciphertext C to the adversary. Phase 2 is like Phase
1, except that the adversary cannot request a private key for ID0 or ID1, or the
decryption of C under either identity. Finally, in the Guess phase, the adversary
guesses two bits b′, c′ and wins if b = b′ and c = c′; we define the adversary’s
advantage in this game to be |Pr[b = b′ ∧ c = c′] − 1

4 |.
Definition 3. We say that an IBE system E is (t, qID, qC , ε) ANON-IND-ID-CCA
secure if all t-time ANON-IND-ID-CCA adversaries making at most qID private
key queries and at most qC chosen ciphertext queries have advantage at most ε
in the modified game. We define ANON-IND-ID-CPA security similarly.

Practical Identity-Based Encryption Without Random Oracles 451

2.2 Bilinear Maps

We review bilinear maps, using the following standard notation [8, 4, 27]:

1. G and GT are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of G.
3. e : G × G → GT is a bilinear map.

Let G and GT be two groups as above. A bilinear map is a map e : G×G → GT

with the following properties:

1. Bilinear: for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
2. Non-degenerate: e(g, g) �= 1.

We say that G is a bilinear group if the group action in G can be computed
efficiently and there exists a group GT and an efficiently computable bilinear
map e : G × G → GT as above. Note that e(,) is symmetric since e(ga, gb) =
e(g, g)ab = e(gb, ga).

2.3 Complexity Assumptions

The security of our system is based on a complexity assumption that we call the
decisional augmented bilinear Diffie-Hellman exponent assumption (decisional
ABDHE). First, we recall the q-BDHE problem [6, 10], which is as follows:
Given a vector of 2q + 1 elements(

g′, g, gα, g(α2), . . . , g(αq), g(αq+2), . . . , g(α2q)
)
∈ G2q+1

as input, output e(g, g′)(α
q+1) ∈ GT . Since the input vector is missing the term

g(αq+1), the bilinear map does not seem to help compute e(g, g′)(α
q+1).

We define the q-ABDHE problem almost identically: Given a vector of 2q + 2
elements(

g′, g′(α
q+2)

, g, gα, g(α2), . . . , g(αq), g(αq+2), . . . , g(α2q)
)
∈ G2q+2

as input, output e(g, g′)(α
q+1) ∈ GT . Introducing the additional term g′(α

q+2)

still does not appear to ease the computation of e(g, g′)(α
q+1), since the input

vector is missing the term g(α−1).
The q-ABDHE problem is actually more than we need for our IBE system.

Instead, we can use a truncated version of the q-ABDHE problem, in which the
terms (g(αq+2), . . . , g(α2q)) are omitted from the input vector. Clearly, the trun-
cated q-ABDHE problem is hard if the q-ABDHE problem is hard. An algorithm
A has advantage ε in solving truncated q-ABDHE if

Pr
[A (

g′, g′q+2, g, g1, . . . , gq

)
= e(gq+1, g

′)
] ≥ ε

where we use gi and g′i to denote g(αi) and g′(α
i), and where the probability is

over the random choice of generators g, g′ in G, the random choice of α in Zp,
and the random bits used by A.

452 C. Gentry

The decisional version of truncated q-ABDHE is defined as one would expect.
An algorithm B that outputs b ∈ {0, 1} has advantage ε in solving truncated
decision q-ABDHE if∣∣∣∣Pr

[B(g′, g′q+2, g, g1, . . . , gq, e(gq+1, g
′)
)

= 0
]

−Pr
[B(g′, g′q+2, g, g1, . . . , gq, Z

)
= 0

] ∣∣∣∣ ≥ ε

where the probability is over the random choice of generators g, g′ in G, the
random choice of α in Zp, the random choice of Z ∈ GT , and the random bits
consumed by B. We refer to the distribution on the left as PABDHE and the
distribution on the right as RABDHE .

Definition 4. We say that the truncated (decision) (t, ε, q)-ABDHE assumption
holds in G if no t-time algorithm has advantage at least ε in solving the truncated
(decision) q-ABDHE problem in G.

As an aside, we note that the truncated q-ABDHE problem is also closely related
to the q-bilinear Diffie-Hellman inversion (q-BDHI) problem, which has been
used to construct an IBE system secure without random oracles under a selective-
ID attack [4] and a verifiable random function [20]. Specifically, let us define
the q-augmented BDHI (q-ABDHI) problem as follows: given a vector of q + 2
elements (

g(α−q−2), g, gα, g(α2), . . . , g(αq)
)
∈ Gq+1

as input, output e(g, g)1/α ∈ GT . The q-ABDHI problem is identical to the
q-BDHI problem, except that the former adds the term g(α−q−2) to the input
vector, which does not seem to help compute e(g, g)1/α. One can reduce (deci-
sion) q-ABDHI to truncated (decision) q-ABDHE simply by setting (g′, g′α

q+2

) =
((g(α−q−2))x, gx) for random x ∈ Z∗

p, and deriving e(g, g)1/α as e(gq+1, g
′)1/x.

3 Construction I: Chosen-Plaintext Security

We now present an efficient IBE system that is ANON-IND-ID-CPA secure with-
out random oracles under the truncated decision (qID + 1)-ABDHE assumption.
Though this construction is substantially similar to the construction presented
in Section 4.1, which is ANON-IND-ID-CCA secure, we present this construction
separately because there are applications (such as searchable public key encryp-
tion [7, 1]) that only require chosen-plaintext security, and because we believe
the reader may benefit from seeing this construction’s (relatively) simple proof
of security without being distracted by the additional machinery needed to prove
chosen-ciphertext security.

Practical Identity-Based Encryption Without Random Oracles 453

3.1 Construction

Let G and GT be groups of order p, and let e : G × G → GT be the bilinear
map. The IBE system works as follows.

Setup: The PKG picks random generators g, h ∈ G and random α ∈ Zp. It sets
g1 = gα ∈ G. The public params and private master-key are given by

params = (g, g1, h) master-key = α .

KeyGen: To generate a private key for identity ID ∈ Zp, the PKG generates
random rID ∈ Zp, and outputs the private key

dID = (rID, hID), where hID = (hg−rID)1/(α−ID) .

If ID = α, the PKG aborts. We require that the PKG always use the same
random value rID for ID. This can be accomplished, for example, using a
PRF or an internal log to ensure consistency.

Encrypt: To encrypt m ∈ GT using identity ID ∈ Zp, the sender generates
random s ∈ Zp and sends the ciphertext

C = (gs
1g

−s·ID, e(g, g)s, m · e(g, h)−s) .

Notice that encryption does not require any pairing computations once
e(g, g) and e(g, h) have been pre-computed. Alternatively, e(g, g) and e(g, h)
can be included in the system parameters, in which case h can be dropped.

Decrypt: To decrypt ciphertext C = (u, v, w) with ID, the recipient outputs

m = w · e(u, hID)vrID .

Correctness: Assuming the ciphertext is well-formed for ID:

e(u, hID)vrID = e(gs(α−ID), h1/(α−ID)g−rID/(α−ID))e(g, g)srID = e(g, h)s ,

as required.

Intuitively, the recipient can decrypt because it possess a (α − ID)-th root of h
(after h is perturbed by g−rID). When this is paired with u, a (α − ID)-th power
of gs, the recipient obtains the mask e(g, h)s after removing the perturbation.

3.2 Security

We now prove that the above IBE system is ANON-IND-ID-CPA secure under
the truncated decision (qID + 1)-ABDHE assumption.

Theorem 1. Let q = qID+1. Assume the truncated decision (t, ε, q)-ABDHE as-
sumption holds for (G, GT , e). Then, the above IBE system is (t′, ε′, qID) ANON-
IND-ID-CPA secure for t′ = t − O(texp · q2) and ε′ = ε + 2/p, where texp is the
time required to exponentiate in G.

454 C. Gentry

Proof. Let A be an adversary that (t′, ε′, qID)-breaks the ANON-IND-ID-CPA se-
curity of the IBE system described above. We construct an algorithm, B, that
solves the truncated decision q-ABDHE problem, as follows. B takes as input a
random truncated decision q-ABDHE challenge (g′, g′q+2, g, g1, . . . , gq, Z), where
Z is either e(gq+1, g

′) or a random element of GT (recall that gi = g(αi)). Algo-
rithm B proceeds as follows.

Setup: B generates a random polynomial f(x) ∈ Zp[x] of degree q. It sets
h = gf(α), computing h from (g, g1, . . . , gq). It sends the public key (g, g1, h)
to A. Since g, α, and f(x) are chosen uniformly at random, h is uniformly
random and this public key has a distribution identical to that in the actual
construction.

Phase 1: A makes key generation queries. B responds to a query on ID ∈ Zp as
follows. If ID = α, B uses α to solve truncated decision q-ABDHE immedi-
ately. Else, let FID(x) denote the (q−1)-degree polynomial (f(x)−f(ID))/(x−
ID). B sets the private key (rID, hID) to be (f(ID), gFID(α)). This is a valid pri-
vate key for ID, since gFID(α) = g(f(α)−f(ID))/(α−ID) = (hg−f(ID))1/(α−ID), as
required. We will describe why this private key appears to A to be correctly
distributed below.

Challenge: A outputs identities ID0, ID1 and messages M0, M1. Again, if α ∈
{ID0, ID1}, B uses α to solve truncated decision q-ABDHE immediately. Else,
B generates bits b, c ∈ {0, 1}, and computes a private key (rIDb

, hIDb
) for IDb

as in Phase 1. Let f2(x) = xq+2 and let F2,IDb
(x) = (f2(x) − f2(IDb))/(x −

IDb), which is a polynomial of degree q + 1. B sets

u = g′f2(α)−f2(IDb), v = Z · e(g′,
q∏

i=0

gF2,IDb,iα
i

) w = Mc/e(u, hIDb
)vrIDb ,

where F2,IDb,i is the coefficient of xi in F2,IDb
(x). It sends (u, v, w) to A as

the challenge ciphertext.
Let s = (logg g′)F2,IDb

(α). If Z = e(gq+1, g
′), then u = gs(α−IDb), v =

e(g, g)s, and Mc/w = e(u, hIDb
)vrIDb = e(g, h)s; thus (u, v, w) is a valid ci-

phertext for (IDb, Mc) under randomness s. Since logg g′ is uniformly random,
s is uniformly random, and so (u, v, w) is a valid, appropriately-distributed
challenge to A.

Phase 2: A makes key generation queries, and B responds as in Phase 1.
Guess: Finally, the adversary outputs guesses b′, c′ ∈ {0, 1}. If b = b′ and c = c′,

B outputs 0 (indicating that Z = e(gq+1, g
′)); otherwise, it outputs 1.

Perfect Simulation: When Z = e(gq+1, g
′), the public key and challenge ci-

phertext issued by B comes from a distribution identical to that in the actual
construction; however, we still must show that the private keys issued by B are
appropriately distributed. Let I be a set consisting of α, IDb, and the identities
queried by A; observe that |I| ≤ q + 1. To show that the keys issued by B
are appropriately distributed, it suffices to show that, from A’s view, the values
{f(a) : a ∈ I} are uniformly random and independent. But this follows from the
fact that f(x) is a uniformly random polynomial of degree q.

Practical Identity-Based Encryption Without Random Oracles 455

Probability Analysis: If Z = e(gq+1, g
′), then the simulation is perfect, and A

will guess the bits (b, c) correctly with probability 1/4 + ε′. Else, Z is uniformly
random, and thus (u, v) is a uniformly random and independent element of
G×GT . In this case, the inequalities v �= e(u, g)1/(α−ID0) and v �= e(u, g)1/(α−ID1)

both hold with probability 1 − 2/p. When these inequalities hold, the value of
e(u, hIDb

)vrIDb = e(u, (hg−rIDb)1/(α−IDb))vrIDb = e(u, h)α−IDb(v/e(u, g)1/(α−IDb))rIDb

is uniformly random and independent from A’s view (except for the value w),
since rIDb

is uniformly random and independent from A’s view (except for the
value w). Thus, w is uniformly random and independent, and (u, v, w) can impart
no information regarding the bits (b, c).

Assuming that no queried identity equals α (which would only increase B’s
success probability), we see that |Pr[B(g′, g′q+2, g, g1, . . . , gq, Z) = 0]−1/4| ≤ 2/p
when (g′, g′q+2, g, g1, . . . , gq, Z) is sampled from RABDHE . However, we have that
|Pr[B(g′, g′q+2, g, g1, . . . , gq, Z) = 0]− 1/4| ≥ ε′ when (g′, g′q+2, g, g1, . . . , gq, Z) is
sampled from PABDHE . Thus, for uniformly random g, g′, α and Z, we have
that ∣∣∣∣Pr

[B(g′, g′q+2, g, g1, . . . , gq, e(gq+1, g
′)
)

= 0
]

−Pr
[B(g′, g′q+2, g, g1, . . . , gq, Z

)
= 0

] ∣∣∣∣ ≥ ε′ − 2/p .

Time-Complexity: In the simulation, B’s overhead is dominated by computing
gFID(α) in response to A’s key generation query on ID, where FID(x) is a polyno-
mial of degree q − 1. Each such computation requires O(q) exponentiations in
G. Since A makes at most q − 1 such queries, t = t′ + O(texp · q2).

This concludes the proof of Theorem 1. ��

3.3 Remarks on the Tightness of the Reduction

In the reduction, B’s success probability and time complexity are the same as
A’s, except for additive factors depending on q. So, one could say that our IBE
system has a tight security reduction in the standard model, addressing an open
problem posed in [4, 5, 27]. However, it would be misleading to claim that a tight
reduction from decision q-ABDHE is necessarily better than the loose reduction
from decision BDH (for the IBE systems described by Boneh and Boyen [4]
and Waters [27]), for a couple of reasons. First, decision q-ABDHE is a stronger
assumption than decision BDH. Second, it is not even obvious what “a tight
reduction from decision q-ABDHE” means, since the assumption is not fixed
when q varies; it becomes stronger as the number of queries increases. Given these
considerations, let’s examine the significance (if any) of the “tight reduction” in
closer detail.

Not much is known about the relative hardness of the decision q-ABDHE
and decision BDH problems; they could be equally hard, or the former could
be significantly easier. Decision q-ABDHE is a new problem, less natural and

456 C. Gentry

less well-studied than decision BDH, though it seems closely connected to the
decision q-BDHE and decision q-BDHI problems that were used in [6, 10, 4, 20].
Interestingly, Boneh et al. [6] give some evidence that the decision q-ABDHE
problem is easier to solve in the generic group model. In particular, Boneh et al.
[6] show (roughly) that a generic attacker’s advantage in deciding whether an
element of GT equals g

f(α)
1 – when given oracle access to the group operation

and the values g ∈ G, g1 ∈ GT and gfi(α) ∈ G for polynomials f1, . . . , fs – is
at most (t + 2s + 2)2d/2p, where p is the group order, t is the number of oracle
queries, and d = max{deg(f), deg(f1), . . . ,deg(fs)}. Since d = q for the decision
q-ABDHE problem, Boneh et al.’s result suggests that a generic attacker’s ad-
vantage in decision q-ABDHE may be about q times greater than in decision
BDH (for fixed t and p, and assuming q (t). This factor of q seems to offset
the factor of q that we eliminated by making our reduction tight. On the other
hand, this generic-group result doesn’t tell us much about relative hardness of
the decision q-ABDHE and decision BDH problems in the real world, since the
fastest algorithms for solving them are likely non-generic (and sub-exponential).
Ultimately, it is unclear whether or not our tighter reduction under a stronger
assumption improves security.

However, for the sake of argument, let’s try to assess the impact of our tighter
reduction under the assumption that the decision q-ABDHE and decision BDH
problems are equally hard. Since it is not very useful simply to characterize our
reduction as “tight” asymptotically, let’s make such a statement more precise
by fixing reasonable values of q and assessing the security and efficiency impli-
cations concretely. Suppose that we want to choose our security parameter such
that, to succeed with probability at least ε′, the time complexity of A’s attack
must be 2100. Suppose also that it is infeasible for A make more than 230 key
generation queries, and that texp = 230. In this case, we should choose our secu-
rity parameter such that t = 2100 + O(texp · q2). Since 290 is much smaller than
2100, it essentially suffices to choose the security parameter such that t ≈ 2100.

On the other hand, consider an IBE system whose reduction loses a multiplica-
tive factor of q in time-complexity (without much loss in the success probability).
In this setting, to ensure that A’s time complexity is 2100, we must choose our se-
curity parameter such that t ≈ 2130. The security parameter in this setting thus
must be at least 30% greater (even more if sub-exponential attacks are possible
against the system). Assuming, as a rough approximation, that exponentiation
takes time proportional to the cube of the security parameter, the increase in
the security parameter size more than doubles the time needed to exponentiate,
which significantly impacts the computational efficiency of the system. So, our
“tight reduction” significantly enhances the efficiency advantages of our system
over previous IBE systems that have been proven fully secure in the standard
model (under decision BDH), at least when we assume that decision q-ABDHE
and decision BDH are equally hard.

Since the relative hardness of decision q-ABDHE and decision BDH is un-
known, however, we stress that it remains an excellent open problem to

Practical Identity-Based Encryption Without Random Oracles 457

construct an IBE system that has a tight reduction in the standard model under
a more natural assumption, such as decision BDH.

4 Construction II: Chosen-Ciphertext Security

We now present an efficient IBE system that is ANON-IND-ID-CCA secure with-
out random oracles under the truncated decision (qID + 2)-ABDHE assumption.

4.1 Construction

Let G and GT be groups of order p, and let e : G × G → GT be the bilinear
map. The IBE system works as follows.

Setup: The PKG picks a random generators g, h1, h2, h3 ∈ G and a random
α ∈ Zp. It sets g1 = gα ∈ G. It chooses a hash function H from a family of
universal one-way hash functions. The public params and private master-
key are given by

params = (g, g1, h1, h2, h3, H) master-key = α .

KeyGen: To generate a private key for identity ID ∈ Zp, the PKG generates
random rID,i ∈ Zp for i ∈ {1, 2, 3}, and outputs the private key

dID = {(rID,i, hID,i) : i ∈ {1, 2, 3}}, where hID,i = (hig
−rID,i)1/(α−ID) .

If ID = α, the PKG aborts. As before, we require that the PKG always use
the same random values {rID,i} for ID.

Encrypt: To encrypt m ∈ GT using identity ID ∈ Zp, the sender generates
random s ∈ Zp and sends the ciphertext

C = (gs
1g

−s·ID, e(g, g)s, m · e(g, h1)−s, e(g, h2)se(g, h3)sβ) .

Above, for C = (u, v, w, y), we set β = H(u, v, w). As before, encryption
does not require any pairing computations once e(g, g), and {e(g, hi)} have
been pre-computed or alternatively included in params.

Decrypt: To decrypt ciphertext C = (u, v, w, y) with ID, the recipient sets
β = H(u, v, w) and tests whether

y = e(u, hID,2hID,3
β)vrID,2+rID,3β .

If the check fails, the recipient outputs ⊥. Otherwise, it outputs

m = w · e(u, hID,1)vrID,1 .

Correctness: Assuming the ciphertext is well-formed for ID:

e(u, hID,2hID,3
β)vrID,2+rID,3β

= e(gs(α−ID), (h2h3
β)1/(α−ID)g−(rID,2+rID,3β)/(α−ID))e(g, g)s(rID,2+rID,3β)

= e(gs(α−ID), (h2h3
β)1/(α−ID)) = e(g, h2)se(g, h3)sβ .

Thus, the check passes. Moreover, as in the ANON-IND-ID-CPA scheme,

e(u, hID,1)vrID,1 = e(gs(α−ID), h
1/(α−ID)
1 g−rID,1/(α−ID))e(g, g)srID,1 = e(g, h1)s ,

as required.

458 C. Gentry

4.2 Security

We now prove that the above construction is ANON-IND-ID-CCA secure under
the truncated decision (qID + 2)-ABDHE assumption. We will refer the reader
to the proof of Theorem 1 for some portions of the present proof that would
otherwise be duplicative.

Theorem 2. Let q = qID + 2. Assume the truncated decision (t, ε, q)-ABDHE
assumption holds for (G, GT , e). Then, the above IBE system is (t′, ε′, qID, qC)
ANON-IND-ID-CCA secure for t′ = t − O(texp · q2) and ε′ = ε + 4qC/p, where
texp is the time required to exponentiate in G.

Proof. Let A be an adversary that (t′, ε′, qID, qC)-breaks the ANON-IND-ID-CCA
security of the IBE system described above. We construct an algorithm, B, that
solves the truncated decision q-ABDHE problem, as follows. B takes as input a
random truncated decision q-ABDHE challenge (g′, g′q+2, g, g1, . . . , gq, Z), where
Z is either e(gq+1, g

′) or a random element of GT . Algorithm B proceeds as
follows.

Setup: B generates random polynomials fi(x) ∈ Zp[x] of degree q for i ∈
{1, 2, 3}. It sets hi = gfi(α). It sends the public key (g, g1, h1, h2, h3) to
A. Since g, α, and fi(x) for i ∈ {1, 2, 3} are chosen uniformly at random,
h1, h2, and h3 are uniformly random and the public key has a distribution
identical to that in the actual construction.

Phase 1: A makes key generation queries. B responds to a query on ID ∈ Zp as
follows. If ID = α, B uses α to solve truncated decision q-ABDHE immedi-
ately. Else, to generate a pair (rID,1, hID,1) such that hID,1=(h1g

−rID,1)1/(α+ID),
B sets rID,1 = f1(ID) and computes hID,1 as before (in the proof of Theorem
1). It computes the remainder of the private key similarly. As before, the
private key generated for ID in this fashion is valid.
A also makes decryption queries. To respond to a decryption query on
(ID, C), B generates a private key for ID as above. It then decrypts C by
performing the usual Decrypt algorithm with this private key.

Challenge: As before, A outputs identities ID0, ID1 and messages M0, M1. If
α ∈ {ID0, ID1}, B uses α to solve truncated decision q-ABDHE immediately.
Else, as before, B generates bits b, c ∈ {0, 1}. After computing a private
key {(rID,i, hID,i) : i ∈ {1, 2, 3}} for IDb, it also computes (u, v, w) as before,
using the (rIDb,1, hIDb,1) portion of the key to compute w. After setting β =
H(u, v, w), B sets y = e(u, hID,2hID,3

β)vrID,2+rID,3β . If Z = e(gq+1, g
′), then

(u, v, w, y) is a valid, appropriately-distributed challenge to A for essentially
the same reason as before.

Phase 2: A makes key generation and decryption queries, and B responds as
in Phase 1.

Guess: As before.

Now, since the time-complexity analysis is as in the proof of Theorem 1, Theo-
rem 2 follows from the following lemmata.

Practical Identity-Based Encryption Without Random Oracles 459

Lemma 1. When B’s input is sampled according to PABDHE, the joint distri-
bution of A’s view and the bits (b, c) is indistinguishable from that in the actual
construction, except with probability 2qC/p.

Lemma 2. When B’s input is sampled according to RABDHE , the distribution
of the bits (b, c) is independent from the adversary’s view, except with probability
2qC/p.

Our approach to proving these claims closely follows the proof of security for
the Cramer-Shoup encryption scheme [17], in that both proofs rely heavily on
the notion of linear independence. More specifically, when one expresses the
adversary’s knowledge (from the public key, queries, etc.) as equations in the
simulator’s private key variables, one may ask whether a target equation that
the adversary is trying to solve is linearly independent to the equations in its
knowledge base; if so, then in certain circumstances, the adversary can be said to
have an unconditionally negligible probability of finding a solution to the target
equation. This will become clearer below.

Proof of Lemma 1: When B’s input is sampled according to PABDHE , B’s
simulation appears perfect to A if A makes only key generation queries, as in
the proof of Theorem 1. B’s simulation still appears perfect if A makes decryption
queries only on identities for which it queries the private key, since B’s responses
give A no additional information. Furthermore, querying well-formed ciphertexts
to the decryption oracle does not help A distinguish between the simulation
and the actual construction, since, by the correctness of Decrypt, well-formed
ciphertexts will be accepted in either case. Finally, querying a non-well-formed
ciphertext (u′, v′, w′, y′) for ID for which v′ = e(u′, g)1/(α−ID) does not help A
distinguish, since this ciphertext will fail the Decrypt check under every valid
private key for ID. Thus, the lemma follows from the following claim:

Claim: The decryption oracle, in the simulation and in the actual construction,
rejects all invalid ciphertexts under identities not queried by A, except with prob-
ability qC/p.

We say a ciphertext (u′, v′, w′, y′) for ID is “invalid” if v′ �= e(u′, g)1/(α−ID).
Let (u′, v′, w′, y′) be an invalid ciphertext queried by A for ID, an identity

not queried by A. Let {(rID,i, hID,i) : i ∈ {1, 2, 3}} be B’s private key for ID. Let
au′ = logg u′, av′ = loge(g,g) v′, and ay′ = loge(g,g) y′. For (u′, v′, w′, y′) to be

accepted, we must have y′ = e(u′, hID,2hID,3
β′

)v′rID,2+rID,3β′
– i.e.,

ay′ = au′(logg hID,2 + β′ logg hID,3) + av′(rID,2 + β′rID,3) , (1)

for β′ = H(u′, v′, w′). To compute the probability that A can generate such a
y′, we must consider the distribution of {(rID,i, hID,i) : i ∈ {2, 3}} from A’s view.

First, A knows that

logg h1 = (α − ID) logg hID,1 + rID,1 (2)
logg h2 = (α − ID) logg hID,2 + rID,2 (3)
logg h3 = (α − ID) logg hID,3 + rID,3 (4)

460 C. Gentry

by the construction of the private key. In light of Equations 3 and 4, A’s task
may be re-phrased as finding a y′ such that

ay′ = (au′/(α−ID))(logg h2+β′ logg h3)+(av′−au′/(α−ID))(rID,2+β′rID,3) . (5)

Note that av′ − au′/(α − ID) �= 0, since the ciphertext is invalid. Let z′ =
av′ − au′/(α − ID).

In the actual construction, the values of rID,i for i ∈ {2, 3} are chosen in-
dependently for different identities; however, this is not true in the simulation.
Since fi(ID) = rID,i, A could conceivably gain information regarding (rID,2, rID,3)
from its information regarding (f2(x), f3(x)), which includes the evaluations of
(f2(x), f3(x)) at α (from the public key components (h2, h3)) and at q − 2 iden-
tities (from its key generation queries). We may represent the knowledge gained
from these evaluations as a matrix product:

[f2,0, f2,1, . . . , f2,q, f3,0, f3,1, . . . , f3,q]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1 0 0 · · · 0
x1 x2 · · · xq−1 0 0 · · · 0
...

...
...

...
...

...
...

...
xq

1 xq
2 · · · xq

q−1 0 0 · · · 0
0 0 · · · 0 1 1 · · · 1
0 0 · · · 0 x1 x2 · · · xq−1
...

...
...

...
...

...
...

...
0 0 · · · 0 xq

1 xq
2 · · · xq

q−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where fi,j is the coefficient of xj in fi(x), xk ∈ Zp is the k-th identity queried
by A to the key generation oracle, and xq−1 = α. Let f denote the vector on
the left and let V denote the matrix on the right. Note that V contains two
(q + 1) × (q − 1) Vandermonde matrices; its columns are linearly independent.
From A’s view, since V has four more rows than columns, the solution space for
f is four-dimensional.

Let γID denote the vector (1, ID, . . . , IDq). When we re-phrase Equation 5 in
terms of the simulator’s private key vector f , we obtain:

ay′ = “public” terms + z′(f · γID‖β′γID) , (6)

where “·” denotes the dot product and γID‖β′γID denotes the 2(q+1)-dimensional
vector formed by concatenating the coefficients of γID and β′γID. If γID‖β′γID

were in the linear span of V , then potentially A could use knowledge gained
from its key generation queries to compute a solution y′ to Equation 6. How-
ever, one can easily see that γID‖β′γID is linearly independent. Thus, as in the
security proof of Cramer-Shoup, it follows that the decryption oracle will re-
ject (u′, v′, w′, y′) for ID with probability 1 − 1/p if it is the first invalid ci-
phertext queried by A, since there is only a 1/p chance that f is contained in
the 3-dimensional solution space (with p3 points) defined by Equation 6 and
the columns of V , given that f is in the 4-dimensional solution space (with p4

points) defined by the columns of V .

Practical Identity-Based Encryption Without Random Oracles 461

Each time the decryption oracle rejects an invalid ciphertext in the simulation,
the solution space for f is “punctured” in a 3-dimensional space that A then
concludes does not contain f ; consequently, the probability that A’s i-th invalid
ciphertext is accepted is at most 1/(p − i + 1). The probability that qC invalid
ciphertexts (on identities not queried to the key generation oracle) are all rejected
is at least 1 − qC/p. This bound also holds for the actual construction (where
A’s attack is less effective). This concludes the proof of Lemma 1.

Proof of Lemma 2: The lemma follows from the following two claims.

Claim 1: If the decryption oracle rejects all invalid ciphertexts, then A has ad-
vantage at most qC/p in guessing the bits (b, c).

Claim 2: The decryption oracle rejects all invalid ciphertexts, except with prob-
ability qC/p.

Let au = logg u, av = loge(g,g) v and ay = loge(g,g) y for challenge cipher-
text (u, v, w, y) on (IDb, Mc). Since (u, v, w, y) is generated by sampling from
RABDHE in this case, (au, av) is a uniformly random element of Zp × Zp in A’s
view. From the challenge ciphertext and Equations 2-4, A obtains the equations

log(Mc/w) = (au/(α − IDb)) log h1 + (av − au/(α − IDb))rIDb,1 (7)
ay=(au/(α−IDb))(logg h2+β logg h3)+(av−au/(α−IDb))(rIDb,2+βrIDb,3) (8)

where β = H(u, v, w).
Regarding Claim 1, if no invalid ciphertexts are accepted, then B’s responses

to decryption queries leak no information about rIDb,1. Furthermore, A’s key
generation queries do not constrain rIDb,1 = f1(IDb), since f1 is of degree q.
Thus the distribution of Mc/w – conditioning on (b, c) and everything in A’s
view other than w – is uniform. As in Cramer-Shoup, Mc/w serves as a perfect
one-time pad; w is uniformly random and independent, and c is independent of
A’s view.

The only part of the ciphertext that can reveal information about b is y, since
A views (u, v, w) as a uniformly random and independent element of G×GT×GT .
The 2q − 2 equations corresponding to the columns of V intersect Equation 8
in at least a three-dimensional space in Z

2(q+1)
p . A views f as being contained

in one of two three-dimensional spaces, since b has two possible values. By an
argument similar to above, each of A’s invalid ciphertext queries punctures each
of these three-dimensional spaces in a plane, removing each of the two planes
from consideration as containing f . Since no invalid ciphertext is accepted, each
three-dimensional space is left with at least p3 − qCp2 (out of p3) candidates.
Thus, A cannot distinguish b, except with advantage at most qC/p.

Regarding Claim 2, suppose that A submits an invalid ciphertext (u′, v′, w′, y′)
for unqueried identity ID, where (u′, v′, w′, y′, ID) �= (u, v, w, y, IDb). Let β′ =
H(u′, v′, w′). There are three cases to consider:

1. (u′, v′, w′) = (u, v, w): In this case, the hashes are also equal. If ID = IDb

but y′ �= y, the ciphertext will certainly be rejected. If ID �= IDb, A must

462 C. Gentry

generate a y′ that satisfies Equation 6. However, we claim that the vector
γID‖βγID (corresponding to Equation 6) is linearly independent in Z

2(q+1)
p

to γIDb
‖βγIDb

(corresponding to the challenge ciphertext) and the columns
of V , implying (via arguments analogous to those above) that A cannot gen-
erate such a y′ except with probability 1/(p − i + 1), where (u′, v′, w′, y′)
is the i-th invalid ciphertext. Let V1, . . . , V2q−2 be the columns of V . Sup-
pose that there exist integers (a1, . . . , a2q), not all zero, such that a1V1 +
· · · + a2q−2V2q−2 + a2q−1(γID‖βγID) + a2q(γIDb

‖βγIDb
) is the zero vector in

Z
2(q+1)
p . Then, either (a1, . . . , aq−1, a2q−1, a2q) or (aq, . . . , a2q−2, a2q−1, a2q)

is not all zeros; wlog, assume the former. The first q + 1 coordinates of the
vectors (V1, . . . , Vq−1, γID, γIDb

) form a Vandermonde matrix (with nonzero
determinant), but the first q + 1 coordinates of a1V1 + · · · + aq−1Vq−1 +
a2q−1(γID‖βγID) + a2q(γIDb‖βγIDb) is the zero vector in Zq+1

p – a contradic-
tion.

2. (u′, v′, w′) �= (u, v, w) and β′ = β: This violates the universal one-wayness of
the hash function H , by an argument analogous to that in Cramer-Shoup.

3. (u′, v′, w′) �= (u, v, w) and β′ �= β: In this case, A must generate, for some ID,
a y′ that satisfies Equation 6. For essentially the same reason as discussed
in Item 1, A can do this with only negligible probability when ID �= IDb. If
ID = IDb, then γID‖β′γID and γIDb‖βγIDb generate γIDb‖0q+1 and 0q+1‖γIDb

since β �= β′. These vectors are clearly linearly independent to each other
and the columns of V , and thus the standard analysis applies.

This completes the proof of Lemma 2.

5 Conclusions and Open Problems

We presented a fully secure IBE system that is quite practical, has very compact
public parameters, and has a tight security reduction (though based on a stronger
assumption that depends on the anticipated number of private key generation
queries). The scheme is recipient-anonymous, and its proof extends Cramer-
Shoup-type techniques to IBE systems.

Since a tight reduction based on decision q-ABDHE is not necessarily better
than a loose reduction based on decision BDH (or some other natural assump-
tion), it remains an outstanding open problem to construct a fully secure IBE
system (without random oracles) that has a tight reduction based on a more
natural assumption. Another interesting problem is to construct a hierarchical
IBE system that has a reduction based on a reasonable assumption, either in
the standard model or the random oracle model, that is polynomial in q and the
number of levels.

Acknowledgments

We thank Dan Boneh, Brent Waters and the anonymous reviewers of Eurocrypt
2006 for insightful comments and helpful suggestions.

Practical Identity-Based Encryption Without Random Oracles 463

References

[1] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee,
G. Neven, P. Paillier, and H. Shi. Searchable Encryption Revisited: Consistency
Properties, Relation to Anonymous IBE, and Extensions. In Advances in Cryptol-
ogy – Crypto 2005, volume 3621 of LNCS, pages 205–222. Springer-Verlag, 2005.

[2] N. Attrapadung, B. Chevallier-Mames, J. Furukawa, T. Gomi, G. Hanaoka, H.
Imai, and R. Zhang. Efficient Identity Based Encryption with Tight Security
Reduction. Cryptology ePrint Archive 2005/320.

[3] M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols. In Proc. of ACM CCS, pages 62–73, 1993.

[4] D. Boneh and X. Boyen. Efficient Selective-ID Identity Based Encryption without
Random Oracles. In Advances in Cryptology – Eurocrypt 2004, volume 3027 of
LNCS, pages 223–238. Springer-Verlag, 2004.

[5] D. Boneh and X. Boyen. Secure Identity Based Encryption without Random Or-
acles. In Advances in Cryptology – Crypto 2004, volume 3152 of LNCS, pages
443–459. Springer-Verlag, 2004.

[6] D. Boneh, X. Boyen, and E.-J. Goh. Hierarchical Identity Based Encryption with
Constant Size Ciphertext. In Advances in Cryptology – Eurocrypt 2005, volume
3494 of LNCS, pages 440–456. Springer-Verlag, 2005.

[7] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public Key Encryption
with Keyword Search. In Advances in Cryptology – Eurocrypt 2004, volume 3027
of LNCS, pages 506–522. Springer-Verlag, 2004.

[8] D. Boneh and M. Franklin. Identity Based Encryption from the Weil pairing. In
Advances in Cryptology – Crypto 2001, volume 2139 of LNCS, pages 213–229.
Springer-Verlag, 2001.

[9] D. Boneh and M. Franklin. Identity Based Encryption from the Weil pairing.
SIAM Journal of Computing, 32(3):586–615, 2003.

[10] D. Boneh, C. Gentry, and B. Waters. Collusion-Resistant Broadcast Encryption
with Short Ciphertexts and Private Keys. In Advances in Cryptology – Crypto
2005, volume 3621 of LNCS, pages 258–275. Springer-Verlag, 2005.

[11] D. Boneh and J. Katz. Improved Efficiency for CCA-Secure Cryptosystems Built
Using Identity Based Encryption. In Proc. of CT-RSA, volume 3376 of LNCS,
pages 87–103. Springer-Verlag, 2005.

[12] D. Boneh, B. Lynn, and H. Shacham, Short signatures from the Weil pairing,
Advances in Cryptology — Asiacrypt 2001, Lecture Notes in Computer Science
2248 (2001), Springer, 514–532.

[13] X. Boyen, Q. Mei and B. Waters, Direct Chosen Ciphertext Security from Identity
Based Techniques, In Proc. of ACM CCS, pages 320–329, 2005.

[14] X. Boyen and B. Waters. Anonymous Hierarchical Identity-Based Encryption
(without Random Oracles). Cryptology ePrint Archive 2006/085.

[15] R. Canetti, S. Halevi, and J. Katz. A Forward-Secure Public-Key Encryption
Scheme. In Advances in Cryptology – Eurocrypt 2003, volume 2656 of LNCS,
pages 255–271. Springer-Verlag, 2003.

[16] R. Canetti, S. Halevi, and J. Katz. Chosen-Ciphertext Security from Identity-
Based Encryption. In Advances in Cryptology – Eurocrypt 2004, volume 3027 of
LNCS, pages 207-222. Springer-Verlag, 2004.

[17] R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attacks. In Advances in Cryptology – Crypto
1998, volume 1462 of LNCS, pages 13–25. Springer-Verlag, 1998.

464 C. Gentry

[18] R. Cramer and V. Shoup. Signature Schemes Based on the Strong RSA Assump-
tion. In Proc. of ACM CCS, pages 46–51, 1999.

[19] Y. Dodis. Efficient Construction of (Distributed) Verifiable Random Functions. In
Proc. of Public Key Cryptography, volume 2567 of LNCS, pages 1–17. Springer-
Verlag, 2002.

[20] Y. Dodis and A. Yampolskiy. A Verifiable Random Function with Short Proofs
and Keys. In Proc. of Public Key Cryptography, volume 3386 of LNCS, pages
416–431. Springer-Verlag, 2005.

[21] C. Gentry and A. Silverberg. Hierarchical ID-Based Cryptography. In Advances
in Cryptology – Asiacrypt 2002, volume 2501 of LNCS, pages 548–566. Springer-
Verlag, 2002.

[22] J. Horwitz and B. Lynn. Toward Hierarchical Identity-Based Encryption. In Ad-
vances in Cryptology – Eurocrypt 2002, volume 2332 of LNCS, pages 466–481.
Springer-Verlag, 2002.

[23] J. Katz and N. Wang. Efficiency Improvements for Signature Schemes with Tight
Security Reductions. In Proc. of ACM CCS, pages 155–164, 2003.

[24] K. Kurosawa and Y. Desmedt. A New Paradigm of Hybrid Encryption Scheme.
In Advances in Cryptology – Crypto 2004, volume 3152 of LNCS, pages 426–442.
Springer-Verlag, 2004.

[25] A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In Advances
in Cryptology – Crypto 1984, volume 196 of LNCS, pages 47–53. Springer-Verlag,
1984.

[26] V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems. In Ad-
vances in Cryptology – Eurocrypt 1997, volume 1233 of LNCS, pages 256–266.
Springer-Verlag, 1997.

[27] B. Waters. Efficient Identity-Based Encryption without Random Oracles. In Ad-
vances in Cryptology – Eurocrypt 2005, volume 3494 of LNCS, pages 114–127.
Springer-Verlag, 2005.

Sequential Aggregate Signatures and
Multisignatures Without Random Oracles

Steve Lu1,�, Rafail Ostrovsky2,��, Amit Sahai3,���,
Hovav Shacham4, and Brent Waters5,†

1 UCLA
stevelu@math.ucla.edu

2 UCLA
rafail@cs.ucla.edu

3 UCLA
sahai@cs.ucla.edu

4 Weizmann Institute of Science
hovav.shacham@weizmann.ac.il

5 SRI International
bwaters@csl.sri.com

Abstract. We present the first aggregate signature, the first multisigna-
ture, and the first verifiably encrypted signature provably secure without
random oracles. Our constructions derive from a novel application of a
recent signature scheme due to Waters. Signatures in our aggregate sig-
nature scheme are sequentially constructed, but knowledge of the order in
which messages were signed is not necessary for verification. The aggregate
signatures obtained are shorter than Lysyanskaya et al. sequential aggre-
gates and can be verified more efficiently than Boneh et al. aggregates. We
also consider applications to secure routing and proxy signatures.

1 Introduction

In this paper we present an aggregate signature scheme, a multisignature scheme,
and a verifiably encrypted signature scheme. Unlike previous such schemes, our
constructions are provably secure without random oracles. A series of papers
beginning with the uninstantiability result of Canetti, Goldreich, and Halevi [10]
has cast some doubt on the soundness of the random oracle methodology, making
random-oracle–free schemes more attractive. Moreover, our proposed schemes
are quite practical, and in some cases outperform the most efficient random-
oracle–based schemes.

� Supported in part by NSF grant DMS-0502315
�� Supported in part by a gift from Teradata, Intel equipment grant, NSF Cybertrust

grant No. 0430254, OKAWA research award, B. John Garrick Foundation and Xerox
Innovation group Award.

��� Supported in part by grants from the NSF ITR and Cybertrust programs, a gen-
erous equipment grant from Intel, and an Alfred P. Sloan Foundation Fellowship.

† Supported by DHS and DOI contract No. NBCHF040146. Views expressed in this
paper do not necessarily reflect those of DHS and DOI.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 465–485, 2006.
c© International Association for Cryptologic Research 2006

466 S. Lu et al.

An aggregate signature scheme allows a collection of signatures to be able
to be compressed into one short signature. Aggregate signatures are useful for
applications such as secure route attestation and certificate chains where the
space requirements for a sequence of signatures can impact practical application
performance.

Boneh et al. [8] presented the first aggregate signature scheme, which was based
on the BLS signature [9] in groups with efficiently computable bilinear maps. Sub-
sequently, Lysyanskaya et al. [20] presented a sequential RSA-based scheme that,
while more limited, could be instantiated using more general assumptions. In a se-
quential aggregate signature scheme the aggregate signature must be constructed
sequentially, with each signer modifying the aggregate signature in turn. However,
most known applications are sequentially constructed anyway. One drawback of
both schemes is that they are provably secure only in the random oracle model
and thus there is only a heuristic argument for their security.

We present the first aggregate signature scheme that is provably secure with-
out random oracles. Our signatures are sequentially constructed, however, unlike
the scheme of Lysyanskaya et al., a verifier need not know the order in which the
aggregate signature was created. Additionally, our signatures are shorter than
those of Lysyanskaya et al. and can be verified more efficiently than those of
Boneh et al.

In addition, we present the first multisignature scheme that is provably secure
without random oracles. In a multisignature scheme, a single short object – the
multisignature – can take the place of n signatures by n signers, all on the
same message. (Aggregate signatures can be thought of as a multisignature
without this restriction.) Boldyreva [6] gave the first multisignature scheme in
which multisignature generation does not require signer interaction, based on
BLS signatures.

Finally, we present the first verifiably encrypted signature scheme that is prov-
ably secure without random oracles. A verifiably encrypted signature is an object
that anyone can confirm contains the encryption of a signature on some message,
but from which only the party under whose key it was encrypted can recover the
signature. Such a primitive is useful in contract signing. Boneh et al. [8] gave
the first verifiably encrypted signature scheme, based on BLS signatures.

All our constructions derive from novel adaptations of the signature scheme
of Waters [28], which follows from his Identity-Based Encryption scheme.

2 Preliminaries

In this section we first present some background on groups with efficiently com-
putable bilinear maps. Next, we recall the definition of existentially unforgeable
signatures. Then we present the Waters [28] signature algorithm.

2.1 Groups with Efficiently Computable Bilinear Maps

We briefly review the necessary facts about bilinear maps and bilinear map
groups. (For more detail, see, e.g., [13, 27].) Consider the following setting:

Sequential Aggregate Signatures and Multisignatures 467

– G and GT are multiplicative cyclic groups of order p;
– the group action on G and GT can be computed efficiently;
– g is a generator of G;
– e : G×G → GT is an efficiently computable map with the following proper-

ties:
• Bilinear: for all u, v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab;
• Non-degenerate: e(g, g) �= 1.

We say that G is a bilinear group if it satisfies these requirements.
The security of our scheme relies on the hardness of the Computational Diffie-

Hellman (CDH) problem in bilinear groups. We state the problem and our as-
sumption as follows. Define the success probability of an algorithm A in solving
the Computational Diffie-Hellman problem on G as

Advcdh
A

def= Pr
[
A(g, ga, h) = ha : g, h

R← G, a
R← Zp

]
.

The probability is over the uniform random choice of g and h from G, of
a from Zp, and the coin tosses of A. We say that an algorithm A (t, ε)-breaks
Computational Diffie-Hellman on G if A runs in time at most t, and Advcdh

A is
at least ε. The (t, ε)-Computational Diffie-Hellman assumption on G is that no
adversary (t, ε)-breaks Computational Diffie-Hellman on G.

Asymmetric Pairings and Short Representations. It is a simple (though tedious)
matter to rewrite our schemes to employ an asymmetric pairing e : G1 × G2 →
GT. Signatures will then include elements of G1, while public keys will include
elements of G2 and GT. This setting allows us to take advantage of curves due
to Barreto and Naehrig [3]. With these curves, elements of G1 have a 160-bit
representation at the 1024-bit security level.1 In this case, security follows from
the Computational co-Diffie-Hellman problem [9].

2.2 The Waters Signature Scheme

We describe the Waters signature scheme [28]. In our description the messages
will be signatures on bitstrings of the form {0, 1}k for some fixed k. However, in
practice one could apply a collision-resistant hash function Hk : {0, 1}∗ → {0, 1}k

to sign messages of arbitrary length.
The scheme requires, besides the random generator g ∈ G, k + 1 additional

random generators u′, u1, . . . , uk ∈ G. In the basic scheme, these can be gener-
ated at random as part of system setup and shared by all users. In some of the
variants below, each user has generators (u′, u1, . . . , uk) of her own, which must
be included in her public key. We will draw attention to this in introducing the
individual schemes.

The Waters signature scheme is a three-tuple of algorithms W = (Kg, Sig, Vf).
These behave as follows.
1 By “1024-bit security,” we mean parameters such that the conjectured complexity of

computing discrete logarithms is roughly comparable to the complexity of factoring
1024-bit numbers. For a more refined analysis see Koblitz and Menezes [19].

468 S. Lu et al.

W.Kg. Pick random α
R← Zp and set A ← e(g, g)α. The public key pk is A ∈ GT.

The private key sk is α.
W.Sig(sk, M). Parse the user’s private key sk as α ∈ Zp and the message M as

a bitstring (m1, . . . , mk) ∈ {0, 1}k. Pick a random r
R← Zp and compute

S1 ← gα · (u′
k∏

i=1

umi

i

)r and S2 ← gr . (1)

The signature is σ = (S1, S2) ∈ G2.
W.Vf(pk, M, σ). Parse the user’s public key pk as A ∈ GT, the message M as

a bitstring (m1, . . . , mk) ∈ {0, 1}k, and the signature σ as (S1, S2) ∈ G2.
Verify that

e(S1, g) · e
(
S2, u′

k∏
i=1

umi

i

)−1 ?= A (2)

holds; if so, output valid; if not, output invalid.

This signature is existentially unforgeable under a chosen-message attack – the
standard notion of signature security, due to Goldwasser, Micali, and Rivest [14]
– if CDH is hard. We give a roundabout proof of this as Corollary 1.

3 Sequential Aggregate Signatures

In a sequential aggregate signature, as in an ordinary aggregate signature, a
single short object – called the aggregate – takes the place of n signatures by
n signers on n messages. Thus aggregate signatures are a generalization of mul-
tisignatures. Sequential aggregates differ from ordinary aggregates in that the
aggregation operation is performed by each signer in turn, rather than by an
unrelated party after the fact.

Aggregate signatures have many applications, as noted by Boneh et al. [8] and
Lysyanskaya et al. [20]. Below, we consider two: Secure BGP route attestation
and proxy signatures.

In BGP, routers generate and forward route attestations to other routers to
advertise the routes which should be used to reach their networks. Secure BGP
solves the problem of attestation forgery by having each router add its signature
to a valid attestation before forwarding it to its neighbors. Because of the size
of route attestations is limited, aggregate signatures are useful in reducing the
overhead of multiple signatures along a path. Nicol, Smith, and Zhao [24] gave
a detailed analysis of the application of aggregate signatures to the Secure BGP
routing protocol [18]. Our sequential aggregate signature scheme is well suited
for improving SBGP. Since all of the incoming route attestations need to be
verified anyway, the fact that our signing algorithm requires a verification adds
no overhead. Additionally, our signature scheme can have signatures that are
smaller than those of Lysyanskaya et al. and verification will be faster than that
of the Boneh et al. scheme.

Sequential Aggregate Signatures and Multisignatures 469

A proxy signature scheme allows a user, called the designator, to delegate
signing authority to another user, the proxy signer. This signature primitive,
introduced by Mambo, Usada, and Okamoto [21], has been discussed and used
in several practical applications. Boldyreva, Palacio, and Warinschi [7] show how
to construct a secure proxy signature scheme from any aggregate (or sequential
aggregate) signature scheme. Instantiating the Boldyreva-Palacio-Warinschi con-
struction with our scheme, we obtain a practical proxy signature secure without
random oracles.

3.1 Definitions

A sequential aggregate signature scheme includes three algorithms. The first,
Kg, is used to generate public-private keypairs. The second, ASig, takes not only
a private key and a message to sign, as does an ordinary signing algorithm, but
also an aggregate-so-far by a set of l signers on l corresponding messages; it
folds the new signature into the aggregate, yielding a new aggregate signature
by l + 1 signers on l + 1 messages. The third algorithm, AVf, takes a purported
aggregate signature, along with l public keys and l corresponding messages, and
decides whether the the aggregate is valid.

The Sequential Aggregate Certified-Key Model. Because our aggregate signature
behaves like a sequential aggregate signature from the signers’ viewpoint, but
like standard aggregate signature from the verifiers’ viewpoint, we describe a
security model for it that is a hybrid of the sequential aggregate chosen key
model of Lysyanskaya et al. [20] and the aggregate chosen key model of Boneh
et al. [8]. In both models, the adversary is given a single challenge key, along with
an appropriate signing oracle for that key. His goal is to generate a sequential
aggregate that frames the challenge user. The adversary is allowed to choose all
the keys in that forged aggregate but the challenge key.

We prove our scheme in a more restricted model that requires that the adver-
sary certify that the public keys it includes in signing oracle queries and in its
forgery were properly generated. This we handle by having the adversary hand
over the private keys before using the public keys. We could also extract the
keys by rewinding or, if this is impossible, using the NIZKs proposed by Groth,
Ostrovsky, and Sahai [15].

Formally, the advantage of a forger A in our model is the probability that the
challenger outputs 1 in the following game:

Setup. Initialize the list of certified public keys C ← ∅. Choose (pk, sk) R← Kg.
Run algorithm A with pk as input.

Certification Queries. Algorithm A provides a keypair (pk′, sk′) in order to
certify pk′. Add pk′ to C if sk′ is its matching private key.

Signing Queries. Algorithm A requests a sequential aggregate signature, un-
der the challenge key pk, on a message M . In addition, it supplies an
aggregate-so-far σ′ on messages M under keys pk. Check that the signa-
ture σ′ verifies; that each key in pk is in C; that pk does not appear in pk;

470 S. Lu et al.

and that |pk| < n. If any of these fails to hold, answer invalid. Otherwise
respond with σ = ASig(sk, M, σ′, M ,pk).

Output. Eventually, A halts, outputting a forgery σ∗ on messages M under
keys pk. This forgery must verify as valid under AVf; each key in pk (except
the challenge key) must be in C; and |pk| ≤ n must hold. In addition, the
forgery must be nontrivial: the challenge key pk∗ must appear in pk, wlog
at index 1 (since signature verification in our scheme has no inherent order),
and the corresponding message M [1] must not have been queried by A of
its sequential aggregate signing oracle. Output 1 if all these conditions hold,
0 otherwise.

We say that an aggregate signature scheme is (t, qC , qS, n, ε) secure if no t-time
adversary making qC certification queries and qS signing queries can win the
above game with advantage more than ε, where n is an upper bound on the
length of the sequential aggregates involved.

3.2 Our Scheme

We start by giving some intuition for our scheme. Each signer in our scheme will
have a unique public key from the Waters signature scheme

u′, u = (u1, . . . , uk), A ← e(g, g)α.

While in the original signature scheme the private key consists only of gα, in
our aggregate signature scheme it is important that the private key holder will
additionally choose and remember the discrete logs of u′, u = (u1, . . . , uk). In
the Waters signature scheme, signatures are made of two group elements S1 and
S2. At a high level, we can view S2 as some randomness for the signature and
S1 as the signature on a message relative to that randomness.

An aggregate signature in our scheme also consists of group elements S′
1, S

′
2.

The second element S′
2 again consists of some “shared” randomness for the sig-

nature. When a signer wishes to add his signature on a message to an aggregate
(S′

1, S
′
2), he simply figures out what his S1 component would be in the underlying

signature scheme given S′
2 as the randomness. In order to perform this computa-

tion the signer must know the discrete log values of all of his public generators.
He then then then multiplies this value into S′

1 and finally re-randomizes the
signature.

We now formally describe the sequential aggregate obtained from the Waters
signature.

Our sequential aggregate scheme is a three-tuple of algorithms WSA =
(Kg, ASig, AVf). These behave as follows.

WSA.Kg. Pick random α, y′ R← Zp and a random vector y = (y1, . . . , yk) R← Zk
p .

Compute

u′ ← gy′
and u = (u1, . . . , uk) ← (gy1, . . . , gyk) and A ← e(g, g)α .

The user’s private key is sk = (α, y′, y) ∈ Zk+2
p . The public key is pk =

(A, u′, u) ∈ GT × Gk+1; it must be certified to ensure knowledge of the
corresponding private key.

Sequential Aggregate Signatures and Multisignatures 471

WSA.ASig(sk, M, σ′, M ,pk). The input is a private key sk, to be parsed as
(α, y′, y1, . . . , yk) ∈ Zk+2

p ; a message M to sign, parsed as (m1, . . . , mk) ∈
{0, 1}k; and an aggregate-so-far σ′ on messages M under public keys pk.
Verify that σ′ is valid by calling AVf(σ′, M ,pk); if not, output fail and
halt. Check that the public key corresponding to sk does not already appear
in pk; if it does, output fail and halt. (We revisit the issue of having one
signer sign multiple messages below.)
Otherwise, parse σ′ as (S′

1, S
′
2) ∈ G2. Set l ← |pk|. Now, for each i, 1 ≤

i ≤ l, parse M [i] as (mi,1, . . . , mi,k) ∈ {0, 1}k, and parse pk[i] as (Ai, u′
i,

ui,1, . . . , ui,k) ∈ GT × Gk+1. Compute

w1 ← S′
1 · gα · (S′

2)
(y′+ k

j=1 yjmj) and w2 ← S′
2 . (3)

The values (w1, w2) form a valid signature on M‖M under keys pk‖pk, but
this signature needs to be re-randomized: otherwise whoever created σ′ could
learn the user’s private key gα. Choose a random r̃ ∈ Zp, and compute

S1 ← w1 · (u′
k∏

j=1

u
mj

j

)r̃ ·
l∏

i=1

(
u′

i

k∏
j=1

u
mi,j

i,j

)r̃ and S2 ← w2g
r̃ . (4)

It is easy to see that σ = (S1, S2) is also a valid sequential aggregate signature
on M‖M under keys pk‖pk, with randomness r + r̃, where w2 = gr; output
it and halt.

WSA.AVf(σ, M ,pk). The input is a purported sequential aggregate σ on mes-
sages M under public keys pk. Parse σ as (S1, S2) ∈ G. If any key appears
twice in pk, if any key in pk has not been certified, or if |pk| �= |M |, output
invalid and halt.
Otherwise, set l ← |pk|. If l = 0, output valid if S1 = S2 = 1, invalid
otherwise.
Now, for each i, 1 ≤ i ≤ l, parse M [i] as (mi,1, . . . , mi,k) ∈ {0, 1}k, and
parse pk[i] as (Ai, u′

i, ui,1, . . . , ui,k) ∈ GT × Gk+1. Finally, verify that

e(S1, g) · e
(
S2,

l∏
i=1

(
u′

i

k∏
j=1

u
mi,j

i,j

))−1 ?=
l∏

i=1

Ai (5)

holds; if so, output valid; if not, output invalid.

Signature Form. Consider a sequential aggregate signature on l messages M
under l public keys pk. For each i let M [i] be (mi,1, . . . , mi,k) and let pk[i]
be (Ai, u′

i, ui,1, . . . , ui,k) with corresponding private key (αi, y′
i, yi,1, . . . , yi,k). A

well-formed sequential aggregate signature σ = (S1, S2) in this case has the form

S1 =
l∏

i=1

gαi ·
l∏

i=1

(
u′

i

k∏
j=1

u
mi,j

i,j

)r and S2 = gr .

472 S. Lu et al.

Additionally, we consider σ = (1, 1) to be a valid signature on an empty set of
signers. Notice that (S1, S2) is the product of Waters signatures all sharing the
same randomness r.

Even though in our description we did not allow a signer to sign twice in an
aggregate signature, a simple trick allows for this. Suppose a signer wishes to
add his signature on message M to a sequential aggregate signature that already
contains his signature on another message M ′. He need simply first remove his
signature on M ′ from the aggregate, essentially by dividing it out of S1, and
multiply in a signature on M ′ : M , which is a message that attests to both
M ′ and M .

Performance. Verification in our signatures is fast, taking approximately k/2
multiplications per signer in the aggregate, and only two pairings regardless of
how many signers are included. In contrast, the aggregate signatures of Boneh
et al. [8] take l + 1 pairings to verify when the aggregate includes l signers.

3.3 Proof of Security

Theorem 1. The WSA sequential aggregate signature scheme is (t, qC , qS, n, ε)-
unforgeable if the W signature scheme is (t′, q′, ε′)-unforgeable on G, where

t′ = t + O(qC + nqS + n) and q′ = qS and ε′ = ε .

Proof. Suppose that there exists an adversary A that succeeds with advantage
ε. We build a simulator B to play the forgeability game against the W signature
scheme. Given the challenge W-signature public key pk∗ = (A, u′, u1, . . . , uk),
simulator B interacts with A as follows.

Setup. Algorithm B runs A supplying it with the challenge key pk∗.
Certification Queries. Algorithm A wishes to certify some public key pk =

(A, u′, u1, . . . , uk), providing also its corresponding private key sk = (α, y′,
y1, . . . , yk). Algorithm B checks that the private key is indeed the correct
one and if so registers (pk, sk) in its list of certified keypairs.

Aggregate Signature Queries. Algorithm A requests a sequential aggregate
signature, under the challenge key, on a message M . In addition, it supplies
an aggregate-so-far σ′ on messages M under keys pk. The simulator first
checks that the signature σ′ verifies; that each key in pk has been certified;
that the challenge key does not appear in pk; and that |pk| < n. If any of
these conditions does not hold, B returns fail.
Otherwise, B queries its own signing oracle for key pk∗, obtaining a signature
σ on message M , which we view as a sequential aggregate on messages (M)
under keys (pk∗). The simulator now constructs the rest of the required
aggregate by adding to σ, for each signer pk[i], the appropriate signature
on message M [i] using algorithm ASig. It can do this because it knows – by
means of the certification procedure – the private key corresponding to each
public key in pk. The result is an aggregate signature σ′ on messages M‖M
under keys pk‖pk∗. This reconstruction method works because signatures

Sequential Aggregate Signatures and Multisignatures 473

are re-randomized after each aggregate signing operation and because our
signatures have no inherent verification order.

Output. Eventually, A halts, outputting a forgery, σ∗ = (S∗
1 , S∗

2) on mes-
sages M under keys pk. This forgery must verify as valid under AVf; each
key in pk (except the challenge key) must have been certified; and |pk| ≤ n
must hold. In addition, the forgery must be nontrivial: the challenge key pk∗

must appear in pk, wlog at index 1 (since signature verification in our scheme
has no inherent order), and the corresponding message M [1] must not have
been queried by A of its sequential aggregate signing oracle. If the adversary
was not successful we can quit and disregard the attempt.
Now, for each i, 1 ≤ i ≤ l = |pk| = |M |, parse pk[i] as (Ai, u

′
i, ui,1, . . . , ui,k)

and M [i] as (mi,1, . . . , mi,k) ∈ {0, 1}k. Note that we have pk∗ = (A1, u
′
1,

u1,1, . . . , u1,k). Furthermore, for each i, 2 ≤ i ≤ l, let (αi, y
′
i, yi,1, . . . , yi,k) be

the private key corresponding to pk[i]. Algorithm B computes

S1 ← S∗
1 ·

l∏
i=2

(
gαi · (S∗

2)
(
y′

i+
k
j=1 yi,jmi,j

))−1
and S2 ← S∗

2 .

We now have

e(S1, g) · e
(
S2, u′

1

∏k

j=1
u

m1,j

1,j

)−1

= e(S∗
1 , g) · e

(
S∗

2 , u′
1

∏k

j=1
u

m1,j

1,j

)−1

×
l∏

i=2

e(gαi , g)−1 ·
l∏

i=2

e
(
(S∗

2)
(
y′

i+
k
j=1 yi,jmi,j

)
, g

)−1

= e(S∗
1 , g) · e

(
S∗

2 , u′
1

∏k

j=1
u

m1,j

1,j

)−1

×
l∏

i=2

A−1
i ·

l∏
i=2

e
(
S∗

2 , u′
i

∏k

j=1
u

mi,j

i,j

)−1

= e(S∗
1 , g) ·

l∏
i=1

e
(
S∗

2 , u′
i

∏k

j=1
u

mi,j

i,j

)−1
·

l∏
i=2

A−1
i

=
l∏

i=1

Ai ·
l∏

i=2

A−1
i = A1 = A .

So (S1, S2) is a valid W signature on M∗ = M [1] = (m1,1, . . . , m1,k) under
key pk[1] = pk∗. The last line follows from the sequential aggregate verifi-
cation equation. Moreover, since A did not make an aggregate signing query
at M∗, B did not make a signing query at M∗, so σ = (S1, S2) is a nontrivial
W signature forgery. Algorithm B returns it and halts.

Algorithm B is successful whenever A is. Algorithm B makes as many signing
queries as A makes sequential aggregate signing queries. Algorithm B’s running

474 S. Lu et al.

time is that of A, plus the overhead in handling A’s queries, and computing
the final result. Each certification query can be handled in O(1) time; each
aggregate signing query can be handled in O(n) time; and the final result can
also be computed from A’s forgery in O(n) time.

4 Multisignatures

In a multisignature scheme, a single multisignature – the same size as one ordi-
nary signature – stands for l signatures on a message M . Multisignatures were
introduced by Itakura and Nakamura [17], and have been the subject of much
research [26, 25, 6]. The first multisignatures in which signatures could be com-
bined into a multisignature without interaction was proposed by Boldyreva [6],
based on BLS signatures [9]. Below, we present another non-interactive multisig-
nature scheme, based on the Waters signature, which is provably secure without
random oracles.

Security Model. Micali, Ohta, and Reyzin [22] gave the first formal treatment of
multisignatures. We prove security in a variant of the Micali-Ohta-Reyzin model
due to Boldyreva [6]. In this model, the adversary is given a single challenge
public key pk, and a signing oracle for that key. His goal is to output a forged
multisignature σ∗ on a message M∗ under keys pk1, . . . ,pkl. Of these keys, pk1
must be the challenge key pk. For the forgery to be nontrivial, the adversary must
not have queried the signing oracle at M∗. The adversary is allowed to choose
the remaining keys, but must prove knowledge of the private keys corresponding
to them. For simplicity, Boldyreva handles this by having the adversary hand
over the private keys; in a more complicated proof of knowledge, the keys could
be extracted by rewinding, with the same result.

4.1 Our Scheme

We describe the multisignature obtained from the Waters signature. In this
scheme, all users share the same random generators u′, u1, . . . , uk, which are
included in the system parameters. Our scheme is a five-tuple of algorithms
WM = (Kg, Sig, Vf, Comb, MVf), which behave as follows.

WM.Kg, WM.Sig, WM.Vf. Same as W.Kg, W.Sig, and W.Vf, respectively.
WM.Comb({pki, σi}l

i=1, M). For each user in the multisignature the algorithm
takes as input a public key pki and a signature σi. All these signatures are
on a single message M . For each i, parse user i’s public key pki as Ai ∈ GT

and her signature σi as (S(i)
1 , S

(i)
2) ∈ G2; parse the message M as a bitstring

(m1, . . . , mk) ∈ {0, 1}k. Verify each signature using Vf; if any is invalid,
output fail and halt. Otherwise, compute

S1 ←
l∏

i=1

S
(i)
1 and S2 ←

l∏
i=1

S
(i)
2 . (6)

The multisignature is σ = (S1, S2); output it and halt.

Sequential Aggregate Signatures and Multisignatures 475

WM.MVf({pki}l
i=1, M, σ). For each user in the multisignature, the algorithm

takes a public key pki. The algorithm also takes a purported multisignature σ
on a message M . Parse user i’s public key pki as Ai ∈ GT, the message M as a
bitstring (m1, . . . , mk) ∈ {0, 1}k, and the multisignature σ as (S1, S2) ∈ G2.
Verify that

e(S1, g) · e(S2, u
′

k∏
i=1

umi

i)−1 ?=
l∏

i=1

A(i) (7)

holds; if so, output valid; if not, output invalid.

It is clear that if all signatures verify individually, the multisignature formed
by their product also verifies according to (7). Note that we have

(S1, S2) =
(
g

l
i=1 α(i) · (u′∏k

j=1
u

mj

j

) l
i=1 r(i)

, g
l
i=1 r(i)

)
,

where r(i) is the randomness used by User i to generate her signature.

Proof of Security. The WM scheme is unforgeable if W signatures are unforge-
able. The proof is given in Appendix A.

5 Verifiably Encrypted Signatures

A verifiably encrypted signature on some message attests to two facts:

– that the signer has produced an ordinary signature on that message; and
– that the ordinary signature can be recovered by the third party under whose

key the signature is encrypted.

Such a primitive is useful for contract signing, in a protocol called optimistic
fair exchange [1, 2]. Suppose both Alice and Bob wish to sign some contract.
Neither is willing to produce a signature without being sure that the other will.
But Alice can send Bob a verifiably encrypted signature on the contract. Bob
can now send Alice his signature, knowing that if Alice does not respond with
hers he can take Alice’s verifiably encrypted signature and the transcript of his
interaction with Alice to the third party – called the adjudicator – who will
reveal Alice’s signature.

Boneh et al. [8] introduced verifiably encrypted signatures, gave a security
model for them, and constructed a scheme satisfying the definitions, based on
the BLS short signature [9].

We describe the verifiably encrypted signature scheme obtained from the Wa-
ters signature scheme. Unlike the scheme of Boneh et al., ours is secure without
random oracles.

Security Model. Boneh et al. specify two properties (besides correctness) that a
verifiably encrypted signature scheme must satisfy: unforgeability and opacity.
Both are defined in games. In each, the adversary is given a signer’s public key pk

476 S. Lu et al.

and an adjudicator’s public key apk. He is allowed to make verifiably encrypted
signing queries of the form ESig(sk, apk, ·) and adjudication queries of the form
Adj(ask, pk, ·, ·). In the unforgeability game, his goal is to output (M∗, η∗) such
that he didn’t query his signing oracle at M∗; in the opacity game his goal is
to output (M∗, σ∗) such that he didn’t query his adjudication oracle at M∗.
An adversary can thus win the opacity game either by creating a forgery for
the underlying signature scheme directly or by recovering the ordinary signature
from an encrypted signature without the adjudicator’s help.

5.1 Our Scheme

Our scheme is a seven-tuple of algorithms WVES = (Kg, Sig, Vf, AKg, ESig, EVf,
Adj) that behave as follows.

WVES.Kg, WVES.Sig, WVES.Vf. These are the same as W.Kg, W.Sig, and
W.Vf, respectively.

WVES.AKg. Pick β
R← Zp, and set v ← gβ . The adjudicator’s public key is

apk = v; the adjudicator’s private key is ask = β.
WVES.ESig(sk, apk, M). Parse the user’s private key sk as α ∈ Zp and the ad-

judicator’s public key apk as v ∈ G. To sign the message M = (m1, . . . , mk),
compute a signature (S1, S2)

R← Sig(sk, M). Pick a random s
R← Zp, and

compute

K1 ← S1 · vs and K2 ← S2 and K3 ← gs .

The verifiably encrypted signature η is the tuple (K1, K2, K3).
WVES.EVf(pk, apk, M, η). Parse the user’s public key pk as A ∈ GT, the adju-

dicator’s public key apk as v ∈ G, and the verifiably encrypted signature η
as (K1, K2, K3) ∈ G3. Accept if the following equation holds:

e(K1, g) · e(K2, u
′

k∏
i=1

umi

i)−1 · e(K3, v)−1 ?= A , (8)

where M = (m1, . . . , mk).
WVES.Adj(ask, pk, M, η). Parse the adjudicator’s private key ask as β ∈ Zp.

Parse the user’s public key pk as A ∈ GT, and check that it has been certified.
Parse the message M as (m1, . . . , mk) ∈ {0, 1}k. Verify (using EVf) that the
verifiably encrypted signature η is valid, and parse it as (K1, K2, K3) ∈ G3.
Compute

S1 ← K1 · K−β
3 and S2 ← K2 ;

re-randomize (S1, S2) by choosing s
R← Zp and computing

S′
1 ← S1 · (u′

k∏
i=1

umi

i

)s and S′
2 ← S2 · gs ;

and output the signature (S′
1, S

′
2).

Sequential Aggregate Signatures and Multisignatures 477

It is easy to see that this scheme is valid, since if all parties are honest we
have, for a verifiably encrypted signature (K1, K2, K3),

e(K1, g) · e(K2, u
′

k∏
i=1

umi

i)−1 · e(K3, v)−1

=
(
e(S1, g) · e(vs, g)

) · e(S2, u
′

k∏
i=1

umi

i)−1 · e(gs, v)−1

= e(S1, g) · e(S2, u
′

k∏
i=1

umi

i)−1 = A ,

as required; and if (K1, K2, K3) is a valid verifiably encrypted signature then

e(S1, g) · e(S2, u
′

k∏
i=1

umi

i)−1 =
(
e(K1, g) · e(K−β

3 , g)
) · e(K2, u

′
k∏

i=1

umi

i)−1

= e(K1, g) · e(K2, u
′

k∏
i=1

umi

i)−1 · e(K3, v)−1 = A ,

so the adjudicated signature is indeed a valid one.

Proofs of Security. The WVES scheme is unforgeable if W signatures are un-
forgeable, and opaque if CDH is hard on G. The proofs are given in Appendix B.

5.2 VES from General Assumptions

Recent work has shown that group signatures [4] and ring signatures [5] can be
built from general assumptions using Non-Interactive Zero Knowledge (NIZK)
proofs. We note that verifiably encrypted signatures can also be realized from
general assumptions. Roughly, the signer signs a message, encrypts the signature
to the adjudicator and then attaches a NIZK proof that this was performed
correctly.

6 Comparison to Previous Work

In this section, we compare the schemes we have presented to previous schemes in
the literature. For the comparison, we instantiate pairing-based schemes using
Barreto-Naehrig curves [3] with 160-bit point representation. Note that BLS-
based constructions must compute, for signing and verification, a hash function
onto G. This is an expensive operation [9, Sect. 3.2].

Sequential Aggregate Signatures. We compare our sequential aggregate signature
scheme to the aggregate scheme of Boneh et al. [8] (BGLS) and to the sequential
aggregate signature scheme of Lysyanskaya et al. [20] (LMRS).

478 S. Lu et al.

Table 1. Comparison of aggregate signature schemes. Signatures are by l signers; k is
the output length of a collision resistant hash function; “R.O.” denotes if the security
proof uses random oracles.

Scheme R.O. Sequential Key Model Size Verification Signing
BGLS YES NO Chosen 160 bits l + 1 pairings 1 exp.
LMRS-1 YES YES Chosen 1024 bits 2l exp. verify + 1 exp.
LMRS-2 YES YES Registered 1024 bits 4l mult. verify + 1 exp.
Ours NO YES Registered 320 bits 2 pairings, lk/2 mult. verify + 1 exp.

We instantiate the LMRS scheme using the RSA-based permutation family
with common domain devised by Hayashi, Okamoto, and Tanaka [16]. With this
permutation family LMRS signatures do not grow by 1 bit with each signature,
as is the case with the RSA-based instantiation given by Lysyanskaya et al. [20];
but evaluating the permutation requires two applications of the underlying RSA
function. Lysyanskaya et al. give two variants of their scheme. One places con-
straints on the format of the RSA keys, thereby avoiding key certification; we
call this variant LMRS-1. The other uses ordinary RSA keys and can have pub-
lic exponent e = 3 for fast verification, but requires key certification, like our
scheme; we call this variant LMRS-2.

We present the comparisons in Table 1. The size column gives signature length
at the 1024-bit security level. The Verification and Signing columns give the
computational costs of those operations; l is the number of signatures in an
aggregate, and k is the output length of a collision-resistant hash function.

One drawback of our scheme is that a user’s public key will be quite large.
If we use a 160-bit collision resistant hash function, then keys will be approxi-
mately 160 group elements and take around 10KB to store. While it is desirable
to achieve smaller public keys, this will be acceptable in many settings such as
SBGP where achieving the signature size is a much more important consider-
ation than the public key size. Additionally, Naccache [23] and Chatterjee and
Sarkar [11] independently proposed ways to achieve shorter public keys in the
Waters signature scheme. Using these methods we can also achieve considerably
shorter public keys.

Multisignatures. We compare our multisignature scheme to the Boldyreva mul-
tisignature [6]. We present the comparisons in Table 2. The size column gives
signature length at the 1024-bit security level. The Verification and Signing
columns give the computational costs of those operations; l is the number of
signatures in a multisignature, and k is the output length of a collision-resistant
hash function.

Verifiably Encrypted Signatures. We compare our verifiably encrypted signa-
ture scheme to that of Boneh et al. [8] (BGLS). We present the comparisons in
Table 3. The size column gives signature length at the 1024-bit security level.
The Verification and Generation columns give the computational costs of those
operations; k is the output length of a collision-resistant hash function.

Sequential Aggregate Signatures and Multisignatures 479

Table 2. Comparison of multisignature schemes. Multisignatures are by l signers; k is
the output length of a collision resistant hash function; “R.O.” denotes if the security
proof uses random oracles.

Scheme R.O. Key Model Size Verification Signing
Boldyreva YES Registered 160 bits 2 pairings 1 exp.
Ours NO Registered 320 bits 2 pairings, k/2 mult. 1 exp.

Table 3. Comparison of verifiably encrypted signature schemes. We let k be the output
length of a collision resistant hash function. “R.O.” specifies whether the security proof
uses random oracles.

Scheme R.O. Key Model Size Verification Generation
BGLS YES Registered 320 bits 3 pairings 3 exp.
Ours NO Registered 480 bits 3 pairings, k/2 mult. 4 exp.

7 Conclusions and Open Problems

In this paper we gave the first aggregate signature scheme which is provably
secure without random oracles; the first multisignature scheme which is prov-
ably secure without random oracles; and the first verifiably encrypted signature
scheme which is provably secure without random oracles. All our constructions
derive from the recent signature scheme due to Waters [28]. All our constructions
are quite practical.

Signatures in our aggregate signature scheme are sequentially constructed, but
knowledge of the order in which messages are signed is not necessary for verifica-
tion. Additionally, our scheme gives shorter signatures than in the LMRS sequen-
tial aggregate signature scheme [20] and has a more efficient verification algorithm
than the BGLS aggregate signature scheme [8]. That this gives some interesting
tradeoffs for practical applications such as secure routing and proxy signatures.

Some interesting problems remain open for random-oracle–free aggregate sig-
natures:

1. To find a scheme which supports full aggregation, in which aggregate signa-
ture do not need to be sequentially constructed. While many applications
only require sequential aggregation, having a more general capability is de-
sirable.

2. To find a sequential aggregate signature scheme provably secure in the cho-
sen-key model.

3. To find a sequential aggregate signature scheme with shorter user keys. The
size of public keys in our system reflects the size of keys in the underly-
ing Waters signature scheme. Naccache [23] and Chatterjee and Sarkar [11]
have proposed ways to shorten the public keys of the Waters IBE/signature
scheme by trading off parameter size with tightness in the security reduction.
It would be better to have a solution in which the public key is just a few
group elements.

480 S. Lu et al.

The last two are particularly important for certificate chain compression, pro-
posed by Boneh et al. [8] as an application for aggregate signatures. If keys need
to be registered with an authority then a chaining application is impractical, and
having large public keys negates any benefit from reducing the signature size in
a certificate chain, since the keys must be included in the certificates.

References

[1] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures. IEEE J. Selected Areas in Comm., 18(4):593–610, Apr. 2000.

[2] F. Bao, R. Deng, and W. Mao. Efficient and practical fair exchange protocols with
offline TTP. In P. Karger and L. Gong, editors, Proceedings of IEEE Security &
Privacy, pages 77–85, May 1998.

[3] P. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In
B. Preneel and S. Tavares, editors, Proceedings of SAC 2005, volume 3897 of
LNCS, pages 319–31. Springer-Verlag, 2006.

[4] M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general
assumptions. In E. Biham, editor, Proceedings of Eurocrypt 2003, volume 2656 of
LNCS, pages 614–29. Springer-Verlag, May 2003.

[5] A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and
constructions without random oracles. In S. Halevi and T. Rabin, editors, Pro-
ceedings of TCC 2006, volume 3876 of LNCS, pages 60–79. Springer-Verlag, Mar.
2006.

[6] A. Boldyreva. Threshold signature, multisignature and blind signature schemes
based on the gap-Diffie-Hellman-group signature scheme. In Y. Desmedt, editor,
Proceedings of PKC 2003, volume 2567 of LNCS, pages 31–46. Springer-Verlag,
Jan. 2003.

[7] A. Boldyreva, A. Palacio, and B. Warinschi. Secure proxy signature schemes for
delegation of signing rights. Cryptology ePrint Archive, Report 2003/096, 2003.
http://eprint.iacr.org/.

[8] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-
crypted signatures from bilinear maps. In E. Biham, editor, Proceedings of Euro-
crypt 2003, volume 2656 of LNCS, pages 416–32. Springer-Verlag, May 2003.

[9] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing.
J. Cryptology, 17(4):297–319, Sept. 2004. Extended abstract in Proceedings of
Asiacrypt 2001.

[10] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revis-
ited. J. ACM, 51(4):557–94, July 2004.

[11] S. Chatterjee and P. Sarkar. Trading time for space: Towards an efficient IBE
scheme with short(er) public parameters in the standard model. In D. Won and
S. Kim, editors, Proceedings of ICISC 2005, LNCS. Springer-Verlag, Dec. 2005.
To appear.

[12] J.-S. Coron and D. Naccache. Boneh et al.’s k-element aggregate extraction as-
sumption is equivalent to the Diffie-Hellman assumption. In C. S. Laih, editor,
Proceedings of Asiacrypt 2003, volume 2894 of LNCS, pages 392–7. Springer-
Verlag, Dec. 2003.

[13] S. Galbraith. Pairings. In I. F. Blake, G. Seroussi, and N. Smart, editors, Advances
in Elliptic Curve Cryptography, volume 317 of London Mathematical Society Lec-
ture Notes, chapter IX, pages 183–213. Cambridge University Press, 2005.

Sequential Aggregate Signatures and Multisignatures 481

[14] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Computing, 17(2):281–308, 1988.

[15] J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero knowledge
for NP. In S. Vaudenay, editor, Proceedings of Eurocrypt 2006, LNCS. Springer-
Verlag, May 2006. This volume.

[16] R. Hayashi, T. Okamoto, and K. Tanaka. An RSA family of trap-door permuta-
tions with a common domain and its applications. In F. Bao, R. H. Deng, and
J. Zhou, editors, Proceedings of PKC 2004, volume 2947 of LNCS, pages 291–304.
Springer-Verlag, Mar. 2004.

[17] K. Itakura and K. Nakamura. A public-key cryptosystem suitable for digital
multisignatures. NEC J. Res. & Dev., 71:1–8, Oct. 1983.

[18] S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol (Secure-BGP).
IEEE J. Selected Areas in Comm., 18(4):582–92, April 2000.

[19] N. Koblitz and A. Menezes. Pairing-based cryptography at high security levels.
In N. Smart, editor, Proceedings of Cryptography and Coding 2005, volume 3796
of LNCS, pages 13–36. Springer-Verlag, Dec. 2005.

[20] A. Lysyanskaya, S. Micali, L. Reyzin, and H. Shacham. Sequential aggregate
signatures from trapdoor permutations. In C. Cachin and J. Camenisch, editors,
Proceedings of Eurocrypt 2004, volume 3027 of LNCS, pages 74–90. Springer-
Verlag, May 2004.

[21] M. Mambo, K. Usuda, and E. Okamoto. Proxy signatures for delegating signing
operation. In L. Gong and J. Stearn, editors, Proceedings of CCS 1996, pages
48–57. ACM Press, Mar. 1996.

[22] S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures (ex-
tended abstract). In P. Samarati, editor, Proceedings of CCS 2001, pages 245–54.
ACM Press, Nov. 2001.

[23] D. Naccache. Secure and practical identity-based encryption. Cryptology ePrint
Archive, Report 2005/369, 2005. http://eprint.iacr.org/.

[24] D. Nicol, S. Smith, and M. Zhao. Evaluation of efficient security for BGP route
announcements using parallel simulation. Simulation Modelling Practice and The-
ory, 12:187–216, 2004.

[25] K. Ohta and T. Okamoto. Multisignature schemes secure against active insider
attacks. IEICE Trans. Fundamentals, E82-A(1):21–31, 1999.

[26] T. Okamoto. A digital multisignature scheme using bijective public-key cryp-
tosystems. ACM Trans. Computer Systems, 6(4):432–41, November 1988.

[27] K. Paterson. Cryptography from pairings. In I. F. Blake, G. Seroussi, and
N. Smart, editors, Advances in Elliptic Curve Cryptography, volume 317 of Lon-
don Mathematical Society Lecture Notes, chapter X, pages 215–51. Cambridge
University Press, 2005.

[28] B. Waters. Efficient identity-based encryption without random oracles. In
R. Cramer, editor, Proceedings of Eurocrypt 2005, volume 3494 of LNCS, pages
114–27. Springer-Verlag, May 2005.

A WM Proof of Security

Theorem 2. The WM multisignature scheme is (t, q, ε)-unforgeable if the W
signature scheme is (t′, q′, ε′)-unforgeable, where

t′ = t + O(q) and q′ = q and ε′ = ε .

482 S. Lu et al.

Proof. Suppose A is an adversary that can forge multisignatures, and (t, q, ε)-
breaks the WM scheme. We show how to construct an algorithm B that (t′, q, ε)-
breaks the W scheme. Algorithm B is given a W public key A = e(g, g)α. It
interacts with A as follows.

Setup. Simulator B invokes A, providing to it the public key A.
Signature queries. Algorithm A requests a signature on some message M

under the challenge key A. Algorithm B requests a signature on M in turn
from its own signing oracle, and returns the result to the adversary.

Output. Finally, A halts, having output a signature (S∗
1 , S∗

2) on some mes-
sage M∗, along with public keys A(1), . . . , A(l) for some l, where A(1) equals
A, the challenge key. It must not previously have requested a signature
on M∗. In addition, it outputs the private keys α(2), . . . , α(l) for all keys
except the challenge key. Algorithm B sets S ← S∗

1/
∏l

i=2 gα(i)
. Then we

have

e(S, g) · e(S2, u
′

k∏
i=1

umi

i)−1 = e(S1, g) · e(S2, u
′

k∏
i=1

umi

i)−1 ·
l∏

i=2

e(g, g)−α(i)

=
l∏

i=1

A(i) ·
l∏

i=2

A−(i) = A(1) = A ,

so (S, S2) is a valid W signature on M∗ under the challenge key A. Since A
did not make a signing query to the challenger at M∗, neither did B make
a signing query to its own signing oracle at M∗, and the forgery is thus
nontrivial. Algorithm B outputs (S, S2) and halts.

Thus B succeeds whenever A does. Algorithm B makes exactly as many sign-
ing queries as A does. Its running time is the same as A’s, plus the time required
for setup and output – both O(1) – and to handle A’s signing queries – O(1) for
each of at most q queries.

B WVES Proofs of Security

B.1 Unforgeability

Theorem 3. The WVES verifiably encrypted signature scheme is (t, qS, qA, ε)-
unforgeable if the W signature scheme is (t′, q′, ε′)-unforgeable, where

t′ = t + O(qS + qA) and q′ = qS and ε′ = ε .

Proof. We show how to turn a verifiably-encrypted signature forger A into a
forger B for the underlying Waters signature scheme.

Algorithm B is given a Waters signature public key A = e(g, g)α. It picks
β

R← Zp, sets v ← gβ, and provides the adversary A with A and v.

Sequential Aggregate Signatures and Multisignatures 483

When A requests a verifiably encrypted signature on some message M , the
challenger B requests a signature on M from its own signing oracle, obtaining a
signature (S1, S2). It picks s

R← Zp and computes

K1 ← S1 · vs and K2 ← S2 and K3 ← gs .

The tuple (K1, K2, K3) is a valid verifiably encrypted signature on M . Algo-
rithm B provides A with it. (Here B is simply evaluating ESig, except that it
uses its signing oracle instead of evaluating Sig directly.)

When algorithm A requests adjudication of a verifiably encrypted signa-
ture (K1, K2, K3) on some message M under the challenge key A, B responds
with Adj

(
β, A, M, (K1, K2, K3)

)
. Note that B knows the adjudicator’s private

key β.
Finally, A outputs a forged verifiably-encrypted signature (K∗

1 , K∗
2 , K∗

3) on
some message M∗ = (m∗

1, . . . , m
∗
k). Algorithm A must never have made a veri-

fiably encrypted signing query at M∗.
The challenger B computes

S∗
1 ← K∗

1 · (K∗
3)−β and S∗

2 ← K∗
2 .

Then we have

e(S∗
1 , g) · e(S∗

2 , u′
k∏

i=1

u
m∗

i
i

)−1

=
[
e(K∗

1 , g) · e(K∗
2 , u′

k∏
i=1

u
m∗

i
i

)−1
]
· e((K∗

3)−β , g
)

= e(K∗
1 , g) · e(K∗

2 , u′
k∏

i=1

u
m∗

i

i

)−1 · e(K∗
3 , v)−1 = A ,

and (S∗
1 , S∗

2) is therefore a valid Waters signature on M∗. The last equality
follows from equation (8). Because A did not make a verifiably encrypted signing
query at M∗, neither did B make a signing query at M∗, and the forgery is thus
nontrivial. The challenger B outputs (S∗

1 , S∗
2) and halts.

Algorithm B thus succeeds whenever A does. Its running time overhead is
O(1) for each of A’s verifiably encrypted signing and adjudication queries, and
for computing the final output.

B.2 Opacity

For convenience, we prove opacity by reduction from the aggregate extraction
assumption: given (gα, gβ, gγ , gδ, gαγ+βδ), computing gαγ is hard. Coron and
Naccache [12] showed that this assumption, introduced by Boneh et al. [8], is
equivalent to CDH.

484 S. Lu et al.

Theorem 4 (Coron–Naccache [12]). The aggregate extraction and Compu-
tational Diffie-Hellman problems are Karp reducible to each other with O(1)
computation.2

Theorem 5. The WVES verifiably encrypted signature scheme is (t, qS, qA, ε)-
opaque if aggregate extraction is (t′, ε′)-hard on G, where

t′ = t + O(qS + qA) and q′ = qS and ε′ = 4kqAε .

Proof. Given an algorithm A that breaks the opacity of the scheme, we show how
to construct an algorithm B that breaks the aggregate extraction assumption.

The challenger B is given values gα, gβ, gγ , and gδ, along with gαγ+βδ; its
goal is to produce gαγ . It sets v ← gβ , g1 ← gα, and g2 ← gγ . It computes
A ← e(g1, g2) = e(g, g)αγ .

Let λ = 2qA. Algorithm B picks κ
R← {0, . . . , k}, x′, x1, . . . , xk

R← Zλ =
{0, . . . , λ − 1} and y′, y1, . . . , yk

R← Zp and sets

u′ ← gx′−κλ
2 gy′

and ui ← gxi

2 gyi for i = 1, . . . , k .

It then interacts with A as follows.

Setup. Algorithm B gives to A the system parameters (g, u′, u1, . . . uk), the
signer’s public key A, and the adjudicator’s public key v. Note that the
private signing key is αγ.

Verifiably Encrypted Signing Queries. A requests a verifiably-encrypted
signature on M = (m1, . . . , mk) ∈ {0, 1}k under challenge key A and ad-
judicator key v. Define F = −κλ+x′ +

∑k
i=1 ximi and J = y′ +

∑k
i=1 yimi.

If F �= 0 mod p algorithm B proceeds as follows. It picks r
R← Zp and sets

S1 ← g
−J/F
1

(
u′

k∏
i=1

umi

i

)r
and S2 ← g

−1/F
1 gr .

This is a valid W signature with randomness r̃ = r − α/F : observing that
u′∏k

i=1 umi

i = gF
2 gJ , we see that

S1 = g
−J/F
1

(
u′

k∏
i=1

umi

i

)r = gα
2 (gF

2 gJ)−α/F (gF
2 gJ)r = gαγ

(
u′

k∏
i=1

umi

i

)r̃
,

where for the second equality we have multiplied and divided by gα
2 . Algo-

rithm B then encrypts (S1, S2) by choosing s
R← Zp and setting

K1 ← S1 · vs and K2 ← S2 and K3 ← gs .

If F = 0, however, B picks r, s
R← Zp and sets

2 Strictly speaking, the amount of work is poly-logarithmic in the security parameter
since the group element representations grow. The number of algebraic operations
is constant.

Sequential Aggregate Signatures and Multisignatures 485

K1 ← (gαγ+γδ)·(gγ)s ·(u′
k∏

i=1

umi

i

)r and K2 ← gr and K3 ← (gδ)·gs .

This is a W signature with randomness r, encrypted with randomness δ + s.
In either case, B returns to A the verifiably encrypted signature (K1, K2, K3).

Adjudication Queries. Suppose A requests adjudication on (K1, K2, K3) for
message M = (m1, . . . , mk). Algorithm B first verifies that (K1, K2, K3) is
valid and rejects it otherwise. Define F = −κλ + x′ +

∑k
i=1 ximi and J =

y′ +
∑k

i=1 yimi as before. If F = 0 mod p, B declares failure and halts.

Otherwise, it picks r
R← Zp and computes

S1 ← g
−J/F
1

(
u′

k∏
i=1

umi

i

)r and S2 ← g
−1/F
1 gr

as above, returning (S1, S2) to A.
(Note that A must previously have made a verifiably encrypted signing query
at M , since otherwise we could use it to break the unforgeability of WVES.)

Output. Finally, algorithm A outputs a signature (S∗
1 , S∗

2) on a message M∗ =
(m∗

1, . . . , m
∗
k); it must not have queried its adjudication oracle at M∗. Define

F ∗ = −κλ + x′ +
∑k

i=1 xim
∗
i and J∗ = y′ +

∑k
i=1 yim

∗
i . If F ∗ �= 0 mod p, B

declares failure and exits. Otherwise, we have u′∏k
i=1 u

m∗
i

i = gJ∗
, so that

e(g1, g2) = A = e(S∗
1 , g) · e

(
S∗

2 , u′
k∏

i=1

u
m∗

i

i

)−1

= e(S∗
1 , g) · e(S∗

2 , gJ∗)−1 = e
(
S∗

1(S∗
2)−J∗

, g
)

,

and S∗
1 (S∗

2)−J∗
equals gαγ , which is the solution to the aggregate extraction

challenge; B outputs it and halts.

The probability that B doesn’t abort in any adjudication query is at least
1− 1/λ; since there are at most qA = λ/2 such queries, B manages to answer all
queries without aborting with probability at least 1/2. Having done so, B then
receives a forgery such that F ∗ = 0 mod p with probability at least 1/(κλ) ≥
1/(2kqA). Thus B succeeds with probability at least ε/(4kqA). (For more detailed
probability analysis, see Waters’ original proof [28].) Algorithm B’s run-time
overhead is O(1) to answer each of A’s queries and to compute the final output.

Security of the Waters Signature. The reduction above did not require that
A had requested a verifiably encrypted signature at M∗. It is easy to convert
an algorithm A′ that forges the underlying W signature to a WVES opacity
breaker of this sort: simulate a W signing oracle by a call to the verifiably
encrypted signing oracle followed by a call to the adjudication oracle. Combining
this insight with Theorems 5 and 4 immediately gives the following corollary:

Corollary 1 (Waters [28]). The Waters signature scheme is (t, q, ε)-unforge-
able if Computational Diffie-Hellman is (t + O(q), 4kqε)-hard on G. Here q is
the number of signing queries.

Our Data, Ourselves: Privacy Via Distributed
Noise Generation

Cynthia Dwork1, Krishnaram Kenthapadi2,4,5, Frank McSherry1,
Ilya Mironov1, and Moni Naor3,4,6

1 Microsoft Research, Silicon Valley Campus
{dwork, mcsherry, mironov}@microsoft.com

2 Stanford University
kngk@cs.stanford.edu

3 Weizmann Institute of Science
moni.naor@weizmann.ac.il

Abstract. In this work we provide efficient distributed protocols for gen-
erating shares of random noise, secure against malicious participants. The
purpose of the noise generation is to create a distributed implementa-
tion of the privacy-preserving statistical databases described in recent
papers [14, 4, 13]. In these databases, privacy is obtained by perturbing
the true answer to a database query by the addition of a small amount of
Gaussian or exponentially distributed random noise. The computational
power of even a simple form of these databases, when the query is just of the
form i f(di), that is, the sum over all rows i in the database of a function
f applied to the data in row i, has been demonstrated in [4]. A distributed
implementation eliminates the need for a trusted database administrator.

The results for noise generation are of independent interest. The
generation of Gaussian noise introduces a technique for distributing
shares of many unbiased coins with fewer executions of verifiable secret
sharing than would be needed using previous approaches (reduced by
a factor of n). The generation of exponentially distributed noise uses
two shallow circuits: one for generating many arbitrarily but identically
biased coins at an amortized cost of two unbiased random bits apiece,
independent of the bias, and the other to combine bits of appropriate
biases to obtain an exponential distribution.

1 Introduction

A number of recent papers in the cryptography and database communi-
ties have addressed the problem of statistical disclosure control – revealing
4 Part of the work was done in Microsoft Research, Silicon Valley Campus.
5 Supported in part by NSF Grant ITR-0331640. This work was also supported

in part by TRUST (The Team for Research in Ubiquitous Secure Technology),
which receives support from the National Science Foundation (NSF award number
CCF-0424422) and the following organizations: Cisco, ESCHER, HP, IBM, Intel,
Microsoft, ORNL, Qualcomm, Pirelli, Sun and Symantec.

6 Incumbent of the Judith Kleeman Professorial Chair. Research supported in part by
a grant from the Israel Science Foundation.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 486–503, 2006.
c© International Association for Cryptologic Research 2006

Our Data, Ourselves: Privacy Via Distributed Noise Generation 487

accurate statistics about a population while preserving the privacy of individuals
[1, 2, 15, 11, 14, 5, 6, 4, 13]. Roughly speaking, there are two computational mod-
els; in a non-interactive solution the data are somehow sanitized and a “safe”
version of the database is released (this may include histograms, summaries,
and so on), while in an interactive solution the user queries the database
through a privacy mechanism, which may alter the query or the response in
order to ensure privacy. With this nomenclature in mind the positive results
in the literature fall into three broad categories: non-interactive with trusted
server, non-interactive with untrusted server – specifically, via randomized
response, in which a data holder alters her data with some probability before
sending it to the server – and interactive with trusted server. The current
paper provides a distributed interactive solution, replacing the trusted server
with the assumption that strictly fewer than one third of the participants are
faulty (we handle Byzantine faults). Under many circumstances the results
obtained are of provably better quality (accuracy and conciseness, i.e., number
of samples needed for correct statistics to be computed) than is possible
for randomized response or other non-interactive solutions [13]. Our principal
technical contribution is in the cooperative generation of shares of noise sampled
from in one case the Binomial distribution (as an approximation for the
Gaussian) and in the second case the Poisson distribution (as an approximation
for the exponential).

Consider a database that is a collection of rows; for example, a row might
be a hospital record for an individual. A query is a function f mapping rows
to the interval [0, 1]. The true answer to the query is the value obtained by
applying f to each row and summing the results. By responding with an
appropriately perturbed version of the true answer, privacy can be guaranteed.
The computational power of this provably private “noisy sums” primitive is
demonstrated in Blum et al. [4], where it was shown how to carry out accurate
and privacy-preserving variants of many standard data mining algorithms, such
as k-means clustering, principal component analysis, singular value decomposi-
tion, the perceptron algorithm, and anything learnable in the statistical queries
(STAT) learning model1.

Although the powerful techniques of secure function evaluation [25, 17] may
be used to emulate any privacy mechanism, generic computations can be
expensive. The current work is inspired by the combination of the simplicity
of securely computing sums and the power of the noisy sums. We provide
efficient methods allowing the parties holding their own data to act autonomously
and without a central trusted center, while simultaneously preventing malicious
parties from interfering with the utility of the data.

The approach to decentralization is really very simple. For ease of exposition
we describe the protocol assuming that every data holder participates in every
query and that the functions f are predicates. We discuss relaxations of these
assumptions in Section 5.

1 This was extended in [13] to handle functions f that operate on the database as a
whole, rather than on individual rows of the database.

488 C. Dwork et al.

Structure of ODO (Our Data, Ourselves) Protocol

1. Share Summands: On query f , the holder of di, the data in row i of the
database, computes f(di) and shares out this value using a non-malleable
verifiable secret sharing scheme (see Section 2), i = 1, . . . , n. The bits are
represented as 0/1 values in GF(q), for a large prime q. We denote this set
{0, 1}GF(q) to make the choice of field clear.

2. Verify Values: Cooperatively verify that the shared values are legitimate
(that is, in {0, 1}GF(q), when f is a predicate).

3. Generate Noise Shares: Cooperatively generate shares of appropriately
distributed random noise.

4. Sum All Shares: Each participant adds together all the shares that it
holds, obtaining a share of the noisy sum

∑
i f(di) + noise. All arithmetic

is in GF(q).
5. Reconstruct: Cooperatively reconstruct the noisy sum using the recon-

struction technique of the verifiable secret sharing scheme.

Our main technical work is in Step 3. We consider two types of noise, Gaussian
and scaled symmetric exponential. In the latter distribution the probability of
being at distance |x| from the mean is proportional to exp(−|x|/R), the scale R
determining how “flat” the distribution will be. In our case the mean will always
be 0. Naturally, we must approximate these distributions using finite-precision
arithmetic. The Gaussian and exponential distributions will be approximated,
respectively, by the Binomial and Poisson distributions.

The remainder of this paper is organized as follows. In Section 2 we review
those elements from the literature necessary for our work, including definitions
of randomness extractors and of privacy. In Sections 3 and 4 we discuss
implementations of Step 3 for Gaussian and Exponential noise, respectively.
Finally, various generalizations of our results are mentioned in Section 5.

2 Cryptographic and Other Tools

Model of Computation. We assume the standard synchronous model of
computation in which n processors communicate by sending messages via point-
to-point channels and up to t ≤ �n−1

3 � may fail in an arbitrary, Byzantine,
adaptive fashion. If the channels are secure, then the adversary may be
computationally unbounded. However, if the secure channels are obtained by
encryption then we assume the adversary is restricted to probabilistic polynomial
time computations.

We will refer to several well-known primitive building blocks for constructing
distributed protocols: Byzantine Agreement [20], Distributed Coin Flipping [22],
Verifiable Secret Sharing (VSS) [8], Non-Malleable VSS, and Secure Function
Evaluation (SFE) [18].

A VSS scheme allows any processor distribute shares of a secret, which can
be verified for consistency. If the shares verify, the honest processors can always
reconstruct the secret regardless of the adversary’s behavior. Moreover, the faulty

Our Data, Ourselves: Privacy Via Distributed Noise Generation 489

processors by themselves cannot learn any information about the secret. A non-
malleable VSS scheme ensures that the values shared by a non-faulty processor
are completely independent of the values shared by the other processors; even
exact copying is prevented.

Throughout the paper we will use the following terminology. Values that have
been shared and verified, but not yet reconstructed, are said to be in shares.
Values that are publicly known are said to be public.

A randomness extractor [21] is a method of converting a non-uniform input
distribution into a near-uniform distribution on a smaller set. In general, an
extractor is a randomized algorithm, which additionally requires a perfect
source of randomness, called the seed. Provided that the input distribution has
sufficiently high min-entropy, a good extractor takes a short seed and outputs a
distribution that is statistically close to the uniform. Formally,

Definition 1. Letting the min-entropy of a distribution D on X be denoted
H∞(D) = − log maxx∈X D(x), a function F : X × Y �→ {0, 1}n is a (δ, ε, n)-
extractor, if for any distribution D on X such that H∞(D) > δ,

|{F (x, y) : x ∈D X, y ∈U Y } − Un| < ε,

where | · | is the statistical distance between two distributions, Un is the uniform
distribution on {0, 1}n, and x ∈D X stands for choosing x ∈ X according to D.

Optimal extractors can extract n = δ − 2 log(1/ε) + O(1) nearly-random bits
with the seed length O(log |X |) (see [23] for many constructions matching the
bound).

While in general the presence of a truly random seed cannot be avoided,
there exist deterministic extractors (i.e. without Y) for sources with a special
structure [7, 9, 24, 19, 16] where the randomness is concentrated on k bits and
the rest are fixed. Namely,

Definition 2. A distribution D over {0, 1}N is an (N, k) oblivious bit-fixing
source if there exists S = {i1, . . . , ik} ⊂ [N], such that Xi1 , . . . , Xik

are uniformly
distributed in {0, 1}k, and the bits outside S are constant.

For any (N, k) bit-fixing source and any constant 0 < γ < 1/2 Gabizon et al. [16]
give an explicit deterministic (k, ε)-extractor that extracts m = k −N1/2+γ bits
of entropy with ε = 2−Ω(nγ) provided that k - √

N . In our case N = 2n (n is
the number of participants), and strictly more than 2/3 of the input bits will be
good. Thus, k > 2N/3, and so we extract more than N/2 = n high quality bits
by taking γ < 1/2.

A privacy mechanism is an interface between a user and data. It can be
interactive or non-interactive.

Assume the database consists of a number n of rows, d1, . . . , dn. In its simplest
form, a query is a predicate f : Rows → {0, 1}. In this case, the true answer
is simply

∑
i f(di). Slightly more generally, f may map [n] × Rows → [0, 1],

and the true answer is
∑

i f(i, di). Note that we are completely agnostic about
the domain Rows; rows can be Boolean, integers, reals, tuples thereof, or even
strings or pictures.

490 C. Dwork et al.

A mechanism gives ε-indistinguishability [13] if for any two data sets that
differ on only one row, the respective output random variables (query responses)
τ and τ ′ satisfy for all sets S of responses:

Pr[τ ∈ S] ≤ exp(ε) × Pr[τ ′ ∈ S] . (1)

This definition ensures that seeing τ instead of τ ′ can only increase the
probability of any event by at most a small factor. As a consequence, there
is little incentive for any one participant to conceal or misrepresent her value,
as so doing could not substantially change the probability of any event.

Similarly, we say a mechanism gives δ-approximate ε-indistinguishability if
for outputs τ and τ ′ based, respectively, on data sets differing in at most one
row,

Pr[τ ∈ S] ≤ exp(ε) × Pr[τ ′ ∈ S] + δ .

The presence of a non-zero δ permits us to relax the strict relative shift in the
case of events that are not especially likely. We note that it is inappropriate to
add non-zero δ to the statement of ε-indistinguishability in [13], where the sets
S are constrained to be singleton sets.

Historically, the first strong positive results for output perturbation added
noise drawn from a Gaussian distribution, with density function Pr[x] ∝
exp(−x2/2R). A slightly different definition of privacy was used in [14, 4].
In order to recast those results in terms of indistinguishability, we show
in Section 2.1 that the addition of Gaussian noise gives δ-approximate ε-
indistinguishability for the noisy sums primitive when ε > [log(1/δ)/R]1/2. In a
similar vein, Binomial noise, where n tosses of an unbiased ±1 coin are tallied
and divided by 2, also gives δ-approximate ε-indistinguishability so long as the
number of tosses n is at least 64 log(2/δ)/ε2.

Adding, instead, exponential noise results in a mechanism that can ensure
ε-indistinguishability (that is, δ = 0) [4, 13]. If the noise is distributed as
Pr[x] ∝ exp(−|x|/R), then the mechanism gives 1/R-indistinguishability (cf. ε >
[log(1/δ)/R]1/2 for Gaussian noise). Note that although the Gaussian noise is
more tightly concentrated around zero, giving somewhat better accuracy for
any given choice of ε, the exponential noise allows δ = 0, giving a more robust
solution.

2.1 Math for Gaussians and Binomials

We extend the results in [13] by determining the values of ε and δ for the
Gaussian and Binomial distributions for which the noisy sums primitive yields
δ-approximate ε-indistinguishability. Consider an output τ on a database D and
query f . Let τ =

∑
i f(i, di)+noise, so replacing D with D′ differing only in one

row changes the summation by at most 1. Bounding the ratio of probabilities that
τ occurs with inputs D and D′ amounts to bounding the ratio of probabilities
that noise = x and noise = x + 1, for the different possible ranges of values for
x. Thus, we first determine the largest value of x such that a relative bound of
exp(ε) holds, and then integrate the probability mass outside of this interval.

Our Data, Ourselves: Privacy Via Distributed Noise Generation 491

Recall the Gaussian density function: p(x) ∝ exp(−x2/2R). The ratio of
densities at two adjacent integral points is

exp(−x2/2R)
exp(−(x + 1)2)/2R

= exp(x/R + 1/2R).

This value remains at most exp(ε) until x = εR − 1/2. Provided that R ≥
2 log(2/δ)/ε2 and that ε ≤ 1, the integrated probability beyond this point will
be at most

Pr[x > εR − 1/2] ≤ exp(−(εR)2/2R)
(εR)

√
π

≤ δ .

As a consequence, we get δ-approximate ε-indistinguishability when R is at least
2 log(2/δ)/ε2.

For the Binomial noise with bias 1/2, whose density at n/2 + x is

Pr[n/2 + x] =
(

n

n/2 + x

)
1/2n ,

we see that the relative probabilities are

Pr[n/2 + x]
Pr[n/2 + x + 1]

=
n/2 + x + 1

n/2 − x
.

So long as x is no more than εn/8, this should be no more than (1+ ε) < exp(ε).
Of course, a Chernoff bound tells us that for such x the probability that a sample
exceeds it is

Pr[y > n/2 + εn/8] = Pr[y > (1 + ε/4)n/2]
≤ exp(−(ε2n/64)).

We get δ-approximate ε-indistinguishability so long as n is chosen to be at least
64 log(2/δ)/ε2. This exceeds the estimate of the Gaussian due to approximation
error, and general slop in the analysis, though it is clear that the form of the
bound is the same.

2.2 Adaptive Query Sequences

One concern might be that after multiple queries, the values of ε and δ degrade
in an inelegant manner. We now argue that this is not the case.

Theorem 1. A mechanism that permits T adaptive interactions with a δ-
approximate ε-indistinguishable mechanism ensures δT -approximate
εT -indistinguishability.

Proof. We start by examining the probability that the transcript, written as an
ordered T -tuple, lands in a set S.

Pr[x ∈ S] =
∏
i≤T

Pr[xi ∈ Si|x1, . . . , xi−1].

492 C. Dwork et al.

As the noise is independent at each step, the conditioning on x1, . . . , xi−1 only
affects the predicate that is asked. As a consequence, we can substitute∏

i≤T

Pr[xi ∈ Si|x1, . . . , xi−1] ≤
∏
i≤T

(exp(ε) × Pr[x′
i ∈ Si|x1, . . . , xi−1] + δ) .

If we look at the additive contribution of each of the δ terms, of which there are
T , we notice that they are only ever multiplied by probabilities, which are at
most one. Therefore, each contributes at most an additive δ.∏

i≤T

Pr[xi ∈ Si|x1, . . . , xi−1] ≤
∏
i≤T

(exp(ε) × Pr[x′
i ∈ Si|x1, . . . , xi−1]) + δT

= exp(εT) ×
∏
i≤T

(Pr[x′
i ∈ Si|x1, . . . , xi−1]) + δT

= exp(εT) × Pr[x′ ∈ S] + δT .

The proof is complete. ��

3 Generating Gaussian Noise

Were we not concerned with malicious failures, a simple approach would be to
have each participant i perturb f(di) by sampling from a Gaussian with mean
zero and variance 3

2var/n, where var is a lower bound on the variance needed
for preserving privacy (see Section 2). The perturbed values would be shared
out and the shares summed, yielding

∑
i f(di)+noise in shares. Since, as usual

in the Byzantine literature, we assume that at least 2/3 of the participants will
survive, the total variance for the noise would be sufficient (but not excessive).
However, a Byzantine processor might add an outrageous amount of noise to
its share, completely destroying the integrity of the results. We now sketch the
main ideas in our solution for the Byzantine case.

Recall that the goal is for the participants to obtain the noise in shares.
As mentioned earlier, we will approximate the Gaussian with the Binomial
distribution, so if the participants hold shares of sufficiently many unbiased
coins they can sum these to obtain a share of (approximately) correctly generated
noise. Coin flipping in shares (and otherwise) is well studied, and can be achieved
by having each participant non-malleably verifiably share out a value in GF(2),
and then locally summing (in GF(2)) the shares from all n secret sharings.

This suggests a conceptually straightforward solution: Generate many coins
in shares, convert the shares from GF(2) to shares of values in a large field GF(q)
(or to shares of integers), and then sum the shares. In addition to the conversion
costs, the coins themselves are expensive to generate, since they require Ω(n)
executions of verifiable secret sharing per coin, which translates into Ω(nc) secret
sharings for c coins2. To our knowledge, the most efficient scheme for generating
2 When a single player shares out many values (not the case for us), the techniques of

Bellare, Garay, and Rabin [3] can be used to reduce the cost of verifying the shared
out values. The techniques in [3] complement ours; see Section 5.

Our Data, Ourselves: Privacy Via Distributed Noise Generation 493

random bits is due to Damg̊ard et al. [10], which requires n sharings and two
multiplications per coin.

We next outline a related but less expensive solution which at no intermediate
or final point uses the full power of coin-flipping. The solution is cost effective
when c is sufficiently large, i.e., c ∈ Ω(n). As a result, we will require only Ω(c)
sharings of values in GF(2) when c ∈ Ω(n). Let n denote both the number of
players and the desired number of coins3.

1. Each player i shares a random bit by sharing out a value bi ∈ {0, 1}GF(q),
using a non-malleable verifiable secret sharing scheme, where q is sufficiently
large, and engages in a simple protocol to prove that the shared value is
indeed in the specified set. (The verification is accomplished by distributively
checking that x2 = x for each value x that was shared, in parallel. This is
a single secure function evaluation of a product, addition of two shares, and
a reconstruction, for each of the n bits bi.) This gives a sequence of low-
quality bits in shares, as some of the shared values may have been chosen
adversarially. (Of course, the faulty processors know the values of the bits
they themselves have produced.)

2. Now, suppose for a moment that we have a public source of unbiased
bits, c1, c2,. . . , cn. By XORing together the corresponding b’s and c’s,
we can transform the low quality bits bi (in shares) into high-quality bits
bi ⊕ ci, in shares. (Again, the faulty processors know the values of the (now
randomized) bits they themselves have produced.) The XORing is simple: if
ci = 0 then the shares of bi remain unchanged. If ci = 1 then each share of
bi is replaced by one minus the original share.

3. Replace each share s by 2s− 1, all arithmetic in GF(q). This maps shares of
0 to shares of −1, and shares of 1 to (different) shares of 1.

4. Finally, each participant sums her shares to get a share of the Binomial noise.

We now turn to the generation of the ci. Each participant randomly chooses
and non-malleably verifiably shares out two bits, for a total of 2n low-quality
bits in shares. This is done in GF(2), so there is no need to check legitimacy.
Let the low-quality source be b′1, b

′
2, . . . , b

′
2n. The b′i are then reconstructed, so

that they become public. The sequence b′1b
′
2 . . . b′2n is a bit-fixing source: some

of the bits are biased, but they are independent of the other bits (generated by
the good participants) due to the non-malleability of the secret sharing. The
main advantage of such a source is that it is possible to apply a deterministic
extractor on those bits and have the output be very close to uniform. Since
the bits b′1 . . . b′2n are public, this extraction operation can be done by each
party individually with no additional communication. In particular we may use,
say, the currently best known deterministic extractor of [16], which produces a
number m > n of nearly unbiased bits. The outputs of the extractor are our
public coins c1 . . . cm.

3 If the desired number of coins is o(n), we can generate Θ(n) coins and keep the
unused ones in reserve for future executions of the protocol. If m ! n coins are
needed, each processor can run the protocol m/n times.

494 C. Dwork et al.

The principal costs are the multiplications for verifying membership in
{0, 1}GF(q) and the executions of verifiable secret sharing. Note that all the
verifications of membership are performed simultaneously, so the messages from
the different executions can be bundled together. The same is true for the
verifications in the VSS. The total cost of the scheme is Θ(n) multiplications
and additions in shares, which can be all done in a constant number of rounds.

4 Generating Exponential Noise

Recall that in the exponential distribution the probability of obtaining a value
at distance |x| from the mean is proportional to exp(−|x|/R), where R is
a scaling factor. For the present discussion we take R = 1/(ln 2), so that
exp(−|x|/R) = 2−|x|. We approximate the exponential distribution with the
Poisson distribution. An intuitively simple approach is to generate a large
number of unbiased4 random bits in shares, and then find (in shares) the position
	 of the first 1. The value returned by this noise generation procedure is ±	 (we
flip one additional bit to get the sign). If there is no 1, then the algorithm fails,
so the number of bits must be sufficiently large that this occurs with negligible
probability. All the computation must be done in shares, and we can’t “quit”
once a 1 has been found (this would be disclosive). This “unary” approach works
well when R = 1/(ln 2) and the coins are unbiased. For much larger values of
R, the case in high-privacy settings, the coins need to be heavily biased toward
0, flattening the curve. This would mean more expected flips before seeing a 1,
potentially requiring an excessive number of random bits.

Instead, we take advantage of the special structure of the exponential
distribution, and see that we can generate the binary representation of an
exponential variable using a number of coins that is independent of the bias.
Let us return to the question of the location 	 of the first 1 in a sequence of
randomly generated bits. We can describe 	 one bit at a time by answering the
following series of questions:

1. What is the parity of 	? That is, 	 = 2i for some i ≥ 0? (We begin counting
the positions at 0, so that 	 will be the number of 0’s preceding the first 1.)

2. Is 	 in the left half or the right half of a block of 4 positions, i.e., is it the
case that 22i ≤ 	 < 22i + 2 for some i ≥ 0?

3. Is 	 in the left half or the right half of a block 8 positions, i.e., is it the case
that 23i ≤ 	 < 23i + 22 for some i ≥ 0?

4. And so on.

We generate the distribution of 	 “in binary” by generating the answers to the
above questions. (For some fixed d we simply assume that 	 < 2d, so only a finite
number of questions need be answered.)

To answer the questions, we need to be able to generate biased coins. The
probability that 	 is even (recall that we begin counting positions with 0) is

4 For values of R �= 1/(ln 2) we would need to use biased bits.

Our Data, Ourselves: Privacy Via Distributed Noise Generation 495

(1/2)
∑∞

i=0(2
−2i). Similarly, the probability that 	 is odd is (1/2)

∑∞
i=0(2

−(2i+1)).
Thus,

Pr[odd] = (1/2)Pr[even].

Since the two probabilities sum to 1, the probability that 	 is even is 2/3. Similar
analyses yield the necessary biases for the remaining questions.

The heart of the technical argument is thus to compute coins of arbitrary
bias in shares in a manner that consumes on average a constant number of
unbiased, completely unknown, random bits held in shares. We will construct and
analyze a shallow circuit for this. In addition, we will present two incomparable
probabilistic constructions. In any distributed implementation these schemes
would need to be implemented by general secure function evaluation techniques.
The circuits, which only use Boolean and finite field arithmetic, allow efficient
SFE implementation.

4.1 Poisson Noise: The Details

In this section we describe several circuits for generating Poisson noise. The
circuits will take as input random bits (the exact number depends on the circuit
in question). In the distributed setting, the input would be the result of a protocol
that generates (many) unbiased bits in shares. The circuit computation would
be carried out in a distributed fashion using secure function evaluation, and
would result in many samples, in shares, of noise generated according to the
Poisson distribution. This fits into the high-level ODO protocol in the natural
way: shares of the noise are added to the shares of

∑
i f(i, di) and the resulting

noisy sum is reconstructed.
For the remainder of this section, we let n denote the number of coins to be

generated. It is unrelated to the number of participants in the protocol.
Recall the discussion in the Introduction of the exponential distribution,

where Pr[x] ∝ exp(−|x|/R). Recall that one interpretation is to flip a (possibly
biased) coin until the first 1 is seen, and then to output the number 	 of 0’s seen
before the 1 occurs. Recall also that instead of generating 	 in unary, we will
generate it in binary.

We argue that the bits in the binary representation of the random variable
	 are independent, and moreover we can determine their biases analytically. To
see the independence, consider the distribution of the ith bit of 	:

	i =
{

0 w.p. Pr[0 × 2i ≤ 	 < 1 × 2i] + Pr[2 × 2i ≤ 	 < 3 × 2i] + . . .
1 w.p. Pr[1 × 2i ≤ 	 < 2 × 2i] + Pr[3 × 2i ≤ 	 < 4 × 2i] + . . .

Notice that corresponding terms in the two summations, eg Pr[0×2i ≤ 	 < 1×2i]
and Pr[1×2i ≤ 	 < 2×2i], are directly comparable; the first is exactly exp(2i/R)
times the second. This holds for every corresponding pair in the sums, and as
such the two sums share the same ratio. As the two sum must total to one, we
have additionally that

1 − Pr[i] = exp(2i/R) × Pr[i] .

496 C. Dwork et al.

Solving, we find that

Pr[i] = 1/(1 + exp(2i/R)) .

Recall as well that the observed ratio applied equally well to each pair of
intervals, indicating that the bias is independent of the more significant bits.
The problem of producing an exponentially distributed 	 is therefore simply a
matter of flipping a biased coin for each bit of 	. The circuit we will construct
will generate many 	’s according to the desired distribution, at an expected low
amortized cost (number of input bits) per bit position in the binary expansion
of 	. The circuit is a collection of circuits, each for one bit position, with the
associated bias hard-wired in. It suffices therefore to describe the circuitry for
one of these smaller circuits (Section 4.3). We let p denote the hard-wired bias.

A well-known technique for flipping a single coin of arbitrary bias p is to
write p in binary, examine random bits until one differs from the corresponding
bit in p, and then emit the complement of the random bit. To achieve a high
fidelity to the original bias p, a large number d of random bits must be available.
However, independent of p, the expected number of random bits consumed is at
most 2. This fact will be central to our constructions.

In the sequel we distinguish between unbiased bits, which are inputs to the al-
gorithm, and the generated, biased, coins, which are the outputs of the algorithm.

4.2 Implementation Details: Finite Resources

With finite randomness we will not be able to perfectly emulate the bias of the
coins. Moreover, the expectation of higher order bits in the binary representation
of 	 diminishes at a doubly exponential rate (because the probability that 	 ≥ 2i

is exponentially small in 2i), quickly giving probabilities that simply can not be
achieved with any fixed amount of randomness.

To address these concerns, we will focus on the statistical difference between
our produced distribution and the intended one. The method described above
for obtaining coins with arbitrary bias, truncated after d bits have been
consumed, can emulate any biased coin within statistical difference at most
2−d. Accordingly, we set all bits of sufficiently high order to zero, which will
simplify our circuit. The remaining output bits – let us imagine there are k
of them – will result in a distribution whose statistical difference is at most
k2−d from the target distribution. We note that by trimming the distribution to
values at most 2d in magnitude, we are introducing an additional error, but one
whose statistical difference is quite small. There is an exp(−2d/R) probability
mass outside the [−2d, 2d] interval that is removed and redistributed inside the
interval. This results in an additional 2 exp(−2d/R) statistical difference that
should be incorporated into δ. For clarity, we absorb this term into the value k.

Using our set of coins with statistical difference at most k2−d from the
target distribution, we arrive at a result akin to (1), though with an important
difference. For response variables τ and τ ′ as before (based on databases differing
it at most one row),

∀S ⊆ U : Pr[τ ∈ S] ≤ Pr[τ ′ ∈ S] × exp(1/R) + k2−d .

Our Data, Ourselves: Privacy Via Distributed Noise Generation 497

As before, the probability of any event increases by at most a factor of exp(1/R),
but now with an additional additive k2−d term. This term is controlled by the
parameter d, and can easily be made sufficiently small to allay most concerns.

We might like to remove the additive k2−d term, which changes the nature
of the privacy guarantee. While this seems complicated at first, notice that it
is possible to decrease the relative probability associated with each output coin
arbitrarily, by adding more bits (that is, increasing d). What additional bits can
not fix is our assignment of zero probability to noise values outside the permitted
range (i.e., involving bits that we do not have circuitry for).

One pleasant resolution to this problem, due to Adam Smith, is to constrain
the output range of the sum of noise plus signal. If the answer plus noise is
constrained to be a k-bit number, and conditioned on it lying in that range the
distribution looks exponential, the same privacy guarantees apply. Guaranteeing
that the output will have only k bits can be done by computing the sum of noise
and signal using k + 1 bits, and then if there is overflow, outputting the noise-
free answer. This increases the probability that noise = 0 by a relatively trivial
amount, and ensures that the output space is exactly that of k-bit numbers.

4.3 A Circuit for Flipping Many Biased Coins

We are now ready to construct a circuit for flipping a large number of
independent coins with common bias. By producing many (Ω(n)) coins at once,
we could hope to leverage the law of large numbers and consume, with near
certainty, a number of input bits that is little more than 2n and depends very
weakly on d. For example, we could produce the coins sequentially, consuming
what randomness we need and passing unused random bits on to the next coin.
The circuit we now describe emulates this process, but does so in a substantially
more parallel manner.

The circuit we construct takes 2i unbiased input bits and produces 2i output
coins, as well as a number indicating how many of the coins are actually the
result of the appropriate biased flips. That is, it is unlikely that we will be able
to produce fully 2i coins, and we should indicate how many of the coins are
in fact valid. The construction is hierarchical, in that the circuit that takes 2i

inputs will be based on two level i − 1 circuits, attached to the first and second
halves of its inputs.

To facilitate the hierarchical construction, we augment the outputs of each
circuit with the number of bits at the end of the 2i that were consumed by
the coin production process, but did not diverge from the binary representation
of p. Any process that wishes to pick up where this circuit has left off should
start under the assumption that the first coin is in fact this many bits into its
production. For example, if this number is r then the process should begin by
comparing the next random bit to the (r+1)st bit in the expansion of p. Bearing
this in mind, we “bundle” d copies of this circuit together, each with a different
assumption about the initial progress of the production of their first coin.

For each value 1 ≤ j ≤ d we need to produce a vector of 2i coins cj , a number
of coins nj , and dj , a measure of progress towards the last coin. We imagine that

498 C. Dwork et al.

we have access to two circuits of one level lower, responsible for the left and right
half of our 2i input bits, and whose corresponding outputs are superscripted by
L and R. Intuitively, for each value of j we ask the left circuit for dL

j , which
we use to select from the right circuit. Using index j for the left circuit and dL

j

for the right circuit, we combine the output coins using a shift of nL
j to align

them, and add the output counts nL
j and nR

dL
j
. We simply pass dR

dL
j

out as the
appropriate value for dj .

cj = cL
j | (cR

dL
j

>> nL
j)

nj = nL
j + nR

dL
j

dj = dR
dL

j

The operation of subscripting is carried out using a multiplexer, and shifts,
bitwise ors, and addition are similarly easily carried out in logarithmic depth.

The depth of each block is bounded by Θ(log(nd)), with the size bounded
by Θ(2id(log(n) + d), as each of d outputs must multiplex d possible inputs
(taking Θ(d) circuitry) and then operate on them (limited by Θ(log(n)2i) for
the barrel shifter). All told, the entire circuit has depth Θ(log(nd)2), with size
Θ(nd(log(n) + d) log(n)).

4.4 Probabilistic Constructions with Better Bounds

We describe two probabilistic constructions of circuits that take as input
unbiased bits and produce as output coins of arbitrary, not necessarily identical,
bias. Our first solution is optimal in terms of depth (Θ(log d)) but expensive in
the gate count. Our second solution dramatically decreases the number of gates,
paying a modest price in depth (O(log(n+d))) and a logarithmic increase in the
number of input bits.

A module common to both constructions is the comparator – a circuit that
takes two bit strings b1, . . . , bd and p(1) . . . p(d) and outputs 0 if and only if the
first string precedes the second string in the lexicographic order. Equivalently,
the comparator outputs b̄i, where i is the index of the earliest occurrence 1 in
the sequence b1 ⊕ p(1), . . . , bd ⊕ p(d), or 1 if the two strings are equal. Based on
this observation, a circuit of depth Θ(log d) and size Θ(d) can be designed easily.
Notice that the result of comparison is independent of the values of the strings
beyond the point of divergence.

Brute Force Approach. Assume that we have nd independent unbiased bits
b
(j)
i , for 1 ≤ i ≤ n and 1 ≤ j ≤ d. To flip n independent coins, each with its own

bias pi, whose binary representation is 0.p
(1)
i . . . p

(d)
i , we run n comparators in

parallel on inputs (b(1)
1 , . . . , b

(d)
1 , p

(1)
1 , . . . , p

(d)
1), . . . , (b(1)

n , . . . , b
(d)
n , p

(1)
n , . . . , p

(d)
n).

Our goal is to get by with many fewer than nd unbiased input bits of the
brute force approach, since each of these requires an unbiased bit in shares.
Intuitively, we may hope to get away with this because, as mentioned previously,

Our Data, Ourselves: Privacy Via Distributed Noise Generation 499

the average number of bits consumed per output coin is 2, independent of the
bias of the coin. Let ci for 1 ≤ i ≤ n be the smallest index where b

(ci)
i �= p

(ci)
i ,

and d+1 if the two strings are equal. The number ci corresponds to the number
of bits “consumed” during computation of the ith coin. Let C =

∑n
i=1 ci. On

expectation E[C] = 2n, and except with a negligible probability C < 4n.
Rather than having the set {b(j)

i }i,j be given as input (too many bits),
we will compute the set {b(j)

i }i,j from a much smaller set of input bits. The
construction will ensure that the consumed bits are independent except with
negligible probability. Let the number of input bits be D, to be chosen later.

We will construct the circuit probabilistically. Specifically, we begin by
choosing nd binary vectors {r(j)

i }i,j , 1 ≤ i ≤ n and 1 ≤ j ≤ d, uniformly from
{0, 1}D to be hard-wired into the circuit. Let b ∈R {0, 1}D be the uniformly
chosen random input to the circuit.

The circuit computes the inner products of each of the hard-wired vectors
r
(j)
i with the input b. Let b

(j)
i = 〈r(j)

i , b〉 denote the resulting bits. These are the
{b(j)

i }i,j we will plug into the brute force approach described above. Note that
although much randomness was used in defining the circuit, the input to the
circuit requires only D random bits.

Although the nd vectors are not linearly independent, very few of them
– O(n) – are actually used in the computation of our coins, since with
overwhelming probability only this many of the b

(j)
i are actually consumed.

A straightforward counting argument therefore shows that the set of vectors
actually used in generating consumed bits will be linearly independent, and so
the coins will be mutually independent.

We claim that if D > 4C, then the consumed bits are going to be independent
with high probability. Conditional on the sequence c1, . . . , cn, the vectors r

(j)
i for

1 ≤ i ≤ n and 1 ≤ j ≤ ci are independent with probability at least 1−C2C−D <
1 − 2−2C , where the probability space is the choice of the r’s. For fixed C the
number of possible c1, . . . , cn is at most

(
C
n

)
< 2C . Hence the probability that

for some C < 4n and some c1, . . . , cn, such that c1 + · · · + cn = C the vectors
r
(j)
i are linearly independent is at least than 1−4n2−C. Finally, we observe that

if the vectors are linearly independent, the bits b
(j)
i are independent as random

variables. The depth of this circuit is Θ(log D), which is the time it takes to
compute the inner product of two D-bit vectors. Its gate count is Θ(ndD),
which is clearly suboptimal.

Using low weight independent vectors. Our second solution dramatically
decreases the number of gates by reducing the weight (the number of non-zero
elements) of the vectors r from the expected value D/2 to s2�log(n+1) , where s
is a small constant. To this end we adopt the construction from [12] that converts
an expander-like graph into a set of linearly independent vectors.

The construction below requires a field with at least nd non-zero elements.
Let ν = �log(nd + 1) . We use GF(2ν), representing its elements as ν-bit strings.

Consider a bipartite graph G of constant degree s connecting sets L =
{u1, . . . , un}, where the u’s are distinct field elements, and R = {1, . . . , Δ}.

500 C. Dwork et al.

The degree s can be as small as 3. Define matrix M of size n × sΔ as follows: if
(ui, τ) ∈ G, the elements M [i][s(τ − 1), s(τ − 1) + 1, . . . , sτ − 1] = ui, u

2
i , . . . , u

s
i ,

and (0, . . . , 0) (s zeros) otherwise. Thus, each row of the matrix has exactly s2

non-zero elements.
For any set S ⊆ L, let Γ (S) ⊆ R be the set of neighbors of S in G. The

following claim is easily obtained from the proof of Lemma 5.1 in [12]. It says
that if for a set of vertices T ∈ L all of T ’s subsets are sufficiently expanding,
then the rows of M corresponding to vertices in T are linearly independent.

Theorem 2. Let T ⊆ L be any set for which ∀S ⊆ T , |Γ (S)| > (1 − 1
s+1)|S|.

Then the set of vectors {M [u] : u ∈ T } is linearly independent.

Consider a random bipartite graph with nd/ν elements in one class and 2C

elements in the other. Associate the elements from the first class with bits b
(j)
i ’s,

grouped in ν-tuples. Define the bits as the results of the inner product of the
corresponding rows of the matrix M from above with the input vector of length
2s2C that consists of random elements from GF(2ν). Observe that the random
graph G satisfies the condition of Theorem 2 for all sets of size less than C with
high probability if C > (nd/ν)1/(s−1).

The depth of the resulting circuit is Θ(log(n + d)), the gate count is
Θ(nds2 log(n + d)), and the size of the input is 2n log(n + d).

5 Generalizations

In this section we briefly discuss several generalizations of the basic scheme.

5.1 Alternatives to Full Participation

The main idea is to use a set of facilitators, possibly a very small set, but
one for which we are sufficiently confident that fewer than one third of the
members are faulty. Let F denote the set of facilitators. To respond to a query
f , participant i shares f(i, di) among the facilitators, and takes no further part
in the computation.

To generate the noise, each member of F essentially takes on the work of
n/|F| participants. When |F| is small, the batch verification technique of [3]
may be employed to verify the secrets shared out by each of the players (that
is, one batch verification per member of F), although this technique requires
that the faulty players form a smaller fraction of the total than we have been
assuming up to this point.

5.2 When f Is Not a Predicate

Suppose we are evaluating f to k bits of precision, that is, k bits beyond the
binary point. Let q be sufficiently large, say, at least q > n2k. We will work in
GF(q). Participant i will share out 2kf(i, di), one bit at a time. Each of these is
checked for membership in {0, 1}GF(q). Then the shares of the most significant
bit are multiplied by 2k−1, shares of the next most significant are multiplied by

Our Data, Ourselves: Privacy Via Distributed Noise Generation 501

2k−2 and so on, and the shares of the binary representation of f(i, di) are then
summed. The noise generation procedure is amplified as well. Details omitted
for lack of space.

5.3 Beyond Sums

We have avoided the case in which f is an arbitrary function mapping the entire
database to a (tuple of) value(s), although the theory for this case has been
developed in [13]. This is because without information about the structure of f
we can only rely on general techniques for secure function evaluation of f , which
may be prohibitively expensive.

One case in which we can do better is in the generation of privacy-preserving
histograms. A histogram is specified by a partition of the domain Rows; the true
response to the histogram query is the exact number of elements in the database
residing in each of the cells of the histogram. Histograms are low sensitivity
queries, in that changing a single row of the database changes the counts of
at most two cells in the histogram, and each of these two counts changes by
at most 1. Thus, as discussed in [13], ε-indistinguishable histograms may be
obtained by adding exponential noise with R = 1/2ε to each cell of the histogram.
A separate execution of ODO for each cell solves the problem. The executions
can be run concurrently. All participants in the histogram query must participate
in each of the concurrent executions.

5.4 Individualized Privacy Policies

Suppose Citizen C has decided she is comfortable with a lifetime privacy loss of,
say ε = 1. Privacy erosion is cumulative: any time C participates in the ODO
protocol she incurs a privacy loss determined by R, the parameter used in noise
generation. C has two options: if R is fixed, she can limit the number of queries
in which she participates, provided the decision whether or not to participate is
independent of her data. If R is not fixed in advance, but is chosen by consensus
(in the social sense), she can propose large values of R, or to use large values
of R for certain types of queries. Similarly, queries could be submitted with a
stated value of R, and dataholders could choose to participate only if this value
of R is acceptable to them for this type of query. However, the techniques will
all fail if the set of participants is more than one-third faulty; so the assumption
must be that this bound will always be satisfied. This implicitly restricts the
adversary.

6 Summary of Results

This work ties together two areas of research: the study of privacy-preserving
statistical databases and that of cryptographic protocols. It was inspired by the
combination of the computational power of the noisy sums primitive in the first
area and the simplicity of secure evaluation of sums in the second area. The effect

502 C. Dwork et al.

is to remove the assumption of a trusted collector of data, allowing individuals
control over the handling of their own information.

In the course of this work we have developed distributed algorithms for
generation of Binomial and Poisson noise in shares. The former makes novel
use of extractors for bit-fixing sources in order to reduce the number of secret
sharings needed in generating massive numbers of coins. The latter examined
for the first time distributed coin-flipping of coins with arbitrary bias.

References

1. D. Agrawal and C. Aggarwal. On the design and quantification of privacy
preserving data mining algorithms. In Proceedings of the 20th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, pages 247–255,
2001.

2. R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pages 439–450,
May 2000.

3. M. Bellare, J. A. Garay, and T. Rabin. Distributed pseudo-random bit generators—
a new way to speed-up shared coin tossing. In Proceedings of the 15th ACM
Symposium on Principles of Distributed Computing, pages 191–200, 1996.

4. A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: The
SuLQ framework. In Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages 128–138, June 2005.

5. S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee. Toward privacy in
public databases. In Proceedings of the 2nd Theory of Cryptography Conference,
pages 363–385, 2005.

6. S. Chawla, C. Dwork, F. McSherry, and K. Talwar. On the utility of privacy-
preserving histograms. In Proceedings of the 21st Conference on Uncertainty in
Artificial Intelligence, 2005.

7. B. Chor, O. Goldreich, J. H̊astad, J. Friedman, S. Rudich, and R. Smolensky. The
bit extraction problem of t-resilient functions. In Proceedings of the 26th IEEE
Symposium on Foundations of Computer Science, pages 429–442, 1985.

8. B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and
achieving simultaneity in the presence of faults. In Proceedings of the 26th Annual
IEEE Symposium on Foundations of Computer Science, pages 383–395, 1985.

9. A. Cohen and A. Wigderson. Dispersers, deterministic amplification, and weak
random sources. In Proceedings of the 30th Annual IEEE Symposium on
Foundations of Computer Science, pages 14–19, 1989.

10. I. Damg̊ard, M. Fitzi, E. Kiltz, J.B. Nielsen, and T. Toft. Unconditionally
secure constant-rounds multi-party computation for equality, comparison, bits and
exponentiation. In Proceedings of the 3rd Theory of Cryptography Conference,
pages 285–304, 2006.

11. I. Dinur and K. Nissim. Revealing information while preserving privacy.
In Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, pages 202–210, 2003.

12. C. Dwork, J. Lotspiech, and M. Naor. Digital signets for protection of digital
information. In Proceedings of the 28th annual ACM symposium on Theory of
computing, pages 489–498, 1996.

Our Data, Ourselves: Privacy Via Distributed Noise Generation 503

13. C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in
private data analysis. In Proceedings of the 3rd Theory of Cryptography Conference,
pages 265–284, 2006.

14. C. Dwork and K. Nissim. Privacy-preserving datamining on vertically partitioned
databases. In Advances in Cryptology: Proceedings of Crypto, pages 528–544, 2004.

15. A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy
preserving data mining. In Proceedings of the 22nd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, pages 211–222, June 2003.

16. Ariel Gabizon, Ran Raz, and Ronen Shaltiel. Deterministic extractors for bit-
fixing sources by obtaining an independent seed. In Proceedings of the 45th IEEE
Symposium on Foundations of Computer Science, pages 394–403, 2004.

17. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Proceedings of the
19th Annual ACM Symposium on Theory of Computing, pages 218–229, 1987.

18. Oded Goldreich. Foundations of Cryptography - Basic Applications, volume 2.
Cambridge University Press, 2004.

19. J. Kamp and D. Zuckerman. Deterministic extractors for bit-fixing sources
and exposure-resilient cryptography. In Proceedings of the 44th Annual IEEE
Symposium on Foundations of Computer Science, pages 92–101, 2003.

20. L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

21. N. Nisan and D. Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci.,
52(1):43–52, 1996.

22. Michael O. Rabin. Randomized Byzantine generals. In Proceedings of the 24th
IEEE Symposium on Foundations of Computer Science, pages 403–409, 1983.

23. Ronen Shaltiel. Recent developments in explicit constructions of extractors.
Bulletin of the EATCS, 77:67–95, 2002.

24. L. Trevisan and S. Vadhan. Extracting randomness from samplable distributions.
In Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer
Science, pages 32–42, 2000.

25. A. Yao. Protocols for secure computations (extended abstract). In Proceedings of
the 23rd IEEE Symposium on Foundations of Computer Science, pages 160–164,
1982.

On the (Im-)Possibility of Extending Coin Toss

Dennis Hofheinz1, Jörn Müller-Quade2, and Dominique Unruh2

1 CWI, Cryptology and Information Security Group, Prof. Dr. R. Cramer
Dennis.Hofheinz@cwi.nl

2 IAKS, Arbeitsgruppe Systemsicherheit, Prof. Dr. Th. Beth, Universität Karlsruhe
{muellerq, unruh}@ira.uka.de

Abstract. We consider the cryptographic two-party protocol task of
extending a given coin toss. The goal is to generate n common random
coins from a single use of an ideal functionality which gives m < n
common random coins to the parties. In the framework of Universal
Composability we show the impossibility of securely extending a coin toss
for statistical and perfect security. On the other hand, for computational
security the existence of a protocol for coin toss extension depends on
the number m of random coins which can be obtained “for free”.

For the case of stand-alone security, i.e., a simulation based secu-
rity definition without an environment, we present a novel protocol for
unconditionally secure coin toss extension. The new protocol works for
superlogarithmic m, which is optimal as we show the impossibility of
statistically secure coin toss extension for smaller m.

Combining our results with already known results, we obtain a (nearly)
complete characterization under which circumstances coin toss extension
is possible.

Keywords: coin toss, universal composability, reactive simulatability,
cryptographic protocols.

1 Introduction

Manuel Blum showed in [5] how to flip a coin over the telephone line. His pro-
tocol guaranteed that even if one party does not follow the protocol, the other
party still gets a uniformly distributed coin toss result. This general concept
of generating common randomness in a way such that no dishonest party can
dictate the result proved very useful in cryptography, e.g., in the construction
of protocols for general secure multi-party computation.

Here we are interested in the task of extending a given coin toss. That is,
suppose that two parties already have the possibility of making a single m-bit
coin-toss. Is it possible for them to get n > m bits of common randomness? The
answer we come up with is basically: “it depends.”

The first thing the extensibility of a given coin toss depends on is the required
security type. One type of security requirement (which we call “stand-alone
simulatabiliy” here) can simply be that the protocol imitates an ideal coin toss

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 504–521, 2006.
c© International Association for Cryptologic Research 2006

On the (Im-)Possibility of Extending Coin Toss 505

functionality in the sense of [13], where a simulator has to invent a realistic
protocol run after learning the outcome of the ideal coin-toss. A stronger type of
requirement is to demand universal composability, which basically means that
the protocol imitates an ideal coin toss functionality even in arbitrary protocol
environments. Security in the latter sense can conveniently be captured in a
simulatability framework like the Universal Composability framework [6, 8] or
the Reactive Simulatability model [16, 3].

Orthogonal to this, one can vary the level of fulfilment of each of these re-
quirements. For example, one can demand stand-alone simulatability of the pro-
tocol with respect to polynomial-time adversaries in the sense that real protocol
and ideal functionality are only computationally indistinguishable. This specific
requirement is already fulfilled by the protocol of Blum. Alternatively, one can
demand, e.g., universal composability of the protocol with respect to unbounded
adversaries. This would then yield statistical or even perfect security. We show
that whether such a protocol exists depends on the asymptotic behaviour of m.

Our results are summarized in the table below. A “yes” or “no” indicates
whether a protocol for coin toss extension exists in that setting. “Depends”
means that the answer depends on the size of the seed (the m-bit coin toss
available by assumption), and boldface indicates novel results.

Security type ↓ / level → Computational Statistical Perfect
stand-alone simulatability yes depends1 no
universal composability depends2 no no

Known results in the perfect and statistical case. A folklore theorem states, that
(perfectly non-trivial) statistically secure coin-toss is impossible from scratch
(even in very lenient security models). By Kitaev, this result was extended even
to protocols using quantum communication (cf. [1]). [4] first investigated the
problem of extending a coin-toss. They presented a statistically secure protocol
for extending a given coin-toss (pre-shared using a VSS), if less than 1

6 of the
parties are corrupted. Note that their main attention was on the efficiency of the
protocol, since in that scenario arbitrary multi-party computations and therefore
in particular coin-toss from scratch are known to be possible. The result does
not apply to the two-party case.

Our results in the perfect and statistical case. Our results in the perfect case
are most easily explained. For the perfect case, we show impossibility of any
coin toss extension, no matter how (in-)efficient. We show this for stand-alone
simulatability (Coro. 1) and for universal composability. Now for the statistical
case. When demanding only stand-alone simulatability, the situation depends on
the number of the already available common coins. Namely, we give an efficient
protocol to extend m common coins to any polynomial number (in the security
1 Coin toss extension is possible if and only if the seed has superlogarithmic length.
2 Coin toss extension is impossible if the seed does not have superlogarithmic length.

The possibility result depends on the complexity assumption we use, cf. Section 3.1.

506 D. Hofheinz, J. Müller-Quade, and D. Unruh

parameter), if m is superlogarithmic (Th. 5). Otherwise, we show that there can
even be no protocol that derives m + 1 common random coins (Coro. 1). In the
universal composability setting, the situation is more clear: we show that there
simply is no protocol that derives from m common coins m + 1 coins, no matter
how large m is (Th. 6). (However, here we restrict to protocols that run in a
polynomial number of rounds.)

Known results in the computational case. The possibility of coin tossing (in a
non-simulation based model) was first shown by [5] and this protocol can be
proven secure in a stand-alone security model. For the UC framework coin-toss
was proven to be impossible in [9], unless a helping functionality like a CRS is
given. In [12], the task of coin-toss is considered in a scenario slightly different
from ours: in [12], protocol participants may not abort protocol execution with-
out generating output. In that setting, [12] show that coin-toss is generally not
possible even against computationally limited adversaries. However, to the best
of our knowledge, an extension of a given coin toss has not been considered so
far in the computational setting.

Our results in the computational case. We answer the question concerning the
minimal size necessary for a coin-toss to be extensible: If an m-bit coin-toss func-
tionality is given, and m is not superlogarithmic, then it is already impossible for
the parties to derive m + 1 common random coins (in a universally composable
way) from it (Th. 2). However, we also show that under strengthened computa-
tional assumptions, there are protocols that extend m to any polynomial number
(in the security parameter) of common random coins, if m is superlogarithmic
(Th. 1). In that sense, we give the remaining parts for a complete characteriza-
tion of the computational case.

Notation
– A function f is negligible, if for any c > 0, f(k) ≤ k−c for sufficiently large

k (i.e., f ∈ k−ω(1)).
– f is polynomially bounded, if for some c > 0, f(k) ≤ kc for sufficiently large

k (i.e., f ∈ kO(1)).
– f is polynomially-large, if there is a c > 0 s.t. f(k)c ≥ k for sufficiently large

k (i.e., f ∈ kΩ(1)).
– f is superpolynomial, if for any c > 0, f(k) > kc for sufficiently large k (i.e.,

f ∈ kω(1)).
– f is superlogarithmic, if f/ log k → ∞ (i.e., f ∈ ω(log k)). It is easy to see

that f is superlogarithmic if and only if 2−f is negligible.
– f is superpolylogarithmic, if for any c > 0, f(k) > (log k)c for sufficiently

large k (i.e., f ∈ (log k)ω(1)).
– f is exponentially-small, if there exists a c > 1, s.t. f(k) ≤ c−k for sufficiently

large k (i.e., f ∈ Ω(1)−k = 2−Ω(k)).
– f is subexponential, if for any c > 1, f(k) < ck for sufficiently large k (i.e.,

f ∈ o(1)k = 2o(k)).

On the (Im-)Possibility of Extending Coin Toss 507

2 Security Definitions

In this section we roughly sketch the security definitions used throughout this
paper. We distinguish between two notions: stand-alone simulatability as defined
in [13],3 and Universal Composability (UC) as defined in [6].

Stand-Alone Simulatability. In [13] a definition for the security of two-party
secure function evaluations is given (called security in the malicious model). We
will give a sketch, for more details we refer to [13].

A protocol consists of two parties that alternatingly send messages to each
other. The parties may also invoke an ideal functionality, which is given as an
oracle (in our cases, they invoke a smaller coin-toss to realise a larger one).

We say the protocol π stand-alone simulatably realises a probabilistic function
f , if for any efficient adversary A that may replace none or a single party, there
is an efficient simulator S s.t. for all inputs the following random variables are
computationally indistinguishable:
– The real protocol execution. This consists of the view of the corrupted parties

upon inputs x1 and x2 for the parties and the auxiliary input z for the
adversary, together with the outputs I of the parties.

– The ideal protocol execution. Here the simulator first learn the auxiliary
input z and possibly the input for the corrupted party (the simulator must
corrupt the same party as the adversary). Then he can choose the input of
the corrupted party for the probabilistic function f , the other inputs are
chosen honestly (i.e., the first input is x1 if the first party is uncorrupted,
and the second input x2 if the second party is).
Then the simulator learns the output I of f (we assume the output to be
equal for all parties). It may now generate a fake view v of the corrupted
parties. The ideal protocol execution then consists of v and I.

Of course, in our case the probabilistic function f (the coin-toss) has no input,
so the above definition gets simpler.

What we have sketched above is what we call computational stand-alone sim-
ulatability. We further define statistical stand-alone simulatability and perfect
stand-alone simulatability. In these cases we do not consider efficient adversaries
and simulators, but unlimited ones. In the case of statistical stand-alone sim-
ulatability we require the real and ideal protocol execution to be statistically
indistinguishable (and not only computationally), and in the perfect case we
even require these distributions to be identical.

Universal Composability. In contrast to stand-alone simulatability, Universal
Composability [6] is a much stricter security notion. The main difference is the
existence of an environment, that may interact with protocol and adversary
(or with ideal functionality and simulator) and try to distinguish between real

3 In fact, [13] does not use the name stand-alone simulatability but simply speaks
about security in the malicous model. We adopt the name stand-alone simulatability
for this paper to be able to better distinguish the different notions.

508 D. Hofheinz, J. Müller-Quade, and D. Unruh

and ideal protocol. This additional strictness brings the advantage of a versatile
composition theorem (the Universal Composition Theorem [6]).

We only sketch the model here and refer to [6] for details.
A protocol consists of several machines that may (a) get input from the envi-

ronment, (b) give output to the environment (both also during the execution of
the protocol), and (c) send messages to each other.

The real protocol execution consists of a protocol π, an adversary A and an
environment Z. Here the environment may freely communicate with the adver-
sary, and the latter has full control over the network, i.e., it may deliver, delay or
drop messages sent between parties. We assume the authenticated model in this
paper, so the adversary learns the content of the messages but may not modify
it. When Z terminates, it gives a single bit of output. The adversary may choose
to corrupt parties at any point in time.4

The ideal protocol execution is defined analogously, but instead of a protocol
π there is an ideal functionality F and instead of the adversary there is a sim-
ulator S. The simulator can only learn and influence protocol data, if (a) the
functionality explicitly allows this, or (b) it corrupts a party (note that the simu-
lator may only corrupt the same parties as the adversary). In the latter case, the
simulator can choose inputs into the functionality in the name of that party and
gets the outputs appartaining to that party. In the case of uncorrupted parties,
the environment is in control of the corresponding in- and output of the ideal
functionality.

We say a protocol π universally composably (UC)-implements an ideal func-
tionality F (or short π is universally composable if F is clear from the context),
if for any efficient adversary A, there is an efficient simulator S, s.t. for all effi-
cient environments Z and all auxiliary inputs z for Z, the distributions of the
output-bit of Z in the real and the ideal protocol execution are indistinguishable.

What has been sketched above we call computational UC. We further define
statistical and perfect UC. In these notions, we allow adversary, simulator and
environment to be unlimited machines. Further, in the case of perfect UC, we
require the distributions of the output-bit of Z to be identical in real and ideal
protocol execution.

The Ideal Functionality for Coin Toss. To describe the task of implement-
ing a universally composable coin-toss, we have to define the ideal functionality
of n-bit coin-toss.

In the following, let n denote a positive integer-valued function.
Below is an informal description of our ideal functionality for a n-bit coin toss.

First, the functionality waits for initialization inputs from both parties P1 and
P2. As soon as both parties have this way signalled their willingness to start, the
functionality selects n coins in form of an n-bit string κ uniformly and sends this
κ to the adversary. (Note that a coin toss does not guarantee secrecy of any kind.)

4 It is then called an adaptive adversary. If the adversary can only corrupt parties
before the start of the protocol, we speak of static corruption. All results in this
paper hold for both variants of the security definition.

On the (Im-)Possibility of Extending Coin Toss 509

If the functionality now sent κ directly and without delay to the parties, this
behaviour would not be implementable by any protocol (this would basically
mean that the protocol output is immediately available, even without interac-
tion). So the functionality lets the adversary decide when to deliver κ to each
party. Note however, that the adversary may not in any way influence the κ that
is delivered.

A more detailed description follows:

Ideal functionality CTn (n-bit Coin Toss)

1. Wait until there have been “init” inputs from P1 and P2. Ignore messages
from the adversary, but immediately inform the adversary about the init.

2. Select κ ∈ {0, 1}n uniformly and send κ to the adversary. From now on:
– on the first (and only the first) “deliver to 1” message from the ad-

versary, send κ to P1,
– on the first (and only the first) “deliver to 2” message from the ad-

versary, send κ to P2.

Using CTn, we can also formally express what we mean by extending a coin
toss. Namely:

Definition 1. Let n = n(k) and m = m(k) be positive, polynomially bounded
and computable functions such that m(k) < n(k) for all k. Then a protocol is a
universally composable (m → n)-coin toss extension protocol if it securely and
non-trivially implements CTn by having access only to CTm. This security can
be computational, statistical or perfect.

By a “non-trivial” implementation we mean a protocol that, with overwhelming
probability, guarantees outputs if no party is corrupted and all messages are de-
livered. (Alternatively, one may also consider protocols that provide output with
overwhelming probability.) This requirement is useful since without it, a trivial
protocol that does not generate any output formally implements every function-
ality. (Cf. [10] and [2, Section 5.1] for more discussion and formal definitions of
“non-triviality.”)

On Unlimited Simulators. Following [3], we have modelled statistical and
perfect stand-alone and UC security using unlimited simulators. Another ap-
proach is to require the simulators to be polynomial in the running-time of the
adversary. All our results apply also to that case: For the impossibility results,
this is straightforward, since the security notion gets stricter when the simula-
tors become more restricted. The only possibility result for statistical/perfect
security is given in Theorem 5. There, the simulator we construct is in fact
polynomial in the runtime of the adversary.

In the following sections, we investigate the existence of such coin toss ex-
tension protocols, depending on the desired security level (i.e., computational /
statistical / perfect security) and the parameters n and m.

510 D. Hofheinz, J. Müller-Quade, and D. Unruh

3 The Computational Case

3.1 Universal Composability

In the following, we need the assumption of enhanced trapdoor permutations
with dense public descriptions (called ETD henceforth). Roughly, these are trap-
door permutations with the additional properties that (i) one can choose the
public key in an oblivious fashion, i.e., even given the coin tosses we used it
is infeasible to invert the function, and (ii) the public keys are computationally
indistinguishable from random strings. We also need the notion of exponentially-
hard ETD, which are secure even against subexponential-time adversaries. For
detailed definitions, cf. the full version [14].

Lemma 1. There is a constant d ∈ s.t. the following holds:
Assume that ETD exist, s.t. the size of the circuits describing the ETD is

bounded by s(k) for security parameter k.5

Then there is a protocol π using a uniform common reference string (CRS)
of length s(k)d, s.t. π securely UC-realises a bit commitment that can be used
polynomially many times.

A protocol for realising bit commitment using a CRS has been given in [10]. To
show this lemma, we only need to review their construction to see, that a CRS
of length sd is indeed sufficient. For details, see the full version [14].

Lemma 2. Let s(k) be a polynomially bounded function, that is computable in
time polynomial in k.

Assume one of the following holds:
– ETD exist and s is a polynomially-large function.
– Exponentially-hard ETD exist and s is a superlogarithmic function.

Then there also exist a constant e ∈ independent of s and ETD, s.t. the size
of the circuits describing the ETD is bounded by s(k)e for security parameter k.

This is shown by scaling the security parameter of the original ETD. The proof
is given in the full version [14].

Theorem 1. Let n = n(k) and m = m(k) be polynomially bounded and effi-
ciently computable functions. Assume one of the following conditions holds:
– m is polynomially-large and ETD exist, or
– m is superpolylogarithmic and exponentially-hard ETD exist.

Then there is a polynomial-time computationally universally composable protocol
π for (m → n)-coin toss extension.

5 By the size of the circuits we means the total size of the circuits describing both
the key generation and the domain sampling algorithm. Note that then trivially also
the size of the resulting keys and the amount of randomness used by the domain
sampling algorithm are bounded by s(k).

On the (Im-)Possibility of Extending Coin Toss 511

Proof. Let d be as in Lemma 1. Let further e be as in Lemma 2. If m is
polynomially-large or superpolylogarithmic, then s := m1/(de) is polynomially-
large or superlogarithmic, resp. So, by Lemma 2 there are ETD, s.t. the size of
the circuits describing the ETD is bounded by se = m1/e. Then, by Lemma 1
there is a UC-secure protocol for implementing n bit commitments using an
(m1/d)d = m-bit CRS.

It is straightforward to see that using n UC-bit-commitments one can UC-
securely implement an n-bit coin-toss using the protocol from [5]. Furthermore,
an m-bit CRS can be trivially implemented using an m-bit coin-toss. Using the
Composition Theorem we can put the above constructions together and get a
protocol that UC-realises an n-bit coin-toss using an m-bit coin-toss. ��
Note that given stronger, but possibly unrealistic assumptions, the lower bound
for m in Theorem 1 can be decreased. If we assume that for any superlogarithmic
m, there are ETD s.t. the size of their circuits is bounded by m1/d (where d is the
constant from Lemma 1), we get coin-toss extension even for superlogarithmic
m (using the same proof as for Theorem 1, except that instead of Lemma 2 we
use the stronger assumption).

However, we cannot expect an even better lower bound for m, as the following
theorem shows:

Theorem 2. Let n = n(k) and m = m(k) be functions with n(k) > m(k) ≥ 0
for all k, and assume that m is not superlogarithmic (i.e., 2−m is non-negligible).
Then there is no non-trivial polynomial-time computationally universally com-
posable protocol for (m → n)-coin toss extension.

Proof (sketch). Assume for contradiction that protocol π, with parties P1 and P2
using CTm, implements CTn (with m, n as in the theorem statement). Let A1 be
an adversary on π that, taking the role of a corrupted party P1, simply reroutes
all communication of P1 (with either P2 or CTm) to the protocol environment
Z1 and thus lets Z1 take part as P1 in the real protocol.

Imagine a protocol environment Z1, running with π and A1 as above, that
keeps and internal simulation P1 of P1 and lets this simulation take part in the
protocol (through A1). After a protocol run, Z1 inspects the output κ1 of P1
and compares it to the output κ2 of the uncorrupted P2.

In a real protocol run with π, A1, and Z1, we will have κ1 = κ2 with over-
whelming probability since π non-trivially implements CTn, and CTn guarantees
common outputs. So a simulator S1, running in the ideal model with CTn and
Z1, must be able to achieve that the ideal output κ2 (that is ideally chosen by
CTn and cannot be influenced by S1) is identical to what the simulation P1
of P1 inside Z1 outputs. In that sense, S1 must be able to “convince” P1 to
also output κ2. To this end, S1 may—and must—fake a complete real protocol
communication as A1 would deliver it to Z1 (and thus, to P1).

However, then we can construct another protocol environment Z2 that expects
to take the role of party P2 in a real protocol run (just like Z1 expected to take
the role of P1). To this end, an adversary A2 on π with corrupted P2 is employed
that forwards all communication of P2 with either P1 or CTn to Z2. Internally,

512 D. Hofheinz, J. Müller-Quade, and D. Unruh

Z2 now simulates S1 (and not P2!) from above and an instance CTn of the trusted
host CTn. Recall that S1, given a target string κ by CTn, mimics an uncorrupted
P2 along with an instance of CTm. In that situation, S1 can convince an honest
P1 with overwhelming probability to eventually output κ.

Chances are 2−m that the CTm-instance made up by S1 outputs the same
seed as the real CTm in a run of Z2 with π and A2. So with probability at
least 2−m − μ for negligible μ, in such a run, Z2 observes a P1-output κ that is
identical to the output of the internally simulated CTn. But then, by assumption
about the security of π, there is also a simulator S2 for A2 and Z2 that provides
Z2 with an indistinguishable view. In particular, in an ideal run with S2 and
CTn, Z2 observes equal outputs from CTn and CTn with probability at least
2−m −μ′ for negligible μ′. This is a contradiction, as both outputs are uniformly
and independently chosen n-bit strings, and n ≥ m + 1. ��

4 Statistical and Perfect Cases

4.1 Stand-Alone Simulatability

We start off with a negative result:

Theorem 3. Let m < n be functions in the security parameter k. If m is not
superlogarithmic, there is no two-party n-bit coin-toss protocol π (not even an
inefficient one) that uses an m-bit coin-toss and has the following properties:
– Non-triviality. If no party is corrupted, the probability that the parties give

different, invalid or no output is negligible (by invalid output we mean output
not in {0, 1}n).

– Security. For any (possibly unbounded) adversary corrupting one of the par-
ties there is a negligible function μ, s.t. for every security parameter k and
every c ∈ {0, 1}n, the probability for protocol output c is at most 2−n +μ(k).

If we require perfect non-triviality (the probability for different or no outputs is
0) and perfect security (the probability for a given output c is at most 2−n), such
a protocol π does not exist, even if m is superlogarithmic.

Proof (sketch). It is sufficient to consider the case n = m + 1.
Without loss of generality, we can assume that the available m-bit coin toss

is only used at the end of the protocol. Similarly, we can assume that in the
honest case, the parties never output distinct values. A detailed proof for these
statements can be found in the full proof.

To show the theorem, we first consider “complete transcripts” of the protocol.
By a complete transcript we mean all messages sent during the run of a protocol,
excluding the value of the m-bit coin-toss. We distinguish three sets of complete
transcripts: the set A of transcripts having non-zero probability for the protocol
output 0n, the set B of transcripts having zero probability of output 0n and
zero probability that the protocol gives no output, and the set C of transcripts
having non-zero probability of giving no output. Note that, since for a complete
transcript, the protocol output only depends on the m-bit coin-toss, any of the
above non-zero probabilities is at least 2−m.

On the (Im-)Possibility of Extending Coin Toss 513

For any partial transcript p (i.e., a situation during the run of the protocol),
we define three values α, β, γ. The value α denotes the probability with which
a corrupted Alice can enforce a transcript in A starting from p, the value β
denotes the probability with which a corrupted Bob can enforce a transcript in
B, and the value γ denotes the probability that the complete protocol transcript
will lie in C if no-one is corrupted. We show inductively that for any partial
transcript p, (1 − α)(1 − β) ≤ γ. In particular, this holds for the beginning of
the protocol. For simplicity, we assume that 2−m is not only non-negligible, but
noticeable (in the full proof, the general case is considered). Since a transcript
in C gives no output with probability at least 2−m, the probability that the
protocol generates no output (in the uncorrupted case) is at least 2−mγ. By the
non-triviality condition, this probability is negligible, so γ must be negligible,
too. So (1 − α)(1 − β) is negligible, too. Therefore max {1 − α, 1 − β} must be
negligible. For now, we assume that 1−α is negligible or 1− β is negligible (for
the general case, see the full proof).

If 1 − α is negligible, the probability for output 0n is at least 2−mα. Since
α is overwhelming and 2−m noticeable, this is greater than 2−n = 1

22−m by a
noticeable amount which contradicts the security property.

If 1 − β is negligible, we consider the maximum probability a corrupted Bob
can achieve that the protocol output is not 0n. By the security property, this
probability should be at most (2n−1)2−n plus a negligible amount, which is not
overwhelming. However, since every transcript in B gives such an output with
probability 1, the probability of such is β, which is overwhelming, in contradic-
tion of the security property.

The perfect case is proven similarly. ��
The full proof is given in the full version [14].

Corollary 1. By a non-trivial coin-toss protocol we mean a protocol s.t. (in the
uncorrupted case) the probability that the parties give no or different output is
negligible. By a perfectly non-trivial coin-toss protocol where this probability is
zero.

Let m be not superlogarithmic and n > m. Then there is no non-trivial pro-
tocol realising n-bit coin-toss using an m-bit coin-toss in the sense of statistical
stand-alone simulatability.

Let m be any function (possibly superlogarithmic) and n > m. Then there is
no perfectly non-trivial protocol realising n-bit coin-toss using an m-bit coin-toss
in the sense of perfect stand-alone simulatability.

Proof. A statistically secure protocol would have the security property from
Theorem 3 and thus, if non-trivial, contradict Theorem 3. Analogously for perfect
security. ��
However, not all is lost:

Now we will prove that there exists a protocol for coin toss extension from m
to n bit which is statistically stand-alone simulatably secure. The basic idea is
to have the parties P1 and P2 contribute random strings to generate one string

514 D. Hofheinz, J. Müller-Quade, and D. Unruh

with sufficiently large min-entropy (the min-entropy of a random variable X
is defined as minx − log Pr[X = x]). The randomness from this string is then
extracted using a randomness extractor. Interestingly the amount of perfect
randomness (i.e., the size of the m-bit coin-toss) one needs to invest is smaller
than the amount extracted. This makes coin toss extension possible.

To obtain the coin toss extension we need a result about randomness extrac-
tors able to extract one bit of randomness while leaving the seed reusable like a
catalyst.

Lemma 3. For every m there exists a function hm : {0, 1}m × {0, 1}m−1 →
{0, 1}, (s, x) �→ r such that for a uniformly distributed s and for an x with a
min-entropy of at least t the statistical distance of s‖hm(s, x) and the uniform
distribution on {0, 1}m+1 is at most 2−t/2/

√
2.

Proof. Let hm(s, x) := 〈s1 . . . sm−1, x〉⊕sm. Here 〈·, ·〉 denotes the inner product
and ⊕ the addition over GF(2). It is easy to verify that hm(s, ·) constitutes
a family of universal hash functions [11], where s is the index selecting from
that family. Therefore the Leftover Hash Lemma [15, 17] guarantees that the
statistical distance between s‖hm(s, x) and the uniform distribution on {0, 1}m+1

is bounded by 1
2

√
2 · 2−t = 2−t/2/

√
2. ��

With this function hm a simple protocol is possible which extends m(k) coin
tosses to m(k) + 1 if the function m(k) is superlogarithmic.

Theorem 4. Let m(k) be a superlogarithmic function, then there exists a con-
stant round statistically stand-alone simulatable protocol that realises an (m+1)-
bit coin-toss using an m-bit coin-toss.

Proof. Let hm be as in Lemma 3. Then the following protocol realises a coin
toss extension by one bit. Assume m := m(k) where k is the security parameter.
1. P1 uniformly chooses a ∈ {0, 1}�m−1

2 � and sends a to P2

2. P2 uniformly chooses b ∈ {0, 1}
m−1
2 � and sends b to P1

3. If one party fails to send a string of appropriate length or aborts then this
string is assumed by the other party to be an all-zero string of the appropriate
length

4. P1 and P2 invoke the m-bit coin toss functionality and obtain a uniformly
distributed s ∈ {0, 1}m. If one party Pi fails to invoke the coin toss function-
ality or aborts, then the other party chooses s at random

5. Both P1 and P2 compute s‖hm(s, a‖b) and output this string.
Similar to construction 7.4.7 in [13] the protocol is constructed in a way that

the adversary is not able to abort the protocol (not even by not terminating).
Hence we can safely assume that the adversary will send some message of the
correct length and will invoke the coin toss functionality. We assume the adver-
sary to corrupt P2, corruption of P1 is handled analogously. Further we assume
the random tape of A to be fixed in the following. Due to these assumptions
there exists a function fA : {0, 1}�m/2� → {0, 1}
m/2� for each real adversary A
such that the message b sent in step 2 of the protocol equals fA(a). There is no

On the (Im-)Possibility of Extending Coin Toss 515

loss in generality if we assume the view of the parties to consists of just a, b, s
and the protocol output to be s‖hm(s, a‖b).

Now for a specific adversary A with fixed random tape the output distribution
of the real protocol (i.e., view and output) is completely described by the fol-

lowing experiment: choose a
R∈ {0, 1}�m/2�, let b ← fA(a), choose s

R∈ {0, 1}m(k),
let r ← s‖hm(s, a‖b) and return ((a, b, s), r).

We now describe the simulator. To distinguish the the random variables in the
ideal model from their real counterparts, we decorate them with a ∼, e.g., ã, b̃, s̃.
The simulator in the ideal model obtains a string r̃

R∈ {0, 1}m+1 from the ideal n-

bit coin-toss functionality and sets s̃ = r1 . . . rm. Then the simulator chooses ã
R∈

{0, 1}�m−1
2 � and computes b̃ = fA(ã) by giving ã to a simulated copy of the real

adversary. If hm(s̃, ã‖b̃) = r̃m+1 then the simulator gives s̃ to the simulated real
adversary expecting the coin toss. Then the simulator outputs the view (ã, b̃, s̃).
If however, hm(s̃, ã‖b̃) �= r̃m+1 then the simulator rewinds the adversary, i.e., the

simulator chooses a fresh ã
R∈ {0, 1}�m−1

2 � and again computes b̃ = fA(a). If now
hm(s̃, ã‖b̃) = r̃m+1 the simulator outputs (ã, b̃, s̃). If again hm(s̃, ã‖b̃) �= r̃m+1
then the simulator rewinds the adversary again. If after k invocations of the
adversary no triple (ã, b̃, s̃) was output, the simulator aborts and outputs fail .

To show that the simulator is correct, we have to show that the following to
distributions are statistically indistinguishable: ((a, b, s), r) as defined in the real
model, and ((ã, b̃, s̃), r̃).

By construction of the simulator, it is obvious that the two distributions are
identical under the condition that rm = 0, r̃m = 0 and that the simulator
does not fail. The same holds given rm = 1, r̃m = 1 and that the simulator
does not fail. Therefore it is sufficient to show two things: (i) the statistical
distance between r and the uniform distribution on n bits is negligible, and
(ii) the probability that that the simulator fails is negligible. Property (i) is
shown using the properties of the randomness extractor hm. Since a is chosen
at random, the min-entropy of a is at least �m−1

2 � ≥ m
2 − 1, so the min-entropy

of a‖b is also at least m
2 − 1. Since s is uniformly distributed, it follows by

Lemma 3 that the statistical distance between r = s‖hm(s, a‖b) is bounded by
2−m/4−1/2/

√
2 = (2−m)1/4/2. Since for superlogarithmic m it is 2−m negligible,

this statistical distance is negligible.
Property (ii) is then easily shown: From (i) we see, that after each invocation

of the adversary the distribution of hm(s̃, ã‖b̃) is negligibly far from uniform. So
the probability that hm(s̃, ã‖b̃) �= r̃m is at most negligibly higher than 1

2 . Since
the hm(s̃, ã‖b̃) in the different invokations of the adversary are independent, the
probability that hm(s̃, ã‖b̃) �= r̃m after each activation is neglibigly far from 2−k.
So the simulator fails only with negligible probability.

It follows that the real and the ideal protocol execution are indistinguishable,
and the protocol stand-alone simulatably implements an (m+1)-bit coin-toss. �

The idea of the one bit extension protocol can be extended by using an extractor
which extracts a larger amount of randomness (while not necessarily treating the
seed like a catalyst). This yields constant round coin toss extension protocols.

516 D. Hofheinz, J. Müller-Quade, and D. Unruh

However, the simulator needed for such a protocol does not seem to be efficient,
even if the real adversary is. To get a protocol that also fulfils both the prop-
erty of computational stand-alone simulatabiliy and of statistical stand-alone
simulatabiliy, we need a simulator that is efficient if the adversary is.

Below we give such a coin toss extension protocol for superlogarithmic m(k)
which is statistically secure and computationaly secure, i.e., the simulator for
polynomial adversaries is polynomially bounded, too. The basic idea here is to
extract one bit at a time in polynomially many rounds.

Theorem 5. Let m(k) be superlogarithmic, and p(k) be a positive polynomially-
bounded function, then there exists a statistically and computationally stand-
alone simulatable protocol that realises an (m + p)-bit coin-toss using an m-bit
coin-toss.

Proof. Let hm be as in Lemma 3. Then the following protocol realises a coin
toss extension by p(k) bits.
1. for i = 1 to p(k) do

(a) P1 uniformly chooses ai ∈ {0, 1}�m−1
2 � and sends ai to P2

(b) P2 uniformly chooses bi ∈ {0, 1}
m−1
2 � and sends bi to P1

(c) If one party fails to send a string of appropriate length or aborts then
this string is assumed by the other party to be an all-zero string of the
appropriate length

2. P1 and P2 invoke the m-bit coin toss functionality and obtain a uniformly
distributed s ∈ {0, 1}m. If one party Pi fails to invoke the coin toss function-
ality or aborts, then the other party chooses s at random

3. P1 and P2 compute s‖hm(s, a1‖b1)‖ . . . ‖hm(s, ap(k)‖bp(k)) and output this
string.

We only roughly sketch the differences to the proof of Theorem 4. For each proto-
col round the simulator follows the strategy described in the proof of Theorem 4
(i.e., the simulator rewinds the adversary by one round, if the coin-toss produced
is not the correct one.) Then using standard hybrid techniques it can be shown
that this simulator indeed gives an indistinguishable ideal protocol run. Here it is
only noteworthy that we use the fact that s‖hm(s, a1‖b1)‖ . . . ‖hm(s, ap(k)‖bp(k))
is statistically indistinguishable from the uniform distribution on m + p bits.
However, this follows directly from Lemma 3 and the fact that each ai‖bi has
min-entropy at least �m−1

2 � even given the values of all aμ‖bμ for μ < i. ��

4.2 Universal Composability (Statistical/Perfect Case)

In the case of statistical security, adversary and protocol environment are allowed
to be computationally unbounded. In that case, we show that there is no simu-
latably secure coin toss extension protocol that runs in a polynomial number of
rounds. This is forced by requiring the parties to halt after a polynomial num-
ber of activations. However, note that we do not impose any restrictions on the
amount of computational work these parties perform in one of those activations.

The proof of this statement is done by contradiction. Furthermore, the proof
is split up into an auxiliary lemma and the actual proof. In the auxiliary lemma,

On the (Im-)Possibility of Extending Coin Toss 517

we show that without loss of generality, a protocol for statistically universally
composable coin toss extension has a certain outer form. Then we show that any
such protocol (of this particular outer form) is insecure.

For the following statements, we always assume that m = m(k), n = n(k)
are arbitrary functions, only satisfying 0 ≤ m(k) < n(k) for all k. We also
restrict to protocols that proceed in a polynomial number of rounds. That is,
by a “protocol” we mean in the following one in which each party halts after
at most p(k) activations, where p(k) is a polynomial which depends only on the
protocol. (As stated above, the parties are still unbounded in each activation.)
We start with a helping lemma whose proof is available in the full version [14].

Lemma 4. If there is a statistically universally composable protocol for (m →
n)-coin toss extension, then there is also one in which each party

– has only one connection to the other party and one connection to CTm,
– in each activation sends either an “init” message to CTm or some message

to the other party,
– sends in each protocol run at most one message to CTm, and this is always

an “init” message,
– the internal state of each of the two parties consists only of the view that this

party has experienced so far, and
– after Pi sends “init” to CTm, it does not further communicate with P3−i

(for i = 1, 2 and in case of no corruptions).

We proceed with

Lemma 5. There is no statistically universally composable protocol for (m →
n)-coin toss extension which meets the requirements from Lemma 4.

Proof. Assume for contradiction that π, using CTm, is a statistically universally
composable implementation of CTn, and also satisfies the requirements from
Lemma 4.

Assume a fixed environment Z0 that gives both parties “init” input and then
waits for both parties to output a coin toss result. Consider an adversary A0
that delivers all messages between the parties immediately. The resulting setting
D0 is depicted in Figure 1.

Denote the protocol communication in a run of D0, i.e., the ordered list of
messages sent between P1 and P2, by com . Denote by κ1 and κ2 the final outputs
of the parties. For M ⊆ {0, 1}n and a possible protocol communication prefix c,
let E(M, c) be the probability that the protocol outputs are identical and in M ,
provided that the protocol communication starts with c, i.e.,

E(M, c) := Pr[κ1 = κ2 ∈ M | c ≤ com] ,

where x ≤ y means that x is a prefix of y.
Note that the parties have, apart from their communication com , only the seed

ω ∈ {0, 1}m provided by CTm for computing their final output κ. So we may
assume that there is a deterministic function f for which κ1 = κ2 = f(com , ω)
with overwhelming probability.

518 D. Hofheinz, J. Müller-Quade, and D. Unruh

P1

ω ω

P2
com

CTm

A0

κ2

Z0

κ1

P1

ω ω

P2

Z1

A1

CTm

Z0

κ2κ1

Fig. 1. Left: The initial setting D0 for the statistical case. (Some connections which are
not important for our proof have been omitted.) Right: Setting D1 with a corrupted
P1. Setting D2 (with P2 corrupted instead of P1) is defined analogously.

For a fixed protocol communication com = c, consider the set

Mc := {0, 1}n \ { f(c, s) | s ∈ {0, 1}m }

of “improbable outputs” after communication c. Then obviously |Mc| ≥ 2n −
2m ≥ 2n−1. By definition of the ideal output (i.e., the output of CTn in the
ideal model), this implies that for sufficiently large security parameters k, the
probability that κ1 = κ2 ∈ Mc is at least 2/5. (Here, any number strictly between
0 and 1/2 would have done as well.) Otherwise, an environment could distinguish
real and ideal model by testing for κ1 = κ2 ∈ Mc. Since E(Mc, ε) is exactly that
probability, we have E(Mc, ε) ≥ 2/5 for sufficiently large k. Also, E(Mc, c) is
negligible by definition, so Mc satisfies

E(Mc, ε) − E(Mc, c) ≥ 1
3

(1)

for sufficiently large k.
Since the protocol consists by assumption only of polynomially many rounds,

c is a list of size at most p(k) for a fixed polynomial p. This means that there is
a prefix c of c and a single message m (either sent from P1 to P2 or vice versa)
such that cm ≤ c and

E(Mc, c) − E(Mc, cm) ≥ 1
3p(k)

(2)

for sufficiently large k. Intuitively, this means that at a certain point during the
protocol run, a single message m had a significant impact on the probability
that the protocol output is in Mc.

Note that such an m must be either sent by P1 or P2. So there is a j ∈ {1, 2},
such that for infinitely many k, party Pj sends such an m with probability at

On the (Im-)Possibility of Extending Coin Toss 519

least 1/2. We describe a modification Dj of setting D0. In setting Dj , party Pj is
corrupted and simulated (honestly) inside Zj . Furthermore, adversary Aj simply
relays all communication between this simulation inside Zj and the uncorrupted
party P3−j . For supplying inputs to the simulation of Pj and to the uncorrupted
P3−j , a simulation of Z0 is employed inside Zj . The situation (for j = 1) is
depicted in Figure 1.

Since Dj is basically only a re-grouping of D0, the random variables com, ω,
and κi are distributed exactly as in D0, so we simply identify them. In particular,
in Dj , for infinitely many k, there is with probability at least 1/2 a prefix c and
a message m sent by Pj of com that satisfy (2).

Now we slightly change the environment Zj into an environment Z ′
j . Each

time the simulated Pj sends a message m to P3−j , Z ′
j checks for all subsets M

of {0, 1}n whether

∃M ⊆ {0, 1}n : E(M, c) − E(M, cm) ≥ 1
3p(k)

, (3)

where c denotes the communication between Pj and P3−j so far.
If (3) holds at some point for the first time, then Z ′

j tosses a coin b uniformly
at random, and proceeds as follows: if b = 0, then Z ′

j keeps going just as Zj

would have. In particular, Z ′
j then lets Pj send m to P3−j . However, if b = 1,

then Z ′
j rewinds the simulation of Pj to the point before that activation, and

activates Pj again with fresh randomness, thereby letting Pj send a possibly
different message m′. In the further proof, c, m, and M refer to these values for
which (3) holds.

In any case, after having tossed the coin b once, Z ′
j remembers the set M from

(3), and does not check (3) again. After the protocol finishes, Zj outputs either
(⊥,⊥) (if (3) was never fulfilled), or (b, β) for the evaluation β of the predicate
[κ1 = κ2 ∈ M] (i.e., β = 1 iff the protocol gives output, the protocol outputs
match and lie in M).

Now by our choice of j, Pr[b �= ⊥] ≥ 1/2 for infinitely many k.
Also, Lemma 4 guarantees that the internal state of the parties at the time

of tossing b consists only of c. So, when Z ′
j has chosen b = 1, and rewound the

simulated Pj , the probability that at the end of the protocol κ1 = κ2 ∈ M is the
same as the probability of that event in the setting Dj under the condition that
the communication com begins with c̄. This probability again is exactly E(M, c̄)
by definition.

Similarly, when Z ′
j has chosen b = 0, the probability that at the end of the

protocol κ1 = κ2 ∈ M is the same as the probability of that event in the
setting Dj under the condition that the communication com begins with c̄m,
i.e. E(M, c̄m).

Therefore just before Z ′
j chooses b (i.e., when c̄ and M are already deter-

mined), the probability that at the end we will have β = 1 ∧ b = 1 is 1
2E(M, c̄)

and the probability of β = 1 ∧ b = 0 is 1
2E(M, c̄m). Therefore the difference

between these probabilities is at least 1
2

(
E(M, c̄) − E(M, c̄m)

) ≥ 1
3p(k) .

520 D. Hofheinz, J. Müller-Quade, and D. Unruh

Since this bound on the difference of the probabilities always holds when
b �= ⊥, by averaging we get

Pr[β = 1 ∧ b = 1 | b �= ⊥] − Pr[β = 1 ∧ b = 0 | b �= ⊥] ≥ 1
3p(k)

and using the fact that Pr[b �= ⊥] ≥ 1
2 for infinitely many k we then have that

Pr[β = 1 ∧ b = 1] − Pr[β = 1 ∧ b = 0] ≥ 1
6p(k)

(4)

for infinitely many k when Z ′
j runs with the real protocol as described above.

We show that no simulator Sj can achieve property (4) in the ideal model,
where Z ′

j runs with CTn and Sj . To distinguish random variables during a run
of Z ′

j in the ideal model from those in the real model, we add a tilde to a random
variable in a run of Z ′

j in the ideal model, e.g., b̃, β̃.
For any Sj achieving indistinguishability of real and ideal model, this can hap-

pen only with negligible probability, so we can assume without losing generality
that Sj always delivers outputs.

By construction of b̃ and κ, the variable b̃ and the tuple (M̃, κ) are independent
given b̃ �= ⊥. Hence, since β̃ is a function of M̃ and κ,

Pr
[
(b̃, β̃) = (0, 1)

]
= Pr

[
(b̃, β̃) = (1, 1)

]
. (5)

So comparing (4) and and (5), Z ′
j ’s output distribution differs non-negligibly in

real and ideal model. So no simulator Sj can simulate attacks carried out by Z ′
j

and Aj , which gives the desired contradication. ��
Combining the above Lemmas 4 and 5 we therefore get:

Theorem 6. There is no non-trivial statistically universally composable proto-
col for (m → n)-coin toss extension that proceeds in a polynomial of rounds.

The case of perfect security is shown analogously.

Acknowledgements. This work was partially supported by the projects Pro-
SecCo (IST-2001-39227) and SECOQC of the European Commission. Part of
this work was done while the first author was with the IAKS, Universität Karls-
ruhe. Further, we thank the anonymous referees for valuable comments.

References

1. Andris Ambanis, Harry Buhrman, Yevgeniy Dodis, and Heinz Röhrig. Multiparty
quantum coin flipping. In 19th Annual IEEE Conference on Computational Com-
plexity, Proceedings of CoCo 2002, pages 250–259. IEEE Computer Society, 2004.

2. Michael Backes, Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. On
fairness in simulatability-based cryptographic systems. In 3rd ACM Workshop on
Formal Methods in Security Engineering, Proceedings of FMSE 2005, pages 13–22.
ACM Press, 2005.

On the (Im-)Possibility of Extending Coin Toss 521

3. Michael Backes, Birgit Pfitzmann, and Michael Waidner. Secure asynchronous
reactive systems. IACR ePrint Archive, March 2004.

4. Mihir Bellare, Juan A. Garay, and Tal Rabin. Distributed pseudo-random bit
generators – a new way to speed-up shared coin tossing. In Fifteenth Annual ACM
Symposium on Principles of Distributed Computing, Proceedings of PODC 1996,
pages 191–200. ACM Press, 1996.

5. Manuel Blum. Coin flipping by telephone. In Allen Gersho, editor, Advances in
Cryptology, A report on CRYPTO 81, number 82-04 in ECE Report, pages 11–15.
University of California, Electrical and Computer Engineering, 1982.

6. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42th Annual Symposium on Foundations of Computer Science, Pro-
ceedings of FOCS 2001, pages 136–145. IEEE Computer Society, 2001.

7. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42th Annual Symposium on Foundations of Computer Science, Pro-
ceedings of FOCS 2001, pages 136–145. IEEE Computer Society, 2001.

8. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. IACR ePrint Archive, January 2005. Full and revised version of [7].

9. Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe
Kilian, editor, Advances in Cryptology, Proceedings of CRYPTO 2001, number
2139 in Lecture Notes in Computer Science, pages 19–40. Springer-Verlag, 2001.

10. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In 34th Annual ACM Sym-
posium on Theory of Computing, Proceedings of STOC 2002, pages 494–503. ACM
Press, 2002. Extended abstract.

11. J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions.
Journal of Computer and System Sciences, 18(2):143–154, April 1979.

12. Richard Cleve. Limits on the security of coin flips when half the processors are
faulty. In Eighteenth Annual ACM Symposium on Theory of Computing, Proceed-
ings of STOC 1986, pages 364–369. ACM Press, 1986.

13. Oded Goldreich. Foundations of Cryptography – Volume 2 (Basic Applications).
Cambridge University Press, May 2004.

14. Dennis Hofheinz, Jörn Müller-Quade, and Dominique Unruh. On the (im-)possib-
ility of extending coin toss. IACR ePrint Archive, 2006. Full version of this paper.

15. Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random genera-
tion from one-way functions. In Twenty-First Annual ACM Symposium on Theory
of Computing, Proceedings of STOC 1989, pages 12–24. ACM Press, 1989. Ex-
tended abstract.

16. Birgit Pfitzmann and Michael Waidner. A model for asynchronous reactive systems
and its application to secure message transmission. In IEEE Symposium on Security
and Privacy, Proceedings of SSP 2001, pages 184–200. IEEE Computer Society,
2001.

17. Douglas R. Stinson. Universal hash families and the leftover hash lemma, and ap-
plications to cryptography and computing. Journal of Combinatorial Mathematics
and Combinatorial Computing, 42:3–31, 2002.

Efficient Binary Conversion for Paillier
Encrypted Values

Berry Schoenmakers1 and Pim Tuyls2

1 Dept. of Mathematics and Computing Science, TU Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

berry@win.tue.nl
2 Philips Research Labs

Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
pim.tuyls@philips.com

Abstract. We consider the framework of secure n-party computation
based on threshold homomorphic cryptosystems as put forth by Cramer,
Damg̊ard, and Nielsen at Eurocrypt 2001. When used with Paillier’s
cryptosystem, this framework allows for efficient secure evaluation of
any arithmetic circuit defined over ZN , where N is the RSA modulus of
the underlying Paillier cryptosystem.

In this paper, we extend the scope of the framework by considering
the problem of converting a given Paillier encryption of a value x ∈ ZN

into Paillier encryptions of the bits of x. We present solutions for the
general case in which x can be any integer in {0, 1, . . . , N − 1}, and for
the restricted case in which x < N/(n2κ) for a security parameter κ. In
the latter case, we show how to extract the � least significant bits of x
(in encrypted form) in time proportional to �, typically saving a factor
of log2 N/� compared to the general case.

Thus, intermediate computations that rely in an essential way on
the binary representations of their input values can be handled without
enforcing that the entire computation is done bitwise. Typical examples
involve the relational operators such as < and =. As a specific scenario
we will consider the setting for (approximate) matching of biometric
templates, given as bit strings.

1 Introduction

We consider secure n-party computation in the framework based on threshold
homomorphic cryptosystems, as put forth by Cramer, Damg̊ard, and Nielsen
[CDN01]. To evaluate a given n-ary function f securely, one expresses f as an
arithmetic circuit C composed of elementary gates, such as addition gates and
multiplication gates. Given ciphertexts [[x1]], . . . , [[xn]], the gates are evaluated
one by one, ultimately resulting in a ciphertext [[f(x1, . . . , xn)]]. Here, [[x]] de-
notes a probabilistic encryption of x in the underlying threshold homomorphic
cryptosystem, which will be the Paillier cryptosystem [Pai99] throughout most of
this paper. The homomorphic property ensures that evaluation of addition gates

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 522–537, 2006.
c© International Association for Cryptologic Research 2006

Efficient Binary Conversion for Paillier Encrypted Values 523

is essentially for free, as addition may simply be done by multiplying two cipher-
texts. For multiplication gates, however, one needs a joint protocol involving at
least one threshold decryption in the underlying cryptosystem.

An important feature of this type of protocols for secure computation is that
the communication complexity, which is the dominating complexity measure, is
O(nk|C|) bits, where k is a security parameter, and |C| is the number of (mul-
tiplication) gates of circuit C. Moreover, if Paillier is used as the underlying
cryptosystem, the result of [CDN01] is particularly efficient in handling arith-
metic with large numbers. Each arithmetic gate handles integer values modulo
N , where N is the RSA modulus used for Paillier, at a cost independent of the
size of these integers.

Arithmetic circuits for functions that also involve some bit-oriented steps tend
to be inefficient, as can be seen from the following simple but somewhat con-
trived example. Consider the function ws(x1, . . . , xn) which outputs the Ham-
ming weight of the binary representation of the sum

∑n
i=1 xi of the inputs xi,

which are assumed to be from a bounded range, 0 ≤ xi < 264 say. Lacking an
efficient secure conversion of an integer value into its binary presentation, the
natural thing to do would be to require that the inputs xi are given bitwise
(hence as 64 encrypted bits each), and perform the entire computation bitwise.
This way, however, no advantage is taken from the potential of arithmetic cir-
cuits.

In this paper, we address this shortcoming by means of efficient protocols for
securely converting an integer into its binary representation. Such a protocol
can be viewed as a new type of gate, next to the addition/subtraction gates
and multiplication/division gates that are already known from [CDN01]. We
call it the BITREP gate. So, on input [[x]], 0 ≤ x < 2m, a BITREP gate outputs
[[x0]], . . . , [[xm−1]], of course, without leaking any information on x.

A moment’s thought will reveal that an efficient BITREP gate is only feasible
if a cryptosystem such as Paillier is used as the underlying cryptosystem. For
instance, the approach of [ST04], which is based on the homomorphic ElGamal
cryptosystem, cannot lead to an efficient BITREP gate: given [[x]], 0 ≤ x < 2m,
extracting x cannot be done in time polynomial in m, as it involves solving
a discrete log problem even when one knows the private key for [[·]] (if [[x]] =
(gr, hrgx), one needs to recover x from gx). For a Paillier ciphertext of the form
gxrN mod N2, there is no such contradiction as x can be recovered efficiently if
one knows the private key.

As a related problem, we will also provide an efficient protocol for computing
the least significant bits of an encrypted value, called an LSB gate. Clearly, a
cascade of LSB gates can also be used to implement a BITREP gate, but our
solutions for these gates will be of independent interest. The complexity of the
LSB gate is independent of m, for input [[x]], 0 ≤ x < 2m, under a mild restriction
on m in terms of N , such as m+100 < log2 N (in general, m+κ+log2 n < log2 N ,
for a security parameter κ).

As a further motivation for studying these problems we like to point out the
following application. Consider a constrained device which must send a certain

524 B. Schoenmakers and P. Tuyls

number of bits (ranging from a few hundred to a few thousand), which will be
processed further as inputs to a secure computation. The obvious approach of
sending a separate Paillier encryption for each of these many bits, however, may
be completely infeasible. Given the BITREP gate, it suffices if the device packs
the bits into one or more large integers, and sends these out using a single Paillier
encryption per integer.

A particularly interesting case of this scenario can be seen in the context
of biometric authentication. A tamper-resistant measuring device will obtain a
biometric sample, e.g., an IrisCode� consisting of 512 bytes, which it sends out
using a couple of Paillier encryptions. At the server side, the BITREP gate may
then be applied to obtain the encrypted bits, which are subsequently used to
evaluate securely whether the sample matches a stored (encrypted) biometric
template, which was previously obtained during enrollment. In such a system,
biometric details are never exposed in the clear, except in the measuring device
during capture. The relevance of such an approach has been argued, e.g. in
[DRS04, TG04, KAMR04].

Our Contributions
We present new n-party protocols for several variants of the problem of securely
computing the binary representation of an integer value. In each case we make
essential use of the Paillier cryptosystem (or variations thereof). The most gen-
eral solution, which we call the BITREP gate, handles input values that can
be any integer in {0, . . . , N − 1}, where N is an RSA modulus of k = log2 N
bits. The broadcast complexity of the BITREP gate ranges between O(nk2) and
O(n2k2 log k) depending on which subprotocols are used (e.g., for the generation
of jointly random bits).

Since k is large, ranging from 1024 to 2048 say, the cost of the BITREP gate
is high even if the actual inputs are known to lie in a much smaller range than
{0, . . . , N − 1}. Therefore, we also consider the case that the input values are
from a limited range {0, . . . , 2m − 1}, m < k − κ − log2 n, where κ is a security
parameter to be set such that 2−κ is negligible. In this case, we show how to
reduce the broadcast complexity by a factor of k/m compared to the general
case. The bound on m is not a severe restriction as typically κ + log2 n is much
smaller than k.

Finally, again for input values in {0, . . . , 2m − 1}, m < k − κ − log2 n, we
show how to extract the least significant bit in time independent of m (LSB
gate). More generally, we show how to extract the 	 least significant bits in time
proportional to 	 (LSBs gate). The broadcast complexity is reduced accordingly,
by a factor k/	 compared to the general solution, independent of m.

Apart from these new protocols (which rely on a special application of O(1)
interval proofs), we also show how to integrate the security proofs for these new
gates in the framework of [CDN01]. First, we observe that the security proof of
[CDN01] actually achieves a tight reduction, namely that a distinguisher of the
simulated vs. real protocol is transformed into a distinguisher for the underlying
cryptosystem without loss in success probability. Secondly, the proof of [CDN01]
is modular in the sense that a statistically indistinguishable simulation is given

Efficient Binary Conversion for Paillier Encrypted Values 525

for each of the basic gates separately: e.g., the multiplication gate is simulated
given inputs [[x]], [[y]] and corresponding output [[xy]].

To retain the tightness and modularity, however, we need to state the security
for a gate such as a BITREP gate in a particular way. It turns out to be impossible
to simulate our BITREP gate given only input [[x]] and corresponding outputs
[[x0]], . . . , [[xm−1]]. The reason is that the protocol for the BITREP gate produces
additional encryptions such as [[x0x1]] and encryptions of other monomials as
intermediate results, which cannot be computed by the simulator! This is an
interesting phenomenon and we show how to extend the framework of [CDN01]
to handle it. The LSB gate can easily be simulated, though, given just the input
[[x]] and corresponding output [[x0]].

We also highlight some applications of the new gates. A similar tradeoff as
mentioned above for biometric authentication is possible in the context of elec-
tronic voting protocols, where one would like to minimize the effort required of
the voter in casting an encrypted ballot (e.g., when the voter’s client software
needs to run on a simple mobile phone). This problem has already been con-
sidered in [DJ02], where incidentally Paillier encryption is used as well. Using a
BITREP gate one gets an interesting alternative to [DJ02]. To vote for a single
candidate x, 0 ≤ x < 2m say, one simply lets the voter release an encryption
[[x]]. To tally these votes we use the radix M representation of [CFSY96], where
M is an integer larger than the number of voters. A vote x will thus contribute
Mx to the final tally, represented as an integer in radix M . To compute this
exponentiation securely, one first computes [[x0]], . . . , [[xm−1]] from [[x]], using the
BITREP gate. Noting that Mx0 = 1+x0(M − 1) and so on, it follows that [[Mx]]
can be computed securely, using O(m) multiplication gates. The so-obtained en-
cryptions [[Mx]] (for all voters) are then multiplied together and one gets, upon
decryption, the election result in radix M representation.

Related Work
Independent of our work, the problem of securely computing the bits of an
integer value has been studied recently by Damg̊ard et al. [DFK+06]. An obvious
difference is they consider the unconditional setting, whereas we consider the
cryptographic model. This is reflected by the use of sharings (for an underlying
linear secret sharing scheme) in their case vs. the use of encryptions (for an
underlying threshold homomorphic cryptosystem) in our case.

The shared values as well as the shares and the arithmetic circuit in [DFK+06]
are all defined over Fp, for a prime p, where the security of the protocol does not
depend on the size of p. Prime p can thus be chosen freely to fit an application.
For example, to make things practical, one may use moderately large primes p of
64 bits say (e.g., to ensure that inputs of a reasonable size can be handled and,
also, to easily exclude some failure events that happen with O(1/p) probability).
In our case, however, the arithmetic circuit will be defined over ZN , where N
is the RSA modulus of a Paillier cryptosystem. Necessarily, the number N is
therefore very large, say 1024 upto 2048 bits.

The protocol of [DFK+06] for handling input values in {0, . . . , p− 1} and our
protocol for handling input values in {0, . . . , N−1} (the BITREP gate) follow the

526 B. Schoenmakers and P. Tuyls

same pattern. The emphasis in [DFK+06] is on constant round complexity (which
is achieved by solving various subproblems in constant rounds). In this paper,
we focus on techniques for handling inputs from a restricted range efficiently,
to limit the consequences of the fact that all arithmetic is done modulo N ,
where N is necessarily large: informally, to extract the 	 least significant bits,
the complexity of our protocol is independent of the size of the gap N − 2�.

The problem of securely computing the bits of an integer value has also been
considered by Algesheimer et al. [ACS02], in the unconditional setting, but re-
stricted to the passive case. Their approach follows a more complicated pattern,
involving an addition circuit for securely adding n numbers bitwise (rather than
just 2 numbers as we and [DFK+06] do), which does not readily seem to extend
to the problems and solutions considered in this paper and in [DFK+06].

2 Preliminaries

In this section, we introduce some notation and present the basic tools that we
need throughout the paper.

We assume the framework for secure computation based on threshold homo-
morphic cryptosystems of [CDN01], used with the Paillier cryptosystem. This
framework allows one to securely evaluate arithmetic circuits, composed of sev-
eral types of basic gates, as listed below. For simplicity, we assume that the
parties P1, . . . , Pn evaluating the circuit coincide with the parties running the
underlying (t + 1, n)-threshold Paillier cryptosystem. Here, t denotes the max-
imum number of statically, but actively corrupted parties tolerated by the cir-
cuit evaluation protocol. If a party fails to complete a step during any of the
(sub)protocols (e.g., if a proof fails), then that party is simply discarded and
the (sub)protocol is rerun by the remaining parties; we will not describe this
explicitly for the protocols in this paper.

The bounds on t are as in previous papers. For 0 ≤ t < n/2, the case of a dis-
honest minority, robustness is achieved directly using the protocol of [CDN01].
For n/2 ≤ t < n, the case of a dishonest majority, the protocol of [CDN01] can be
extended in a modular way to achieve various degrees of fairness: the new property
of “resource-fairness‘”, as introduced and studied in [GMPY06]), can be achieved
under additional intractability assumptions such as the strong-RSA assumption;
also, as described in [ST04], a strictly weaker form of fairness can be achieved with-
out requiring additional assumptions, using a simple gradual release approach.

2.1 Paillier Cryptosystem

The Paillier cryptosystem is a probabilistic, additively homomorphic encryption
scheme, known to be semantically secure under the Decisional Composite Residu-
osity Assumption [Pai99]. Several variations and generalizations of the basic Pail-
lier cryptosystem have been proposed since, see, e.g., [FPS00, DJ01, CS02, DJ03].
Below, we summarize the threshold variant of a generalized Paillier cryptosys-
tem, as introduced in [DJ01, Section 4.1], but any other variant providing thresh-
old decryption can be used as well for our purposes.

Efficient Binary Conversion for Paillier Encrypted Values 527

The public key consists of an RSA modulus N = pq of bit length k (security
parameter), where p, q are safe primes, p = 2p′ + 1 and q = 2q′ + 1. The set of
plaintexts is given by the additive group ZNs , and an encryption of a message
x ∈ ZNs takes the form [[x]] = (N + 1)xrNs

mod Ns+1 for random r ∈ Z∗
Ns+1

(case s = 1 corresponds to the basic Paillier cryptosystem).
The private key is given by the unique value d ∈ ZτNs satisfying d = 0 mod τ

and d = 1 mod Ns, where τ = p′q′. In the threshold case, polynomial shares di

for i = 1, . . . , n of d are generated and distributed parties P1, . . . , Pn. Decryption
of a ciphertext [[x]] is done by means of a (t, n)-threshold decryption protocol
requiring the cooperation of t or more parties, 1 ≤ t ≤ n. We refer to [DJ01]
for further details, noting that it is also proved that, given a ciphertext and the
corresponding plaintext, the decryption protocol can be simulated statistically
indistinguishable for an active, static adversary corrupting at most t parties.

Throughout this paper, the results are described for the case s = 1, as in
the original Paillier cryptosystem, such that the plaintext space is simply the
additive group ZN (but the results can readily be extended to the case s > 1).
In this case, the cryptosystem is additively homomorphic over ZN : given [[x]]
and [[y]] with x, y ∈ ZN we have [[x + y]] = [[x]][[y]], where multiplication of
ciphertexts is done modulo N2. Note that this implies that, for any c ∈ ZN ,
[[cx]] = [[x]]c mod N2.

2.2 Efficient Proofs

In order to withstand active attacks, we use several standard types of zero-
knowledge proofs (Σ-protocols). We will assume the random oracle model, so
that all the proofs are non-interactive and can be simulated easily. We use stan-
dard proofs for proving plaintext knowledge, equality of plaintexts, and that a
plaintext is a bit for given Paillier encryptions.

In particular, we will use efficient range proofs by which a party that generated
a Paillier encryption [[x]] can prove that x belongs to given interval using O(1)
modular exponentiations only. Although the hidden constant is quite large, the
O(1) methods certainly pay off for intervals of length 2100 and up, as we need
(hence, the size of the non-interactive versions of these proofs is O(k) for se-
curity parameter k, in the random oracle model). Efficient proofs for showing
that a committed integer value belongs to a given interval were introduced in
[Bou00], and later refined in [Lip03]. The underlying integer commitment scheme
of [FO97, DF02] relies on the strong RSA assumption. By proving equality of
such a committed value and an encrypted value (see, e.g., [DJ02]), one can thus
prove that an encrypted value belongs to a given interval.

2.3 Basic Gates and Circuits

In this section, we briefly describe the secure subprotocols (gates and circuits)
we need for our protocols. The distinction between gates and circuits may be
somewhat arbitrary.

We describe the standard gates for multiplication and inversion modulo N ,
followed by two gates (or circuits) for jointly generating random values. Finally,

528 B. Schoenmakers and P. Tuyls

we describe circuits for the bitwise operations used in our protocols. These are
the basic arithmetic operators for addition and subtraction of integers, and the
basic relational operators for comparison of integers.

The exact details of these gates and circuits are immaterial to the validity
of our constructions, but we do give an indication of the broadcast and round
complexities.

Multiplication and Inversion Gates. The general multiplication gate devel-
oped in [CDN01] allows n parties to compute an encryption [[xy]] given encryp-
tions [[x]] and [[y]], where x, y ∈ ZN , in a constant number of rounds.

In case one of the inputs, say input x, is private to one of the parties, say
party Pi, the following simplified multiplication protocol can be used, requiring
no interaction at all. Party Pi computes [[xy]] directly from [[y]] using the homo-
morphic property [[xy]] = [[y]]x. Party Pi also generates a Σ-proof showing that
it computed [[xy]] correctly w.r.t. [[x]] and [[y]]. We will refer to this gate as a
private-multiplier gate.

An inversion gate allows n parties to compute an encryption [[x−1]] given
encryption [[x]], with x ∈ Z∗

N , in a constant number of rounds [CDN01].
The broadcast complexity is O(nk) bits for a multiplication gate and an in-

version gate, and O(k) bits for a private-multiplier gate.

Random Invertible Element Gates. All parties choose a random element
ri ∈R Z∗

N and broadcast an encryption [[ri]] together with a Σ-proof for knowl-
edge of the plaintext ri. Finally, [[r]] = [[

∑n
i=1 ri]] is publicly computed. Note that

this gate fails with negligible probability.
The broadcast complexity is O(nk) bits.

Random-Bit Gates. We list three protocols for jointly generating encrypted
random bits. Each protocol starts the same. For i = 1, . . . , n, party Pi generates
a uniformly random bit bi ∈ {0, 1} and broadcasts [[bi]] together with a Σ-proof
to show knowledge of bi and that bi is indeed a bit. To combine bits [[bi]] into a
joint random bit [[b]], with b = ⊕n

i=1bi, we mention three options:

– use of an unbounded fan-in multiplication gate to compute [[b]] in constant
rounds, see [CDN01];

– use of O(n) multiplication gates to compute [[b]] in O(log n) rounds;
– use of O(n) private-multiplier gates to compute [[b]] in O(n) rounds.

The broadcast complexity is O(n2k) bits for the first two options (but the hidden
constant is significantly higher for the constant rounds protocol), and O(nk)
bits for the last option. Note that the joint random bits can be computed in
preprocessing, if so desired, creating an opportunity to use more rounds for a
lower broadcast complexity (and for a lower computational complexity too).

Addition and Subtraction Circuits. Given encrypted bit representations
[[x0]], . . . , [[xm−1]] and [[y0]], . . . , [[ym−1]] of two numbers x, y, an addition circuit
essentially computes the bits of x+y, given by [[z0]], . . . , [[zm−1]], [[cm−1]] as follows:

Efficient Binary Conversion for Paillier Encrypted Values 529

zi = xi + yi + ci−1 − 2ci

c−1 = 0, ci = xiyi + xici−1 + yici−1 − 2xiyici−1.

A similar circuit can be used for subtraction.
Depending on the scenario such a circuit can be refined in various ways. We

mention two extreme options. One can optimize for broadcast complexity and
use O(m) rounds to compute an addition with broadcast complexity O(mnk)
bits. At the other extreme, one can optimize for round complexity and use O(1)
rounds as shown in [DFK+06]; their O(1)-depth circuit for bitwise addition can
also be used in the threshold homomorphic setting, resulting in a broadcast
complexity of O(m log mnk) bits.

Equality and Comparison Circuits Let [C] denote the Iverson bracket de-
fined by [C] = 1 if C ⇔ true and [C] = 0 otherwise. Given encrypted bit rep-
resentations [[x0]], . . . , [[xm−1]] and [[y0]], . . . , [[ym−1]] of two numbers x, y, equality
and comparison circuits compute [[[x = y]]] or [[[x < y]]], respectively. A O(log m)-
depth circuit for equality is straightforward, leading to round complexity of
O(log m) and broadcast complexity of O(mnk) bits. Interestingly, O(1) rounds
and O(mnk) bits are also achievable as shown in [DFK+06]; again their methods
carry over to the threshold homomorphic setting.

3 LSB Gate

We present a protocol for securely computing the least significant bit, which on
input [[x]], outputs an encryption [[x0]]. To obtain a particularly efficient solution,
we assume that x is a bounded value, that is, 0 ≤ x < 2m where the value of m is
restricted as a function of N , the number of parties n, and a security parameter
κ. The parameter κ is chosen such that 2−κ is negligible. The restriction on m
is that m + κ + log2 n < log2 N . In practice this is not a severe restriction. For
example, if N is a 1024-bit modulus, κ = 100, and n = 16, then m is bounded
above by 920.

3.1 Protocol

The idea is to jointly generate a random value [[r]] and to decrypt [[x + r]] such
that (i) y = x+ r is statistically indistinguishable from random and (ii) [[x0]] can
be recovered from y0 and [[r0]]. To this end, the random value r will be generated
in the form r = r0 + 2r∗, where r0 is a bit and r∗ is an integer value from a
sufficiently large range.

LSB Gate

1. The parties jointly generate a random bit [[r0]], using a
random-bit gate. In parallel, each party Pi chooses r∗,i ∈R

{0, . . . , 2m+κ−1 − 1} and broadcasts [[r∗,i]] accompanied with a
range proof that the encryption is correctly formed. The encryp-
tion [[r∗]] with r∗ =

∑n
i=1 r∗,i is publicly computed.

530 B. Schoenmakers and P. Tuyls

2. The encryption [[x]][[r0]][[r∗]]2 is formed and jointly decrypted to
reveal the value y = x + r, where r = r0 + 2r∗.

3. The output is [[r0 ⊕ y0]], which can be computed publicly from
[[r0]] and y0, as r0 ⊕ y0 = r0 + y0 − 2r0y0.

The broadcast complexity incurred by the range proofs in the first step of the
protocol is limited to O(nk) bits, assuming an efficient range proof is used,
as mentioned in Section 2.2. The broadcast complexity of the entire protocol
depends on the broadcast complexity of the random-bit gate used for generating
[[r0]], and varies between O(n2k) bits (and O(1) round complexity) and O(nk)
bits (and O(n) round complexity).

We note that once x0 is computed, the next bit of x can be computed by
applying the protocol to [[x∗]], with x∗ = (x − x0)/2. Indeed, the homomorphic
property implies [[x∗]] = ([[x]]/[[x0]])1/2, where 1/2 = (N +1)/2 is the inverse of 2
modulo N . This way all of the bits of x can be recovered.

3.2 Security

The value output by the protocol is correct because y0 = x0⊕r0, as the addition
y = x + r is computed over the integers (the limited size of x and r ensures that
0 ≤ x + r < N).

Next, we show that the protocol can be simulated, assuming that the random-
bit gate can be simulated when given an output [[r̃0]]. Of course, the bit r̃0 should
be distributed uniformly.

Theorem 1. On input [[x]] and [[x0]], where 0 ≤ x < 2m, the LSB gate can be
simulated in a statistically indistinguishable manner.

Proof. Let x∗ = (x − x0)/2. Then [[x∗]] = ([[x]]/[[x0]])1/2.
To argue that no additional information on x is leaked we present the follow-

ing simulation of the protocol. The simulation takes as input encryptions [[x]]
and [[x0]]. Given this information, the simulator is able to generate a complete
transcript for the protocol, for which the distribution is exactly the same as in
real executions of the protocol. Note that we have to ensure that the simulator
“knows” the plaintext for the joint decryption step in the middle of the protocol,
as the simulator for the threshold decryption protocol needs both a ciphertext
and the corresponding plaintext as input.

Assume w.l.o.g. that parties P1, . . . , Pt are corrupted. The simulator chooses
ỹ0 ∈R {0, 1}. We use the simulator for the random-bit gate to obtain a simulation
for output [[r̃0]] with r̃0 = x0 ⊕ ỹ0. This encryption can be computed from the
given encryption [[x0]], using ỹ0. In parallel, the simulator lets the adversary
run the first step of the protocol for parties P1, . . . , Pt, each time rewinding
the proofs of knowledge used to extract the values r∗,1, . . . , r∗,t. Subsequently,
the simulator runs the first step of the protocol for parties Pt+1, . . . , Pn−1 as
in the real protocol, resulting in the values r∗,t+1, . . . , r∗,n−1. For party Pn,
however, the simulator first generates s ∈R {0, . . . , 2m+κ−1 − 1}, and sets r̃∗,n =
s−x∗− (x0 + r̃0 − ỹ0)/2. Then [[r̃∗,n]] can be computed using [[x0]] and [[x∗]]. The

Efficient Binary Conversion for Paillier Encrypted Values 531

range proof for [[r̃∗,n]] is generated using the simulator for these proofs. Finally,
the simulator sets r̃∗ =

∑n−1
i=1 r∗,i + r̃∗,n.

As a result, we have that

[[x+r̃0+2r̃∗]] = [[x+r̃0+2
n−1∑
i=1

r∗,i+2s−2x∗−(x0+r̃0−ỹ0)]] = [[ỹ0+2(
n−1∑
i=1

r∗,i+s)]],

for which the simulator knows the decryption, as required.
By construction, the values are all consistent. We need to argue that all the

probability distributions for these values are correct too. Clearly, the values
for parties P1, . . . , Pn−1 follow the right distribution. Since ỹ0 is a uniformly
random bit, so is r̃0. Finally, the distribution of r∗,n = s−x∗−(x0 + r̃0− ỹ0)/2 is
statistically indistinguishable from the uniform distribution on {0, . . . , 2m+κ−1−
1}, because s ∈R {0, . . . , 2m+κ−1 − 1} and the term x∗ + (x0 + r̃0 − ỹ0)/2 =
x∗ + x0(1− ỹ0) is much smaller than it (bounded above by 2m). More precisely,
the statistical distance is bounded by 2−κ+1 (see Appendix A).

4 LSBs Gate

Next, we consider the more general case of extracting the 	 least significant bits
of x rather than just the least significant one. We describe the protocol for the
case that all of the bits of x are computed (case 	 = m); the case 	 < m can be
handled by combining the techniques of this section and the previous section.

4.1 Protocol

Let m + κ + log2 n < log2 N , as before. On input [[x]], where 0 ≤ x < 2m,
the following protocol computes [[x0]], . . . , [[xm−1]] securely. The idea is to jointly
generate a random value [[r]] and to decrypt [[x + r]] such that (i) y = x + r
is statistically indistinguishable from random and (ii) [[x0]], . . . , [[xm−1]] can be
recovered from y0, . . . , ym−1 and [[r0]], . . . , [[rm−1]]. To this end, the value r will
be generated in the form r =

∑m−1
j=0 rj2j + 2r∗, where r0, . . . , rm−1 are bits and

r∗ is an integer value from a sufficiently large range.
For technical reasons, we will actually compute y = x − r in (i) and use an

addition circuit to perform step (ii).

LSBs Gate

1. The parties jointly generate random bits [[r0]], . . . , [[rm−1]], us-
ing m random-bit gates. In parallel, each party Pi chooses
r∗,i ∈R {0, . . . , 2m+κ−1 − 1} and broadcasts [[r∗,i]] accompanied
with a range proof that the encryption is correctly formed. The
encryption [[r∗]] with r∗ =

∑n
i=1 r∗,i is publicly computed.

2. The encryption [[x − r]] is formed and jointly decrypted to re-
veal the signed value y = x − r ∈ (−n/2, n/2), where r =∑m−1

j=0 rj2j + r∗2m. The signed value y is computed such that
y ≡ x − r (mod n).

532 B. Schoenmakers and P. Tuyls

3. Let y0, . . . , ym−1 denote the binary representation of y mod
2m. An addition circuit for inputs y0, . . . , ym−1 (public) and
[[r0]], . . . , [[rm−1]] is used to produce an output of m encrypted
bits (ignoring the final carry bit, hence computing modulo 2m).

Note that the probability that y ≥ 0 at step 4.1 is negligible.
The broadcast complexity of the protocol depends on the broadcast com-

plexity of the random-bit gate used for generating [[r0]], . . . , [[rm−1]], and varies
between O(mn2k) bits (and O(1) round complexity) and O(mnk) bits (and O(n)
round complexity).

4.2 Security

The main proof obligation is to show that the protocol can be simulated. We
would like to do so given just a matching pair of inputs and outputs, which in
this case consists of the encryptions [[x]] and [[x0]], . . . , [[xm−1]]. Unfortunately,
such a simulation will not succeed for the LSBs protocol because the protocol is
releasing additional encryptions apart from the encrypted bits of x. The problem
lies in the addition circuit, as used in the final step of the protocol.

The problem is that an addition circuit (see Section 2.3) releases encrypted
carry bits, next to the encrypted output bits. Even with full knowledge of r, these
encrypted carry bits can, in general, not be computed from [[x0]], . . . , [[xm−1]], as
this would imply that encryptions such as [[x0x1]], or other encrypted monomials,
can be computed in polynomial time. What is more, the number of monomials
that are possibly needed in a simulation is equal to 2m, hence exponential m.

We observe, however, that to prove simulatability in the framework of [CDN01]
it suffices to perform a simulation for input/output pairs of a special form. This
is a consequence of the fact that the security proof of [CDN01] (full version) cen-
ters around the construction of the so-called YADb distribution, which is defined
as a function of an encrypted bit [[b]].

In terms of the YADb distribution, the structure of the security proof is as
follows, following an ideal/real approach. The YAD0 distribution is identical to
the distribution in the ideal case, whereas the YAD1 distribution is statistically
indistinguishable from the distribution in the real case. Consequently, if an ad-
versary is able to distinguish the ideal/real cases, it follows that the adversary
is able to distinguish the YAD0 distribution from the YAD1 distribution. But
the choice between these two distributions is entirely determined by the value
of the encrypted bit b. Hence, a distinguisher for the ideal/real cases implies
a distinguisher for the underlying cryptosystem, and it does so in a tight way
(without loss in success probability for the distinguisher).

The special form for the input/output pairs is given by [[x̃]] = [[(1− b)x+ bx′]],
where x and x′ are given in the clear, but bit b is only given as an encryption
[[b]]. The values x and x′ correspond to the values arising in the YAD0 case and
the YAD1 case, respectively, and are both known to the simulator. The x-values
correspond to fake values used to set up a consistent simulated view (b = 0)
and the x′-values correspond to the values used to set up a consistent real view
(b = 1).

Efficient Binary Conversion for Paillier Encrypted Values 533

Thus, the security is stated in a less general way, but still sufficiently general
to match the (adapted) framework of [CDN01]. Stating the security of a gate
(or, sub-circuit) in this way allows one to capture the security in a modular way,
while retaining the tightness of the overall reduction. Clearly, this idea is more
widely applicable, beyond the gates we are considering in this paper.

Theorem 2. Given input values x, x′ with 0 ≤ x, x′ < 2m and an encryption
[[b]] with b ∈ {0, 1}, the LSBs gate can be simulated statistically indistinguishably
for input [[x̃]] = [[(1 − b)x + bx′]].

Proof. The goal is to generate a simulated transcript for input [[x̃]] = [[(1 −
b)x + bx′]], which is to the adversary statistically indistinguishable from a real
transcript. The values of x, x′ and [[b]] are available to the simulator.

Assume w.l.o.g. that parties P1, . . . , Pt are corrupted. Pick r̃0, . . . , r̃m−1 ∈R

{0, 1} and simulate the generation of these random bits. The simulator ex-
tracts/generates the values r∗,i for the corrupted/honest parties Pi (1 ≤ i < n).
The simulator chooses s ∈R {0, . . . , 2m+κ−1} and sets r∗,n = s−x−∑m−1

j=0 r̃j2j

and r′∗,n = s − x′ − ∑m−1
j=0 r̃j2j . The distributions will be statistically close to

the uniform distribution on {0, . . . , 2m+κ − 1}.
By construction, the simulator knows how to decrypt x− r and x′ − r′, where

r =
∑m−1

j=0 r̃j2j +r∗2m and r′ =
∑m−1

j=0 r̃j2j +r′∗2
m, and where r∗ =

∑n−1
i=1 r∗,i +

r∗,n and r′∗ =
∑n−1

i=1 r∗,i + r′∗,n

To complete the proof we need to assign the correct values to all the wires
in the addition circuit, consistent with either b = 0 or b = 1. In both cases,
the first input to the addition circuit is s0, . . . , sm−1. The second input is either
r0, . . . , rm−1 or r′0, . . . , r

′
m−1, and the corresponding output is x0, . . . , xm−1 or

x′
0, . . . , x

′
m−1. Now, for each wire, two values can be computed from these values.

If values v and v′ are thus computed for such a wire, we assign the encryption
[[(1 − b)v + bv′]] to the wire.

This leads to a consistent assignment of encryptions to all of the wires. And,
therefore the simulators for the multiplication gates constituting the addition
circuit can be used to complete the simulation.

The values generated by the simulator are all consistent. Moreover, the dis-
tribution of −s is statistically indistinguishable from the value of y used in the
real protocol.

5 BITREP Gate

In this section we consider the case that x is any value in the range [0, N), where
N is the value of the Paillier modulus. We first present a protocol for jointly
generating a random value r ∈R [0, N), given by its bits [[r0]], . . . , [[rm−1]], with
m denoting the bit length of N . Subsequently, we present the BITREP gate,
which converts [[x]] into [[x0]], . . . , [[xm−1]].

The protocol for generating a random value r ∈R [0, N) uses the basic protocol
for jointly generating m random bits between parties P1, . . . , Pn. We then test
whether the integer represented by these m bits is in the range [0, N):

534 B. Schoenmakers and P. Tuyls

1. The parties jointly generate random bits [[r0]], . . . , [[rm−1]], using m random-
bit gates.

2. A comparison circuit for encrypted inputs [[r0]], . . . , [[rm−1]] and public inputs
N0, . . . , Nm−1, denoting the bits of N , is used to compute [[[r < N]]], where
r =

∑m−1
j=0 rj2j .

3. The value [[[r < N]]] is decrypted to see if r is in range; if not, go back to the
first step.

The average number of iterations is bounded above by 2.
The protocol for converting [[x]] into [[x0]], . . . , [[xm−1]], where 0 ≤ x < N , now

runs as follows.

BITREP Gate

1. The parties generate encrypted bits [[r0]], . . . , [[rm−1]] of a random
number 0 ≤ r < N .

2. The parties compute [[x]]
∏m−1

j=0 [[rj]]2
j

and perform a threshold
decryption to obtain y = x + r mod N , 0 ≤ y < N .

3. Using a subtraction circuit with y0, . . . , ym−1 and
[[r0]], . . . , [[rm−1]] as inputs, the parties determine the bit
representation [[z0]], . . . , [[zm]] of the value z = x or z = x − N ,
where zm is a sign bit.

4. The parties reduce the value of z modulo N , by adding Nzm to z
using an addition circuit with inputs [[(Nzm)0]], . . . , [[(Nzm)m−1]]
and [[z0]], . . . , [[zm−1]].

Note that the equality y = x + r holds in Zn but not necessarily in Z. But if
y �= x + r over the integers, then it follows that y = x + r − N must hold over
the integers, since 0 ≤ x < N and 0 ≤ r < N . In step 3, the case z = x occurs
exactly when y = x + r over the integers, and the case z = x − N occurs when
y = x + r − N .

The security is proved similar as in the previous section.

Theorem 3. Given input values x, x′ with 0 ≤ x, x′ < N and an encryption [[b]]
with b ∈ {0, 1}, the BITREP gate can be simulated statistically indistinguishably
for input [[x̃]] = [[(1 − b)x + bx′]].

6 Applications

The result of [CDN01] shows how to efficiently evaluate arithmetic circuits com-
posed of addition/subtraction gates and multiplication/division gates defined
over ZN . This way large numbers can be handled, practically independent of the
size of the numbers. This contrasts favorably with approaches based on Boolean
circuits, where arithmetic is done in a bitwise fashion. However, as argued in the
introduction, the potential of arithmetic circuits is limited when some (inher-
ently) bitwise operations are required as well. Without binary conversion gates,
one is forced to perform the entire computation using a (large) Boolean circuit.

Efficient Binary Conversion for Paillier Encrypted Values 535

The relational operators such as < and = are typically handled by represent-
ing the numbers in binary form. Another important example is exponentiation,
where one wishes to compute [[xy]] securely, given [[x]] and [[y]]. Using a method of
repeated squaring one may compute [[xy]] using O(m) multiplication gates, once
[[y]] is converted into binary, given by its encrypted bits [[y0]], . . . , [[ym−1]], say.

As an interesting application we close this paper with a discussion of private
biometric authentication. This topic received quite some attention during the last
years, see e.g., [DRS04, TG04, KAMR04]. The goal of private biometric authenti-
cation is to identify or authenticate people based on their physical characteristics
(fingerprint, iris, . . .) without revealing any information on these personal char-
acteristics to the verifier or an attacker. This problem has been investigated in the
information theoretical setting by several authors [TG04, DRS04]. They gave gen-
eral constructions (using “helper data” and “fuzzy extractors” resp.). At the same
time, it was shown that perfect privacy cannot be achieved from an information
theoretic point of view. It is therefore natural to explore whether a full privacy
preserving and efficient biometric authentication scheme can be constructed in
the cryptographic setting. Below, we briefly describe how this is achieved.

The heart of the system is formed by a set of servers which correspond to the
parties P1, . . . , Pn sharing the private key for a threshold Paillier cryptosystem.
These servers will match encrypted biometric templates as obtained during enroll-
ment of the users against encrypted biometric templates as measured by sensors
as part of an authentication protocol. Since the sensors are typically lightweight
devices, the goal is to minimize the computational load for the sensors.

Authentication of a user will succeed if the biometric template Y = (y1, . . . , ym)
measured by a sensor is sufficiently close to the biometric template X = (x1, . . . ,
xm) obtained during enrollment. For instance, assuming that the biometric tem-
plates are actually bit strings in {0, 1}m, a possible similarity measure is the Ham-
ming distance between the bit strings: if dH(X, Y) < T , where T is a predeter-
mined threshold, then X and Y are said to match.

The BITREP gate can now be used as follows. To minimize the work for the
sensor we let the sensor first convert the measured biometric template Y to
an integer y ∈ {0, . . . , 2m − 1}, using an obvious mapping. The sensor is then
required to release the encrypted value [[y]] together with the claimed identifier
for the person being authenticated. At the server side, the encrypted bits of
Y are recovered using a BITREP gate (or, an LSBs gate if appropriate), before
running a secure matching protocol on the encrypted bits of X and Y .

Acknowledgements. We would like to thank the anonymous referees for their
helpful comments.

References

[ACS02] J. Algesheimer, J. Camenisch, and V. Shoup. Efficient computation mod-
ulo a shared secret with application to the generation of shared safe-prime
products. In Advances in Cryptology—CRYPTO ’02, volume 2442 of Lec-
ture Notes in Computer Science, pages 417–432, Berlin, 2002. Springer-
Verlag.

536 B. Schoenmakers and P. Tuyls

[Bou00] F. Boudot. Efficient proofs that a committed number lies in an interval.
In Advances in Cryptology—EUROCRYPT ’00, volume 1807 of Lecture
Notes in Computer Science, pages 431–444, Berlin, 2000. Springer-Verlag.

[CDN01] R. Cramer, I. Damg̊ard, and J.B. Nielsen. Multiparty computation
from threshold homomorphic encryption. In Advances in Cryptology—
EUROCRYPT ’01, volume 2045 of Lecture Notes in Computer Sci-
ence, pages 280–300, Berlin, 2001. Springer-Verlag. Full version
eprint.iacr.org/2000/055, October 27, 2000.

[CFSY96] R. Cramer, M. Franklin, B. Schoenmakers, and M. Yung. Multi-authority
secret ballot elections with linear work. In Advances in Cryptology—
EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science,
pages 72–83, Berlin, 1996. Springer-Verlag.

[CS02] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In Advances in
Cryptology—EUROCRYPT ’02, volume 2332 of Lecture Notes in Com-
puter Science, pages 45–64, Berlin, 2002. Springer-Verlag.

[DF02] I. Damg̊ard and E. Fujisaki. A statistically-hiding integer commitment
scheme based on groups with hidden order. In Advances in Cryptology—
ASIACRYPT ’02, volume 2501 of Lecture Notes in Computer Science,
pages 125–142, Berlin, 2002. Springer-Verlag.

[DFK+06] I. Damg̊ard, M. Fitzi, E. Kiltz, J.B. Nielsen, and T. Toft. Unconditionally
secure constant-rounds multi-party computation for equality, comparison,
bits and exponentiation. In Proc. 3rd Theory of Cryptography Conference,
TCC 2006, volume 3876 of Lecture Notes in Computer Science, pages 285–
304, Berlin, 2006. Springer-Verlag.

[DJ01] I. Damg̊ard and M. Jurik. A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system. In Public Key
Cryptography—PKC ’01, volume 1992 of Lecture Notes in Computer Sci-
ence, pages 119–136, Berlin, 2001. Springer-Verlag.

[DJ02] I. Damg̊ard and M. Jurik. Client/server tradeoffs for online elections.
In Public Key Cryptography—PKC ’02, volume 2274 of Public Key
Cryptography—PKC ’, pages 125–140, Berlin, 2002. Springer-Verlag.

[DJ03] I. Damg̊ard and M. Jurik. A length-flexible threshold cryptosystem with
applications. In ACISP 2003, volume 2727 of Lecture Notes in Computer
Science, pages 350–364, Berlin, 2003. Springer-Verlag.

[DRS04] Y. Dodis, M. Reyzin, and A. Smith. Fuzzy extractors: How to gener-
ate strong keys from biometrics and other noisy data. In Advances in
Cryptology—EUROCRYPT ’04, volume 3027 of Lecture Notes in Com-
puter Science, pages 523–540, Berlin, 2004. Springer-Verlag.

[FO97] E. Fujisaki and T. Okamoto. Statistical zeroknowledge protocols to prove
modular polynomial relations. In Advances in Cryptology—CRYPTO ’97,
volume 1294 of Lecture Notes in Computer Science, pages 16–30, Berlin,
1997. Springer-Verlag.

[FPS00] P.-A. Fouque, G. Poupard, and J. Stern. Sharing decryption in the context
of voting or lotteries. In Financial Cryptography 2000, volume 1962 of
Lecture Notes in Computer Science, pages 90–104, Berlin, 2000. Springer-
Verlag.

[GMPY06] J. Garay, P. MacKenzie, M. Prabhakaran, and K. Yang. Resource fairness
and composability of cryptographic protocols. In Proc. 3rd Theory of
Cryptography Conference, TCC 2006, volume 3876 of Lecture Notes in
Computer Science, pages 404–428, Berlin, 2006. Springer-Verlag.

Efficient Binary Conversion for Paillier Encrypted Values 537

[KAMR04] F. Kerschbaum, M.J. Atallah, D. M’Räıhi, and J.R. Rice. Private finger-
print verification without local storage. In Proceedings of the first Inter-
national Conference on Biometric Authentication, volume 3072 of Lecture
Notes in Computer Science, pages 387–394, Berlin, 2004. Springer-Verlag.

[Lip03] H. Lipmaa. On diophantine complexity and statistical zero-knowledge
arguments. In Advances in Cryptology—ASIACRYPT ’03, volume 2894 of
Lecture Notes in Computer Science, pages 398–415, Berlin, 2003. Springer-
Verlag.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In Advances in Cryptology—EUROCRYPT ’99, volume
1592 of Lecture Notes in Computer Science, pages 223–238, Berlin, 1999.
Springer-Verlag.

[ST04] B. Schoenmakers and P. Tuyls. Practical two-party computation based
on the conditional gate. In Advances in Cryptology—ASIACRYPT ’04,
volume 3329 of Lecture Notes in Computer Science, pages 119–136, Berlin,
2004. Springer-Verlag.

[TG04] P. Tuyls and J. Goseling. Capacity and examples of template protecting
biometric authentication systems. In Proceedings of Biometric Authen-
tication Workshop, volume 3087 of Lecture Notes in Computer Science,
pages 158–170, Berlin, 2004. Springer-Verlag.

A Statistical Distance

We use elementary results on statistical distance in our proofs. As an illustration
we prove the following one.

Lemma 1. Let M and K be positive integers, M ≤ K. Let random variable
X take on values in {0, . . . , M − 1}, and let random variable U be uniform on
{0, . . . , K − 1}. Then Δ(U, X + U) ≤ (M − 1)/K, and this upper bound is tight.

Proof. For any w we have that Pr[X + U = w] =
∑M−1

a=0 Pr[X = a]Pr[U =
w − a], hence that 0 ≤ Pr[X + U = w] ≤ 1/K, and, if M − 1 ≤ w < K, that
Pr[X + U = w] = 1/K. Thus,

Δ(U, X + U) = 1
2

∑M+K−2
w=0 |Pr[U = w] − Pr[X + U = w]|

≤ 1
2

(∑M−2
w=0 |1/K − 0| + ∑K−1

w=M−1 |1/K − 1/K| + ∑M+K−2
w=K |0 − 1/K|

)
= (M − 1)/K.

Take X = M − 1 (constant) to conclude that this bound is tight.

Hence, Δ(U, X + U) is small if K - M . For instance, if K is exponential in a
security parameter k and M is polynomial in k, then the statistical distance is
negligible in k. In particular, if M = 2m and K = 2m+κ, then Δ < 2−κ.

Information-Theoretic Conditions for
Two-Party Secure Function Evaluation

Claude Crépeau1,�, George Savvides1,�, Christian Schaffner2,��,
and Jürg Wullschleger3,� � �

1 McGill University, Montréal, QC, Canada
{crepeau, gsavvi1}@cs.mcgill.ca

2 BRICS, University of Århus, Denmark
chris@brics.dk

3 ETH Zürich, Switzerland
wjuerg@inf.ethz.ch

Abstract. The standard security definition of unconditional secure
function evaluation, which is based on the ideal/real model paradigm, has
the disadvantage of being overly complicated to work with in practice.
On the other hand, simpler ad-hoc definitions tailored to special scenar-
ios have often been flawed. Motivated by this unsatisfactory situation,
we give an information-theoretic security definition of secure function
evaluation which is very simple yet provably equivalent to the standard,
simulation-based definitions.

1 Introduction

1.1 Secure Function Evaluation

Secure function evaluation is a cryptographic task originally introduced by Yao
in [30]. In essence, this task enables a set of mutually distrustful parties without
access to a trusted intermediary to jointly compute the output of a function f
without any party revealing any information about its input or output to the
other parties beyond what these parties can infer from their own inputs and
outputs. Goldreich, Micali and Wigderson [21] showed how to achieve this for
any function f in a computationally secure way. Schemes ensuring unconditional
security were subsequently provided by Ben-Or, Goldwasser and Wigderson [3]
and independently by Chaum, Crépeau and Damg̊ard [12].

Micali and Rogaway [25] and Beaver [2] proposed formal security definitions
for secure function evaluation. Both definitions were inspired by the simulation
paradigm used by Goldwasser, Micali and Rackoff [22] to define zero-knowledge
proofs of knowledge. In a nutshell, to each real protocol computing f we asso-
ciate a two-step procedure in an ideal model, where each party simply forwards

� Supported in part by NSERC, MITACS, and CIAR.
�� Supported by the EC-Integrated Project SECOQC, No: FP6-2002-IST-1-506813.

� � � Supported by Canada’s NSERC, Québec’s FQRNT, and Switzerland’s SNF.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 538–554, 2006.
c© International Association for Cryptologic Research 2006

Information-Theoretic Conditions for Two-Party Secure Function Evaluation 539

its input to a trusted party which in turn computes f and distributes the rel-
evant outputs to the parties. The real protocol is deemed secure if any adver-
sary attacking the protocol has a counterpart in the ideal model that achieves
a similar result simply by processing the input prior to forwarding it to the
trusted party, and then by processing the output it receives from it. In other
words, a protocol is secure if any attack can be simulated in the much more
restrictive ideal model. Such protocols secure in the ideal/real model paradigm
were later shown to be sequentially composable in the sense that the composi-
tion of two or more secure protocols is itself a secure protocol. The sequential
composability of secure protocols was further explored by Canetti [9, 10] and
Goldreich [20].

Canetti [11] also defined universal composability, an even stronger security re-
quirement that guarantees that protocols satisfying it can be securely composed
concurrently in any environment. A similar security definition was provided in-
dependently by Backes, Pfitzmann and Waidner [1]. Unfortunately, however ap-
pealing the properties of these security definitions may be, they are too strong
to allow even basic tasks such as bit commitment to be realized without further
assumptions. For this reason, we will limit ourselves to the simpler definition
given by Goldreich [20].

1.2 Oblivious Transfer

1-out-of-n string oblivious transfer, denoted
(
n
1

)
-OTk, is a primitive that allows

a sender Alice to send one of n binary strings of length k to a receiver Bob.
The primitive allows Bob to receive the string of his choice while concealing
this choice from (possibly dishonest) Alice. On the other hand, the primitive
guarantees that (any dishonest) Bob cannot obtain information about more than
one of the strings, including partial joint information on two or more strings.

The first variant of oblivious transfer was introduced by Wiesner [28]. Inde-
pendently, Rabin re-introduced oblivious transfer in [27] and demonstrated its
potential as a cryptographic tool. Its applicability to multi-party computation
was shown by Even, Goldreich and Lempel in [19]. It has since been proved that
oblivious transfer is in fact sufficient by itself to securely compute any function
[23]. More completeness results followed in [14], [15] and [24].

1.3 Contributions

The motivation behind our work was to come up with a general information-
theoretic security definition to replace the various ad-hoc definitions proposed in
the past for specific cryptographic primitives. To this end, we adopt the standard
security definition based on the ideal/real model paradigm of Goldreich [20] for
computationally-bounded parties, and adapt it to a model where the parties are
allowed to be computationally unbounded and to use independent sources of
randomness such as channels. We then distill the relevant security properties of
the ideal model into a set of information-theoretic conditions, which we use as a
basis for constructing our new formal definition of security. We prove that despite

540 C. Crépeau et al.

its apparent simplicity, our definition is in fact equivalent to the original based on
the ideal/real model paradigm. We then examine the important special case of
oblivious transfer, and show that in this case, the resulting security requirements
can be significantly simplified. We also revisit some of the information-theoretic
definitions of security used in the past and point out subtle flaws that some of
them contain. As an illustration of the usefulness of our definitions, we give a
simple proof for the protocol presented in [29] that optimally inverts

(2
1

)
-OT.

1.4 Shortcomings of Previously Proposed Security Definitions for
Oblivious Transfer

We revisit some information-theoretic definitions for oblivious transfer that
appear in the literature and list some of their shortcomings. Our examples
demonstrate that coming up with the ‘right’ information-theoretic definition
is a delicate task, which is the reason why in this paper we aim for a security
definition provably equivalent to the standard definition based on the ideal/real
model paradigm.

Random Inputs. In [18], only oblivious transfer with random inputs is con-
sidered, thereby restricting the scope of the proposed definitions to only a few
special cases.

Problems with the Security for the Receiver. In [5, 26], the definition of
security for the receiver requires that the sender’s view be independent of the
receiver’s input. This is often unattainable: in the most general case, where we
assume that there is a known dependency between the inputs, no protocol can
satisfy the above security condition since the sender’s input, which is always part
of his own view, will be correlated with the input of the receiver. The definition
should instead require that the two variables be independent given the sender’s
input.

Problems with the Security for the Sender. The security for the sender
is more difficult to formalize correctly. In addition to problems analogous to the
ones presented above for the definition of security for the receiver ([5, 26]), there
are several commonly encountered difficulties:

– In [6, 16] a dishonest receiver is only allowed to change his input in a deter-
ministic way. Specifically, the random variable C′ indicating the receiver’s
effective input (i.e., the bit he eventually obtains) must be a deterministic
function of the input C, in contrast to the ideal model where C′ can be
chosen probabilistically by the dishonest receiver.

– In [7] the random variable C′ may depend on the honest sender’s input,
which is impossible in the ideal model. Furthermore, the view V of the
dishonest receiver is required to be independent of the honest sender’s input
X conditioned on the original input C and the receiver’s output XC′ , but
not on C′. This definition will hence admit some clearly insecure protocols.

Information-Theoretic Conditions for Two-Party Secure Function Evaluation 541

For example, suppose the dishonest receiver picks C′ ∈ {0, 1} uniformly at
random (independently of C) and the protocol allows him to output V =
(XC′ , X1−C′ ⊕ C′). While it is true that V is independent of X0, X1 given
C, X ′

C , no such protocol can be simulated in the ideal model since both
inputs can be deduced from C′ and V .

Abort. In [6, 16, 7], the honest player is allowed to abort the protocol. However,
it is possible that the dishonest player gets some information before the honest
player aborts, or that the fact of aborting itself provides information about the
honest player’s inputs.

A correct definition is given in [17] in the context of the bounded-storage
model. However, this definition is overly complicated and requires a special setup
stage, which is in general not present in OT protocols.

1.5 Preliminaries

Let X , Y , and Z be three random variables. We will often use expressions of the
form

I(X ; Y | Z) = 0 ,

where I is the conditional mutual Shannon information. This means that X and
Y are independent, given Z. The same condition can also be expressed by saying
that X, Y and Z form a Markov-chain,

X ↔ Z ↔ Y ,

or by
PY |ZX = PY |Z .

By the chain rule for mutual information we have

I(X ; Y W | Z) = I(X ; W | Z) + I(X ; Y | WZ) .

The information processing inequality says that local computation cannot in-
crease mutual information. In other words, for any probabilistic f we have

I(X ; Y | Z) ≥ I(f(X); Y | Z) .

The statistical distance or variational distance between the distributions of two
random variables X and Y over the same domain V is defined as

δ(X, Y) =
1
2

∑
v∈V

∣∣Pr[X = v] − Pr[Y = v]
∣∣.

We also use the notation X ≡ε Y for δ(X, Y) ≤ ε. If X and Y have the same
distribution, i.e., δ(X, Y) = 0, we write X ≡ Y . The statistical distance can
alternatively be expressed as:

δ(X, Y) = max
S

(Pr[X ∈ S] − Pr[Y ∈ S]) .

542 C. Crépeau et al.

From this expression it is easy to see that the optimal algorithm distinguishing
the two distributions can succeed with probability exactly 1

2 + δ(X, Y). Another
important property of the statistical distance is that for any random variables
X and Y , there exists a random variable X̃ with the same distribution as Y
satisfying Pr[X̃ �= X] = δ(X, Y).

2 Definition of Secure Function Evaluation

In this section we provide a definition of secure function evaluation. We follow
Definition 7.2.10 of [20] (see also [10]) but modify the associated model as follows:

i) We allow the adversary to be computationally unbounded.
ii) We require that the output distributions of the ideal and the real model be

either perfectly indistinguishable or statistically indistinguishable (as opposed
to computationally indistinguishable).

iii) We consider the input alphabet to be fixed.
iv) We allow randomized players that use independent sources of randomness,

rather than supplying randomness to otherwise deterministic players.
v) We allow both players to have an output.

Note that ii) and iii) are just consequences of i) while iv) is used to simplify
notation and v) simplifies the model by making it symmetric and generalizes
it to allow functions such as coin flipping by telephone [4] where both players
have an output, but which can be implemented without allowing either party to
abort the protocol. In Section 6 we also discuss the model of Definition 7.2.6 of
[20], i.e., the model where the first party is allowed to abort the protocol after
receiving its result but before the second party receives its own.

We use the following notation: x ∈ X denotes the input of the first party, y ∈ Y
the input of the second party and z ∈ {0, 1}∗ represents an additional auxiliary
input available to both parties but assumed to be ignored by all honest parties.
A g-hybrid protocol is a pair of (randomized) algorithms Π = (A1, A2) which
can interact by exchanging messages and which additionally have access to the
functionality g. More precisely, for a (randomized) function g : X×Y → U×V the
two parties can send x and y to a trusted party and receive u and v, respectively,
where (u, v) = g(x, y). Note that a default value is used if a player refuses to
send a value. A pair of algorithms A = (A1, A2) is called admissible for protocol
A if either A1 = A1 or A2 = A2, i.e., if at least one of the parties is honest and
uses the algorithm defined by the protocol Π .

Definition 1 (Real Model). Let Π = (A1, A2) be a g-hybrid protocol and
let A = (A1, A2) be an admissible pair of algorithms for the protocol Π. The
joint execution of Π under A on input pair (x, y) ∈ X × Y and auxiliary input
z ∈ {0, 1}∗ in the real model, denoted by

realg

Π,A(z)
(x, y) ,

is defined as the output pair resulting from the interaction between A1(x, z) and
A2(y, z) using the functionality g.

Information-Theoretic Conditions for Two-Party Secure Function Evaluation 543

The ideal model defines the optimal scenario where the players have access
to an ideal functionality f corresponding to the function they wish to compute.
A malicious player may therefore only change (1) his input to the functionality
and (2) the output he obtains from the functionality.

Definition 2 (Ideal Model). The trivial f -hybrid protocol B = (B1, B2) is
defined as the protocol where both parties send their inputs x and y unchanged
to the functionality f and output the values u and v received from f unchanged.
Let B = (B1, B2) be an admissible pair of algorithms for B. The joint execution
of f under B in the ideal model on input pair (x, y) ∈ X ×Y and auxiliary input
z ∈ {0, 1}∗, denoted by

idealf,B(z)(x, y) ,

is defined as the output pair resulting from the interaction between B1(x, z) and
B2(y, z) using the functionality f .

Any admissible protocol B in the ideal model can be expressed in the following
way: the first party receives input (x, z) and the second party receives input
(y, z). The two parties produce (x′, z1) = Bin

1 (x, z) and (y′, z2) = Bin
2 (y, z), from

which x′ and y′ are inputs to a trusted third party, and z1 and z2 are some
auxiliary output. The trusted party computes (u′, v′) = f(x′, y′) and sends u′

to the first party and v′ to the second party. The two parties are now given the
outputs v′ and u′ and the auxiliary inputs z1 and z2, respectively. The first party
outputs u = Bout

1 (u′, z1) while the second party outputs v = Bout
2 (v′, z2). Note

that if the first party is honest, we have Bin
1 (x, z) = (x,⊥) and Bout

1 (u′, z1) = u′

and similarly for the second party.
Now, to show that a g-hybrid protocol Π securely computes a functionality

f , we have to show that anything an adversary can do in the real model can also
be done in the ideal model.

Definition 3 (Perfect Security). A g-hybrid protocol Π securely computes f
perfectly if for every pair of algorithms A = (A1, A2) that is admissible in the
real model for the protocol Π, there exists a pair of algorithms B = (B1, B2)
that is admissible in the ideal model for protocol B (and where the same players
are honest), such that for all x ∈ X , y ∈ Y, and z ∈ {0, 1}∗, we have

idealf,B(z)(x, y) ≡ realg

Π,A(z)
(x, y) .

It is sometimes not possible to achieve perfect security. The following definition
captures the situation where the simulation has a (small) error ε, defined as the
maximal statistical distance between the output distributions in the real and
ideal model.

Definition 4 (Statistical Security). A g-hybrid protocol Π securely com-
putes f with an error of at most ε if for every pair of algorithms A = (A1, A2)
that is admissible in the real model for the protocol Π, there exists a pair of
algorithms B = (B1, B2) that is admissible in the ideal model for protocol B

544 C. Crépeau et al.

(and where the same players are honest), such that for all x ∈ X , y ∈ Y, and
z ∈ {0, 1}∗, we have

idealf,B(z)(x, y) ≡ε realg

Π,A(z)
(x, y) .

The statistical distance is used because it has nice properties and intuitively
measures the error of a computation: a protocol Π which securely computes f
with an error of at most ε, computes f perfectly with probability at least 1 − ε.

A very important property of the above definitions is that they imply sequen-
tial composition. The following theorem has been proven in [10].

Theorem 1. If an h-hybrid protocol Γ securely computes g with an error of at
most γ and a g-hybrid protocol Π securely computes f with an error of at most
π, then the composed protocol ΠΓ , namely the protocol Π where every call to g
is replaced by Γ , is an h-hybrid protocol that securely computes f with an error
of at most π + tγ, where t is the number of calls of Π to g.

2.1 Efficient Simulation

So far, we have not been talking about efficiency. Indeed, if we live in a world
where every participant has unlimited computer power, efficiency is not an issue,
and our security definitions work well. In the world of zero-knowledge interac-
tive proof systems [22] we have learned that “perfect zero-knowledge” is a more
powerful notion than “zero-information” because the former also imposes com-
putational conditions that require an efficient simulator. In this paper we choose
to focus on the latter because in the context of two-party secure function eval-
uation, even in the simplest case security is not yet properly defined. When
considering computationally bounded adversaries, the situation is different: It
might be the case that, even though an attack in the ideal model is possible
in principle, simulation is infeasable, because it takes much more time than to
attack the real protocol. This problem can be solved by requiring that the run-
ning time of the ideal adversary is polynomial in the running time of the real
adversary. We do not consider efficient simulation any further in this paper.

3 Secure Function Evaluation from an Information-
Theoretic Point of View

In this section, we adopt an information-theoretic view of the security definition.
We change our notation slightly to make it more suitable to the information-
theoretic domain. We let X , Y and Z be random variables denoting the inputs,
distributed according to an unknown distribution. Likewise, we let U and V be
random variables denoting the outputs of the two parties. Hence, for specific
inputs x, y, z we have

(U, V) = realg

Π,A(z)
(x, y)

and
(U, V) = idealf,B(z)(x, y) .

Information-Theoretic Conditions for Two-Party Secure Function Evaluation 545

Note that the condition of Definition 3, namely that for all x ∈ X , y ∈ Y, and
z ∈ {0, 1}∗, we have

idealf,B(z)(x, y) ≡ realg

Π,A(z)
(x, y) ,

can equivalently be expressed as

PUV |XY Z = PUV |XY Z .

We now state our main theorem. It gives an information-theoretic condition
for the security of a real protocol, without the use of an ideal model. Intuitively,
the security condition for player 1 (and its counterpart for player 2) says the
following: Since I(X ; Y ′ | ZY) = 0, we have PY ′|Y ZX = PY ′|Y Z . Therefore, Y ′

could have been created without knowing X . The condition

PUV ′|XY ′Y Z(u, v′ | x, y′, y, z) = Pr[(u, v′) = f(x, y′)]

ensures that the distributions of U and V ′ are the same as those of the outputs
of f on input X and Y ′. Finally, I(UX; V | ZY Y ′V ′) = 0 ensures that V could
have been constructed out of Z, Y , Y ′ and V ′, without the help of X and U .
Therefore, these conditions ensure that the resulting distribution in the real
model could also have been obtained in the ideal model.

Theorem 2. A g-hybrid protocol Π securely computes f perfectly if and only
if for every pair of algorithms A = (A1, A2) that is admissible in the real model
for the protocol Π and for all inputs (X, Y) and auxiliary input Z, A produces
outputs (U, V), such that the following conditions are satisfied:

– (Correctness) If both players are honest, we have

PUV |XY Z(u, v, x, y, z) = Pr[(u, v) = f(x, y)] .

– (Security for Player 1) If player 1 is honest, then there exist random variables
Y ′ and V ′ such that we have

I(X ; Y ′ | ZY) = 0 ,

PUV ′|XY ′Y Z(u, v′ | x, y′, y, z) = Pr[(u, v′) = f(x, y′)] ,

and
I(UX ; V | ZY Y ′V ′) = 0 .

– (Security for Player 2) If player 2 is honest, then there exist random variables
X ′ and U ′, such that we have

I(Y ; X ′ | ZX) = 0 ,

PU ′V |X′Y XZ(u′, v | x′, y, x, z) = Pr[(u′, v) = f(x′, y)] ,

and
I(V Y ; U | ZXX ′U ′) = 0 .

546 C. Crépeau et al.

Proof. Let us first assume that the protocol Π securely computes f . Then there
exists an admissible pair of algorithms B = (B1, B2) for the ideal model such
that for all x ∈ X , y ∈ Y, and z ∈ {0, 1}∗, we have

idealf,B(z)(x, y) ≡ realg

Π,A(z)
(x, y) ,

or equivalently,
PUV |XY Z = PUV |XY Z .

If both players are honest we have B = B. B1 and B2 forward their inputs
(X, Y) unchanged to the trusted third party, get back (U

′
, V

′
) := f(X, Y) and

output (U, V) = (U
′
, V

′
). This establishes the correctness condition.

Without loss of generality, let player 1 be honest and player 2 be malicious.
Let us look at the execution of B = (B1, B2). The malicious B2 can be modeled
by the two conditional probability distributions PY

′
Z2|Y Z computing the input

to the ideal functionality and some internal data Z2, and PV |V ′
Z2

computing
the output. Note that we can write PY

′
Z2|Y Z = PY

′|Y ZPZ2|Y ZY
′ , i.e., we can

say that Y
′
is computed from X and Z, and that Z2 is computed from Y , Z,

and Y
′
. Clearly, we have

I(X ; Y
′ | ZY) = 0 .

The honest B1 always sends X to the trusted party, which computes (U
′
, V

′
) =

f(X, Y
′
) and sends the results to B1 and B2. Since B1 always outputs U = U

′
,

we have
PUV

′|XY
′
Y Z(u, v′ | x, y′, y, z) = Pr[(u, v′) = f(x, y′)] .

B2’s output V only depends on V
′
and Z2, which only depends on Y , Z and Y

′
.

It follows that
I(UX; V | ZY Y

′
V

′
) = 0 .

Since the probability distributions PUV |XY Z and PUV |XY Z are identical, there
must exist random variables satisfying the same properties for the output of
protocol Π in the real model. Consequently, there must exist random variables
Y ′ and V ′, such that

I(X ; Y ′ | ZY) = 0 ,

PUV ′|XY ′Y Z(u, v′ | x, y′, y, z) = Pr[(u, v′) = f(x, y′)] ,

and
I(UX; V | ZY Y ′V ′) = 0 .

Now assume that the conditions of Theorem 2 hold. If both players are honest,
the correctness condition implies PUV |XY Z = PUV |XY Z . If both players are
malicious nothing needs to be shown. Without loss of generality, let player 1 be
honest and player 2 be malicious. We will define an admissible protocol B =
(B1, B2) in the ideal model that produces the same distribution as the protocol

Information-Theoretic Conditions for Two-Party Secure Function Evaluation 547

Π in the real model. Let B2 choose his input Y
′
according to PY

′|Y Z := PY ′|Y Z ,
and let him choose his output V according to PV |Y ZY

′
V

′ := PV |Y ZY ′V ′ . The
conditional distribution of the output in the ideal model is given by

PUV |XY Z =
∑
y′,v′

PY
′|Y ZPUV

′|XY
′PV |Y ZY

′
V

′ ,

where
PUV

′|XY
′(u, v′ | x, y′) = Pr[(u, v′) = f(x, y′)] .

From I(X ; Y ′ | ZY) = 0 and I(UX ; V | ZY Y ′V ′) = 0 it follows that
PY ′|XY Z = PY ′|Y Z and PV |XY ZY ′UV ′ = PV |Y ZY ′V ′ . Furthermore, we have
PUV ′|XY ′Y Z = PUV

′|XY
′ . As for the conditional distribution of the output in

the real model, we have:

PUV |XY Z =
∑
y′,v′

PY ′UV ′|XY ZPV |XY ZY ′UV ′

=
∑
y′,v′

PY ′|XY ZPUV ′|XY ZY ′PV |Y ZY ′V ′

=
∑
y′,v′

PY
′|Y ZPUV

′|XY
′PV |Y ZY

′
V

′

= PUV |XY Z .

Therefore, for any admissible A in the real model there exists an admissible B
in the ideal model such that

idealf,B(z)(x, y) ≡ realg

Π,A(z)
(x, y) ,

implying that the protocol is perfectly secure. �

Note that the expression

PUV ′|XY ′Y Z(u, v′ | x, y′, y, z) = Pr[(u, v′) = f(x, y′)]

can be replaced by (U, V ′) = f(X, Y ′) if f is deterministic. This yields the
following corollary for deterministic functionalities.

Corollary 1. A protocol Π securely computes the deterministic functionality
f perfectly, if and only if for every pair of algorithms A = (A1, A2) that is
admissible in the real model for the protocol Π and for all inputs (X, Y) and
auxiliary input Z, A produces outputs (U, V), such that the following conditions
are satisfied:

– (Correctness) If both players are honest, we have (U, V) = f(X, Y).
– (Security for Player 1) If player 1 is honest then there exist random variables

Y ′ and V ′ such that (U, V ′) = f(X, Y ′),

I(X ; Y ′ | ZY) = 0 , and I(UX ; V | ZY Y ′V ′) = 0 .

548 C. Crépeau et al.

– (Security for Player 2) If player 2 is honest then there exist random variables
X ′ and U ′ such that (U ′, V) = f(X ′, Y),

I(Y ; X ′ | ZX) = 0 , and I(V Y ; U | ZXX ′U ′) = 0 .

Note that we require the conditions of Theorem 2 and Corollary 1 to hold
for all distributions of the inputs (X, Y). In particular, they have to hold for
any input distribution PXY |Z=z, i.e., given the event that the auxiliary input
Z equals z. Since all the requirements are conditioned on Z, it is sufficient to
show that the conditions are met for all distributions PXY , ignoring Z in all the
expressions.

The information-theoretic security definition of Theorem 2 and Corollary 1
can also be used for protocols which are not perfectly secure. A protocol is secure
with error ε if for all inputs X, Y, Z, the joint distribution of the outputs has a
statistical distance of at most ε from the output of a perfectly secure protocol.
In information theory, the distance between distributions is typically expressed
using bounds on entropy and mutual information instead of statistical distance.
The following inequalities translate such bounds into bounds on statistical dis-
tance. Let U be uniformly distributed over the set X .

δ(PXY Z , PZPX|ZPY |Z) ≤ 1
2

√
2 ln 2 I(X ; Y | Z)

δ(PX , PU) ≤ 1
2

√
2 ln 2(log |X | − H(X))

The first inequality can easily be proved from [13], Lemma 16.3.1 while the
second inequality was proved in [8], Lemma 3.4.

4 Oblivious Transfer

We now apply our security definition to 1-out-of-n string oblivious transfer, or(
n
1

)
-OTk for short. The ideal functionality fOT is defined as

fOT(X, C) := (⊥, XC) ,

where ⊥ denotes a constant random variable, X = (X0, . . . , Xn−1), Xi ∈ {0, 1}k

for i ∈ {1, . . . , n}, and C ∈ {1, . . . n}.
Theorem 3. A protocol Π securely computes

(
n
1

)
-OTk perfectly if and only if

for every pair of algorithms A = (A1, A2) that is admissible for protocol Π and
for all inputs (X, C) and auxiliary input Z, A produces outputs (U, V) such that
the following conditions are satisfied:

– (Correctness) If both players are honest, then (U, V) = (⊥, XC).
– (Security for Player 1) If player 1 is honest, then we have U = ⊥ and there

exists a random variable C′, such that

I(X ; C′ | ZC) = 0 , and I(X ; V | ZCC′XC′) = 0 .

Information-Theoretic Conditions for Two-Party Secure Function Evaluation 549

– (Security for Player 2) If player 2 is honest, then we have

I(C; U | ZX) = 0 .

Proof. We only need to show that the security condition for player 2 is equivalent
to the one in Corollary 1:

I(C; X ′ | ZX) + I(X ′
CC; U | ZXX ′) = 0

Since X ′
C is a function of C and X ′,

I(X ′
CC; U | ZXX ′) = 0 is equivalent to I(C; U | ZXX ′) = 0 .

From the chain rule it follows that

I(C; X ′ | ZX)+ I(C; U | ZXX ′) = I(C; X ′U | ZX) = I(C; U | ZX)+ I(C; X ′ | ZXU) .

Now choose X ′ = (X ′
0, . . . , X

′
n−1) as follows: for all values i, let X ′

i be chosen
according to the distribution PV |ZXU,C=i except for X ′

C . We set X ′
C = V . Note

that all X ′
i, 0 ≤ i ≤ n − 1, have distribution PV |ZXU,C=i. Thus X ′ does not

depend on C given ZXU , we have V = X ′
C and I(C; X ′ | ZXU) = 0. So there

always exists a suitable X ′1, and the condition simplifies to I(C; U | ZX) = 0. �

The interpretation of these properties of oblivious transfer is quite intuitive: If
player 1 is honest, then she can be confident that anything player 2 can do is
basically equivalent to choosing a choice bit C′ which is possibly different from
C. On the other hand, if player 2 is honest, he can be certain that player 1 does
not get to know his input C. Theorem 3 shows that in the case of a dishonest
sender in

(
n
1

)
-OTk, privacy alone implies security. There always exists an input

X ′ that a dishonest sender can use in the ideal model to obtain the same results.

5 An Example

In this section we show how the result from the Section 4 can be used to prove
the security of a protocol. Our example will be the protocol from [29], where
one instance of

(2
1

)
-OT is implemented using one instance of

(2
1

)
-TO, which is an

instance of
(2
1

)
-OT in the opposite direction.

Protocol 1 ([29]). Let player 1 have input X = (X0, X1) ∈ {0, 1}×{0, 1}, and
player 2 have input C ∈ {0, 1}.
1. Player 2 chooses R ∈ {0, 1} at random.
2. The two players execute

(2
1

)
-TO, where player 1 inputs C = X0 ⊕ X1, and

player 2 inputs X0 = R and X1 = R ⊕ C.
3. Player 1 receives A = XC and sends M = X0 ⊕ A to the player 2.
4. Player 1 outputs V := R ⊕ M .
1 Note that these values X ′ are not necessarily known to a malicious player 1.

550 C. Crépeau et al.

Theorem 4. Protocol 1 perfectly securely reduces
(2
1

)
-OT to one realization of(2

1

)
-TO.

Proof. If both parties are honest, the protocol is correct because we have

R ⊕ M = R ⊕ X0 ⊕ (X0 ⊕ X1)C ⊕ R = XC .

Let player 1 be honest, and let C′ := X0 ⊕ X1. Using the data processing
inequality,

I(X0X1; C′ | ZC) ≤ I(X0X1; X0X1 | ZC) ≤ I(X0X1; ZC | ZC) = 0 .

Since M = X0 ⊕ (X0 ⊕ X1)(X0 ⊕ X1) ⊕ X0 = XC′ ⊕ X0, the values X0X1M ,
X0C

′M , and X0C
′XC′ contain the same information. Thus, using the data

processing inequality,

I(X0X1; V | ZCC′XC′) ≤ I(X0X1; CZX0X1M | ZCC′XC′)

= I(X0X1; CZX0C
′XC′ | ZCC′XC′) = 0 .

Now let player 2 be honest. Since A = R ⊕ CC and R is uniform, we have

I(C; U | ZX0X1) ≤ I(C; X0X1ZA | ZX0X1) = I(C; A | ZX0X1) = 0 .

Thus, the protocol is secure. �

6 Secure Two-Party Computation with Abort

In this section we will briefly discuss the model of Definition 7.2.6 of [20] where
the first party is allowed to abort the protocol right after receiving its output
but before the second party has received its own. The ideal model with abort for
player 1 is similar to the ideal model from Definition 2, the only difference being
that player 1 is given the option of aborting the computation by sending a bit
C to the trusted party after having received his output. The trusted party sends
to player 2 the corresponding output if C = 1, and ⊥ if C = 0. An honest player
always sends C = 1. The real model and the definition of security are identical
to the definition without abort. We call a protocol that satisfies this definition
secure with abort for player 1.

Theorem 5. A g-hybrid protocol Π securely computes f perfectly with abort
for player 1, if and only if for every pair of algorithms A = (A1, A2) that is
admissible in the real model for the protocol Π, and for all inputs (X, Y) and
auxiliary input Z, A produces outputs (U, V), such that the following conditions
are satisfied:

– (Correctness) If both players are honest, we have

PUV |XY Z(u, v | x, y, z) = Pr[(u, v) = f(x, y)] .

Information-Theoretic Conditions for Two-Party Secure Function Evaluation 551

– (Security for Player 1) If player 1 is honest, then there exist random variables
Y ′ and V ′, such that we have

I(X ; Y ′ | ZY) = 0 ,

PUV ′|XY ′Y Z(u, v′ | x, y′, y, z) = Pr[(u, v′) = f(x, y′)] ,

and
I(UX ; V | ZY Y ′V ′) = 0 .

– (Security for Player 2) If player 2 is honest, then there exist random variables
X ′, C and U ′, V ′, such that we have

I(Y ; X ′ | ZX) = 0 ,

PU ′V ′|X′Y XZ(u′, v′ | x′, y, x, z) = Pr[(u′, v′) = f(x′, y)] ,

I(V ′Y ; UC | ZXX ′U ′) = 0 ,

and V = V ′ if C = 1 and V = ⊥ if C = 0.

Proof. The proof is identical to that of Theorem 2 for the case where player 1 is
honest. We therefore only examine the case where player 2 is honest and player
1 is malicious.

Let us assume that the protocol Π securely computes f . Consequently, there
exists an admissible pair of algorithms B = (B1, B2) such that for all x ∈ X ,
y ∈ Y, and z ∈ {0, 1}∗ we have PUV |XY Z = PUV |XY Z .

The malicious B1 can be modeled by the two conditional probability distribu-
tions PX

′
Z2|XZ computing the input to the ideal functionality and some internal

data Z2, and PUC|U ′
Z2

computing the output U and the bit C. Note that we
can write PX

′
Z2|XZ = PX

′|XZPZ2|XZX
′ . Clearly, we have

I(Y ; X
′ | ZX) = 0 .

The ideal functionality computes U
′
, V

′
such that

PU
′
V

′|X′
Y XZ(u′, v′ | x′, y, x, z) = Pr[(u′, v′) = f(x′, y)] .

B1 gets back U
′
from the ideal functionality. Based on X, Z, X

′
, U

′
he decides

to send C to the functionality and outputs U . Hence, we have

I(V
′
Y ; UC | XZX

′
U

′
) = 0 .

If C = 1, the functionality sends V = V
′
to B2, if C = 0 it sends V = ⊥. B2

outputs V unchanged. As PUV |XY Z = PUV |XY Z it must be the case that the
same conditions hold in the real model, which implies the security condition for
player 2.

552 C. Crépeau et al.

Now let the conditions of Theorem 5 hold. We define an admissible protocol
B = (B1, B2) in the ideal model that produces the same distribution as the
protocol Π in the real model. Let B1 choose input X

′
according to PX

′|XZ :=
PX′|XZ , and (U, C) according to PUC|XZX

′
U

′ := PUC|XZX′U ′ . The conditional
distribution of the output in the ideal model is given by

PUV |XY Z =
∑

x′,c,u′,v′
PX

′|XZPU
′
V

′|X′
Y PUC|XZX

′
U

′PV |V ′
C ,

where
PU

′
V

′|X′
Y (u′, v′ | x′, y) = Pr[(u′, v′) = f(x′, y)] .

From I(Y ; X ′ | ZX) = 0 and I(V ′Y ; UC | XZX ′U ′) = 0 it follows that
PX′|XY Z = PX′|XZ and PUC|XZX′U ′V ′Y = PUC|XZX′U ′ . Furthermore, we have
PU ′V ′|X′Y XZ = PU

′
V

′|X′
Y and PV |V ′C = PV |V ′

C . We get for the conditional
distribution of the output in the real model

PUV |XY Z =
∑

x′,c,u′,v′
PX′|XY ZPU ′V ′|XY ZX′PUCV |XY ZX′U ′V ′

=
∑

x′,c,u′,v′
PX′|XZPU

′
V

′|X′
Y PUC|XY ZX′U ′V ′PV |XY ZX′U ′V ′CU

=
∑

x′,c,u′,v′
PX′|XZPU

′
V

′|X′
Y PUC|XZX′U ′PV |V ′C

=
∑

x′,c,u′,v′
PX

′|XZPU
′
V

′|X′
Y PUC|XZX

′
U

′PV |V ′
C

= PUV |XY Z .

Therefore for any admissible A in the real model there exists an admissible B in
the ideal model such that

idealf,B(z)(x, y) ≡ realg

Π,A(z)
(x, y) ,

which means that the protocol is perfectly secure with abort for player 1. �

7 Conclusion and Open Problems

We have shown that various information-theoretic security definitions for oblivi-
ous transfer used in the past contain subtle flaws. We propose a new information-
theoretic security definition which is provably equivalent to the security defin-
ition based on the ideal/real model paradigm. This not only provides a solid
security foundation for most protocols in the literature, which turn out to meet
our requirements, but also shows that they are in fact sequentially composable.

An interesting open problem is to generalize our model to various quantum
settings, for example to the scenario where two players connected by a quantum
channel wish to securely implement a classical functionality.

Information-Theoretic Conditions for Two-Party Secure Function Evaluation 553

Acknowledgements

We thank Abdul Ahsan, Serge Fehr and Stefan Wolf for many helpful discussions
and the anonymous referees for their comments.

References

1. M. Backes, B. Pfitzmann, and M. Waidner. A universally composable cryptographic
library. Cryptology ePrint Archive, Report 2003/015, 2003.

2. D. Beaver. Foundations of secure interactive computing. In Advances in Cryptology:
CRYPTO ’91, pages 377–391, London, UK, 1992. Springer-Verlag.

3. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the 20th
Annual ACM Symposium on Theory of Computing (STOC ’88), pages 1–10.
Springer-Verlag, 1988.

4. Manuel Blum. Coin flipping by telephone a protocol for solving impossible prob-
lems. SIGACT News, 15(1):23–27, 1983.

5. C. Blundo, P. D’Arco, A. De Santis, and D. R. Stinson. New results on uncon-
ditionally secure distributed oblivious transfer. In SAC ’02: Revised Papers from
the 9th Annual International Workshop on Selected Areas in Cryptography, pages
291–309, London, UK, 2003. Springer-Verlag.

6. G. Brassard, C. Crépeau, and M. Santha. Oblivious transfers and intersecting
codes. IEEETIT: IEEE Transactions on Information Theory, 42, 1996.

7. G. Brassard, C. Crépeau, and S. Wolf. Oblivious transfers and privacy ampli-
fication. Journal of Cryptology: the journal of the International Association for
Cryptologic Research, 16(4):219–237, 2003.

8. C. Cachin. Entropy Measures and Unconditional Security in Cryptography. PhD
thesis, No. 12187, ETH Zurich, Switzerland, 1997.

9. R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD
thesis, Weizmann Institiute of Science, Israel, 1996.

10. R. Canetti. Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology, 13(1):143–202, 2000.

11. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2000.

12. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure proto-
cols (extended abstract). In Proceedings of the 20th Annual ACM Symposium on
Theory of Computing (STOC ’88), pages 11–19. ACM Press, 1988.

13. T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-
Interscience, New York, USA, 1991.

14. C. Crépeau. Verifiable disclosure of secrets and applications (abstract). In Advances
in Cryptology: EUROCRYPT ’89, Lecture Notes in Computer Science, pages 181
– 191. Springer-Verlag, 1990.

15. C. Crépeau, J. van de Graaf, and A. Tapp. Committed oblivious transfer and pri-
vate multi-party computation. In Advances in Cryptology: CRYPTO ’95, Lecture
Notes in Computer Science, pages 110–123, 1995.

16. P. D’Arco and D. R. Stinson. Generalized zig-zag functions and oblivious trans-
fer reductions. In SAC ’01: Revised Papers from the 8th Annual International
Workshop on Selected Areas in Cryptography, pages 87–102, London, UK, 2001.
Springer-Verlag.

554 C. Crépeau et al.

17. Y. Ding, D. Harnik, A. Rosen, and R. Shaltiel. Constant-round oblivious transfer
in the bounded storage model. In In Theory of Cryptography — TCC ’04, volume
2951. Springer-Verlag, 2004.

18. Y. Dodis and S.Micali. Lower bounds for oblivious transfer reductions. In Advances
in Cryptology: EUROCRYPT ’97, 1999.

19. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Commun. ACM, 28(6):637–647, 1985.

20. O. Goldreich. Foundations of Cryptography, volume II: Basic Applications. Cam-
bridge University Press, 2004.

21. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game.
In Proceedings of the 19th Annual ACM Symposium on Theory of Computing
(STOC ’87), pages 218–229. ACM Press, 1987.

22. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Comput., 18(1):186–208, 1989.

23. J. Kilian. Founding cryptography on oblivious transfer. In Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, pages 20–31, 1988.

24. J. Kilian. More general completeness theorems for secure two-party computation.
In STOC, pages 316–324, 2000.

25. S. Micali and P. Rogaway. Secure computation (abstract). In Advances in Cryp-
tology: CRYPTO ’91, pages 392–404, London, UK, 1992. Springer-Verlag.

26. V. Nikov, S. Nikova, B. Preneel, and J. Vandewalle. On unconditionally secure
distributed oblivious transfer. In Progress in Cryptology - INDOCRYPT 2002,
pages 395–408, 2002.

27. M. O. Rabin. How to exchange secrets by oblivious transfer. Technical Report
TR-81, Harvard Aiken Computation Laboratory, 1981.

28. S. Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, 1983.
29. S. Wolf and J. Wullschleger. Oblivious transfer is symmetric. In Advances in Cryp-

tology: EUROCRYPT ’06, Lecture Notes in Computer Science. Springer-Verlag,
2006.

30. A. C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’82), pages 160–
164, 1982.

Unclonable Group Identification

Ivan Damg̊ard, Kasper Dupont, and Michael Østergaard Pedersen

Aarhus University, BRICS

Abstract. We introduce and motivate the concept of unclonable group
identification, that provides maximal protection against sharing of iden-
tities while still protecting the anonymity of users. We prove that the
notion can be realized from any one-way function and suggest a more
efficient implementation based on specific assumptions.

1 Introduction

A large body of literature studies the problem of group identification, where one
wants to verify that a given user is a member of a certain group, while ensuring
that the user’s personal identity is not revealed. Particular instances of this
include group signatures [5, 3, 22] and identity escrow[16]. In some applications,
a dishonest user has an interest in giving away to another person the data that
allow him to identify himself as a member of the group - such as password and
secret keys. The security problems implied by such a scenario have not been
given much attention so far in the literature1.

In this paper we study this type of problem. As a motivating example, con-
sider the issue of software protection: it is well known that one of the strongest
motivating factors in getting people to register as software users is if this enables
some functionality that cannot be accessed without registration (and payment).
This works particularly well, if the functionality requires access to the vendor’s
website, since then reverse engineering the software is not sufficient to get unau-
thorized access to the functionality. In the case of games, for instance, the op-
portunity to play against others may be available to only registered users, and
only through the vendor’s website.

Verifying that a user is registered may be done in many different ways. In this
paper, we are interested in solutions that work under the following constraints:

– An honest user can connect an unlimited number of times using the same
private key material, or at least updates should only be necessary with long
time intervals.

– We want to protect users’ privacy, i.e., honest users have to identify them-
selves only as registered users and do not have to reveal their personal
identities.

1 Some earlier works suggest to discourage this by forcing users to either give away
all their information, or nothing, but here we are interested in cases where dishonest
users in fact have an interest in giving everything away.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 555–572, 2006.
c© International Association for Cryptologic Research 2006

556 I. Damg̊ard, K. Dupont, and M.Ø. Pedersen

– We want to do as much as possible to protect against attacks where a user
“clones” himself by handing a copy of his personal data (software, secret
key(s), etc.) to another person in order to get the benefits of two registrations
while only paying for one.

Note that the cloning attack may be easy or very hard to carry out physically,
depending on how the user’s personal keys are stored, but only in very few cases
can it be considered impossible.

Of course, we can only hope to detect cloning if the user and clone actually
connect to the vendor’s website. A further trivial observation is that if first
the user connects, then leaves the site and then the clone connects, we cannot
distinguish this from two connections made by an honest user, since he would
also use the same private key material in both cases. An event we can hope
to detect, however, is if both user and clone connect so that they are on the
site simultaneously, since this is exactly what cannot occur if the user has been
honest. In this case, we not only want to detect the attack, we also want to be
able to reveal the identity of the user who cloned himself. Note that, apart from
the fact that the above simultaneous scenario is the only one in which we can
hope to catch a cloning attack, the scenario is also of practical relevance. For
instance, the case of a user who buys one copy of a game and distributes it to
all his friends so they can play against each other online, is exactly a case where
a number of clones would want to be connected simultaneously.

Anunclonable identification scheme informally is an identification schemewhere
honest users can identify themselves anonymously as members of a group, but
where clones of users can be detected and have their identities revealed if they
identify themselves simultaneously. In this paper, we give a formal definition of this
primitive. We show that it can be realized assuming existence of one-way functions
(which is clearly a minimal assumption), and we give a more efficient implementa-
tionbasedon specific assumptions.On the technical side, ourmost efficient solution
is based on a new technique for proving in zero-knowledge, given gx in a group of
prime order, that x was chosen pseudorandomly from on a committed secret key.

Of course, before attempting a construction such as we have sketched, one
should verify if existing primitives already allow solving the problem. First, one
might consider using an anonymous E-cash scheme[17, 6], i.e., some number of
electronic coins are issued to each user, and users use them to “pay” for access
to the site. This would lead to a functionality that is incomparable to the one
we sketched above: Cloning in this case means sharing e-coins with others, and
so the cloning attack is exactly double spending and can therefore detected even
if the two spendings do not take place simultaneously. But on the other hand,
honest users can only use each coin once, and must therefore either possess a
very large secure memory, or come back for more coins throughout the life of the
system. This reveals information on how often a user connects, and is also not
consistent with our goal, namely a solution where you can join a group once and
then identify yourself an unlimited number of times using the same key material.

One may also consider using group signatures[5, 3, 22], and have users identify
themselves by signing a message chosen by the verifier (using his current system

Unclonable Group Identification 557

time, for instance). This achieves anonymity but does not protect against cloning.
To do this, one would need the property that if the same user signs the same
message twice, this would result in signatures that could be detected as coming
from the same user. This does not follow from the standard definition of group
signatures, and is actually false for known schemes, since these are probabilistic
and produce randomly varying signatures even if the message is fixed. A similar
comment applies to identity escrow schemes[16].

2 Definition

An unclonable identification scheme involves a Group Manager GM , a set of
Verifiers and some number of Users. The idea is that after some initialization,
there will be several events, where some set of users prove “at the same time” to
a verifier V that they are members of the group managed by GM . Since we want
to detect if V is talking to clones of the same user at the same time, every proof
should take as input some string α that represents in some sense the current
time or phase of the protocol we are in. However, this does not have to be linked
to real time. What is important is that whenever a set of users want to prove
themselves, they should agree with V on a value for α that has not been used
before. More precisely, the demands are

– An honest V must be able to ensure that all users he talks to at a given
point prove themselves using the same value of α.

– An honest user should be able to ensure that he never executes Prove with
the same value of α more than once.

One solution that works in the case where V runs a website that users would
like to be connected to for some length of time, is as follows: with regular in-
tervals, e.g., each hour each user who is connected must prove himself using the
current date and hour as α, as defined by the verifier’s system time. This works
if there is sufficient agreement on the time between users and V and if users
remember at which time they last did a proof. But many other solutions are
possible. Therefore, we have chosen to separate the way time is defined from
the definition as such by assuming that the entire system proceeds in consecu-
tive phases, with a unique number assigned to each phase. In each phase, some
subset of users decide to prove themselves to some verifier V , and the number
assigned to the current phase will be used as the string α. In the full version of
this paper, [10] we propose a way to realize such a scenario without relying on
synchronization, or requiring users to keep state.

The system is defined by probabilistic polynomial time algorithms KeyGen,
Detect and two-party protocols Join and Prove. These are used as follows:

– Initially, GM runs KeyGen on input 1k, to get output public key pk and
secret key sk. We assume for simplicity that the set of possible pk’s output
by KeyGen(1k) can be recognized in polynomial time.

– When a user U joins the system he runs Join with GM . Common input is
pk. Private input to GM is sk. The protocol outputs to GM either “reject”

558 I. Damg̊ard, K. Dupont, and M.Ø. Pedersen

or a string id. Output to U is “reject” or a membership certificate certU .
We assume Join is executed on a secure channel so that no other entity will
have access to the data exchanged.

– To prove he is a member of the group, the user U executes protocol Prove
with a verifier V . Common input is the public key pk and the string α
assigned to the current phase, U uses certU as private input. At the end of
the protocol V accepts or rejects. Each user executes Prove at most once in
every phase.

– Algorithm Detect gets as input a number of transcripts of executions of
Prove, done with pk as input in the same phase. It outputs a (possibly
empty) list of strings. The intuition is that this algorithm should be able
to tell if the result of one or more cloning attacks are among a given set of
proofs, and if so, it will output the identities of the involved users.

Definition 1. The algorithms and protocols in a secure unclonable identification
scheme must satisfy the following:

Completeness. Assume GM , V and user U are honest. Execution of KeyGen,
followed by executions of Join and Prove always result in V accepting.

No Cloning. Consider an honest GM who executes (pk, sk) = KeyGen(1k).
Consider any probabilistic polynomial time algorithm Ũ who plays the follow-
ing game on input pk: in any phase, it can issue one or more of the following
requests:

1. It can ask that a set of honest users execute Join with GM (no data
returned to Ũ).

2. It can ask to execute Join itself with GM .
3. It can ask that some number of honest users who already joined the group

execute Prove with Ũ acting as verifier, using pk and the current value
of α as input.

Finally, Ũ executes Prove a number of times with an honest verifier V , on
input pk and the current value of α.
We now want to capture the idea that in the last step, Ũ can only have proofs
accepted by using user identities it got from GM , it must “know” which one
of them it is using in each case, and if it uses any of them more then once,
the Detect algorithm will catch this.
To this end, we demand that there exists a probabilistic algorithm Extract
which gets as input the complete view of Ũ2 and outputs a user identity, for
every instance of Prove that V accepted in the last step. The expected time
to run Ũ and then Extract must be polynomial.
We require that the following holds except with negligible probability:
All user identities output by Extract are among those that were generated in
the conversations between Ũ and GM . Furthermore, the Detect algorithm,
when given as input the conversation between Ũ and V , will output exactly
those user identities that occur more than once in the output of Extract.

2 This means that Extract can rewind Ũ to any state that occurred during the game.

Unclonable Group Identification 559

Note that this implies that if Ũ did not execute any Join’s, there are no
user identities Extract can legally output, so we are then in fact demanding
that all Ũ ’s proofs are rejected except with negligible probability. Thus we do
not need a separate soundness condition in the definition demanding that
non-members are rejected.

Anonymity. Consider any probabilistic polynomial time algorithm Ṽ , who will
act as both GM and verifier in an attempt to break the anonymity of honest
users. Ṽ gets 1k as input and outputs a valid pk (can be assumed without loss
of generality since we assumed that invalid pk’s can be easily recognized). It
then plays the following game: it interacts with a set of honest users, where
in each phase some users execute Join and other users execute Prove with
Ṽ . Of course, no honest user will attempt to do Prove unless he already
did Join successfully. At some point Ṽ stops and outputs a bit, and we let
preal,Ṽ (k) be the probability that 1 is output.
We now want to express the demand that Ṽ should only learn what is un-
avoidable, namely the number of honest users that interact with it in each
phase. So we compare the above game to a different one, where Ṽ interacts
with a simulator M . The simulator gets as input for each phase the num-
ber of users who want to execute Join and the number that want to execute
Prove in the current phase. These numbers are chosen with the same distri-
bution as in the first game. Let psim,Ṽ (k) be the probability that 1 is output
in this case.
We demand that there exists a simulator probabilistic polynomial time sim-
ulator M such that for any Ṽ , |preal,Ṽ (k) − psim,Ṽ (k)| is negligible in k.

We note that in this definition, we have for simplicity used the usual two-phase
structure of identification schemes to define soundness and non-cloning, where
first the adversary talks to the honest users and then tries to fool the honest
verifier. Thus we do not allow him to interact with an honest prover and and
honest verifier simultaneously. However, this is not a serious restriction, as there
are several techniques that allow handling even this concurrent case, such as the
so called designated verifier proofs[12, 7]. These techniques can be used with any
of the schemes we propose here.

As for the scheduling of the individual protocols in a single phase, we consider
two cases: one where in each phase the proofs given to an honest verifier are
composed sequentially, and one where the composition may be concurrent, with
a scheduling chosen by the adversary. We speak of sequential and concurrent
security, accordingly. On the other hand, we assume that honest users (provers)
may interact concurrently with an adversarial verifier.

3 A Theoretical Solution

3.1 Some Tools

We will need a secure string commitment scheme. Such a scheme follows from
any one-way function using for instance Naor’s construction[18], where there

560 I. Damg̊ard, K. Dupont, and M.Ø. Pedersen

is a public key Pcom which is a random string (of length polynomial in the
security parameter k) that can be chosen once and for all by the receiver of
commitments. We let comPcom(str, rstr) denote a commitment to string str using
random coins rstr . Such a commitment determines str uniquely except for a
negligible fraction of the public keys, and commitments to different strings are
polynomially indistinguishable assuming the underlying one-way function is hard
to invert.

Based on such a commitment scheme and, for instance, Blum’s protocol for
Graph Hamiltonicity or the one from [14] for graph 3-colorability, we can build
generic proofs of knowledge for any binary relation R that can be checked in
polynomial time. The protocol in its basic form is a three move protocol where
the second message is a one-bit challenge from the verifier. When we work with
security parameter k, we may compose sequentially k instances of this protocol,
to obtain a zero-knowledge proof of knowledge for R with negligible soundness
error. We may also compose in parallel k instances of the protocol. This is also a
proof of knowledge for R, more precisely, on common input x, the prover proves
knowledge of w such that (x, w) ∈ R.

Protocols obtained by this parallel composition are special cases of so-called
Σ-protocols. By definition, such protocols have three properties: first, conversa-
tions are of form (a, e, z), where a = a(x, w, coinsP) is a function of x, w and
the prover’s random coins, e is a k-bit challenge, and z = z(x, w, coinsP , e) is a
function of the prover’s private data and the challenge. Based on x, (a, e, z) the
verifier decides to accept or reject. Second, the protocol is honest-verifier (com-
putational) zero-knowledge (and is therefore witness indistinguishable). Third,
the protocol has the special soundness property, i.e., from x and accepting con-
versations (a, e, z), (a, e′, z′) with e �= e′, it is easy to compute w such that
(x, w) ∈ R.

Using a technique known as the OR-construction[8], one can combine Σ-
protocols for two relations R0, R1, to obtain a new Σ-protocol, where on in-
put x0, x1, the prover proves he knows w such that (x0, w) ∈ R0 or (x1, w) ∈
R1, without revealing which is the case, i.e., the protocol is witness
indistinguishable.

We will need a family of pseudorandom functions[13]. Such a family is indexed
by a key s (a random string of length k bits), and can be designed to have
any desired (polynomial in k) input and output length, assuming any one-way
function. We let fs() denote such a pseudorandom function. The basic property
is that even given oracle access to the function (and not the key), it cannot be
efficiently distinguished from a truly random function.

Finally, we will need a secure signature scheme, which can again be built from
any one-way function[21]. Such a scheme comes with probabilistic polynomial
time algorithms Gen, Sign, V erify for key generation, signing and verifying sig-
natures. Gen(1k) outputs a key pair Psign, Ssign. On input message m and the
private key, Sign produces a signature σ = Sign(Ssign, m). On input message,
signature and public key, V erify produces as output V erify(Psign, m, σ) which
is accept or reject.

Unclonable Group Identification 561

3.2 The Scheme

We first explain the intuition behind the solution: when joining the group, user
U will make a commitment cU to a random string rU and will obtain GM ’s
signature σU on the commitment. He then proves he is a member of the group
by proving that he knows a valid signature σU on some message cU , without
revealing either value. Moreover when giving this proof he uses some random
coins. These are not chosen at random but pseudorandomly as frU (α). That
is, he obtains the coins by applying the pseudorandom function to the current
α-value, using rU as key. He also proves that he has done exactly this. Note
that this will force a clone of the user to use the same coins if he gives a proof
for the same α-value, by security of the commitment and signature schemes.
This idea of choosing the randomness for a proof pseudorandomly is somewhat
similar to a technique from a completely different context, namely resetable zero-
knowledge [15].

The proof given is actually a Σ-protocol, so the transcripts of proofs given by
user and clone are of form (a, e, z) and (a′, e′, z′). But when all inputs and random
coins are the same in the two cases, we must have a = a′. Furthermore, e �= e′

with overwhelming probability, so if both proofs are accepted, special soundness
of the protocol means that one can easily compute the prover’s secret, which
will immediately identify the user in question.

We now describe the components of our scheme – throughout the descriptions,
it is understood that a party who detects an invalid proof or signature will
immediately stop and reject:

KeyGen. On input 1k, it generates keys (Psign, Ssign) for the signature scheme
and public key Pcom for the commitment scheme (with security parameter
k). Finally, it chooses a random k-bit string R. The public key is pk =
(Psign, Pcom, R) while the private key is sk = Ssign.

Join. The user U sends cU = commitPcom(rU , sU) where ru is a random k-bit
string. GM assigns a unique identity idU to U , and sends to U a signature
σU = Sign(Ssign, (cU , idU)) on cU concatenated by idU . Also, GM proves
in zero-knowledge that he knows a signature (valid under Psign) on R.
This is easy given that GM knows Ssign. The output certificate for U is
rU , sU , σU , idU , while output for GM is idU .

Prove. Recall that pk and the string α is common input to the protocol. User
U first makes commitments CU , DU , EU to cu, idU , σU , respectively. He will
now give a proof of knowledge related to these commitments, the group
public key pk and the number α assigned to the current phase. This proof
consists of three ingredients. The first is a proof of knowledge, that U knows
how to open the commitments CU , DU , EU to strings cu, idU , σU such that
σU is GM ’s signature on (cU , idU). While giving this proof, he uses frU (α) as
random coins. That is, the protocol transcript is (a1, e1, z1), where it should
be the case a1 = a1((pk, CU , DU , EU), (cU , idU , σU), frU (α)).
The second ingredient is a proof that U can open CU to reveal cU and he
knows sU , rU such that cU = commit(rU , sU), and the message a1 from the

562 I. Damg̊ard, K. Dupont, and M.Ø. Pedersen

previous protocol satisfies a1 = a1((pk, CU , DU , EU), (cU , idU , σU), frU (α)).
Also this proof is a three move protocol of form (a2, e2, z2), and we are going
to do the two proofs in parallel, so that the overall conversation will have
form (a1, a2, e1, e2, z1, z2). The final ingredient is a proof of knowledge of
GM ’s signature on the string R that is part of pk. This is combined with
the previous ingredients using the OR construction mentioned above, i.e.,
U is proving that he knows a signature on R, or strings cu, idU , σU , rU , sU

satisfying the conditions just described 3.
Detect. Looks at all the proofs given in a phase and finds all places where

two conversations include tuples of form (a1, a2, e1, e2, z1, z2), respectively
(a′

1a
′
2, e

′
1, e

′
2, z

′
1, z

′
2) and where a1 = a′

1 and e1 �= e′1. For any such case it will
use the special soundness property to extract the underlying cU , idU , σU , and
appends idU to its output list.

Theorem 1. Assuming one-way functions exist, the above scheme is a secure
unclonable identification scheme with sequential security.

We remark that concurrent security can be obtained under the same assumption
in the common reference string model, using a technique similar to the one used
in the more efficient protocol we describe later.

The key to the proof of the theorem is

Lemma 1. The proof of knowledge given by the user during the Prove protocol
is witness indistinguishable

Proof. Recall that the proof given by U is a combination using the OR con-
struction of first a proof of knowledge of a signature on R and second a proof of
knowledge of values cu, idU , σU , rU , sU satisfying a number of properties. Con-
versations in the latter protocol are of form (a1, a2, e1, e2, z1, z2). The OR con-
struction leads to a witness-indistinguishable protocol if both protocols used are
honest verifier zero-knowledge. This is true for the first protocol, which is just a
standard Σ-protocol and so is honest verifier zero-knowledge by construction.

It is therefore enough to show that the second protocol is honest verifier zero-
knowledge. Some notation for this: the part (a1, e1, z1) of a conversation will
be called proof 1. It has the commitments CU , DU , EU and public key pk as
public input, while the secret witness is cU , idU , σU . The rest of the conversation
(a2, e2, z2) is called proof 2. It has CU , DU , EU , pk, a1 as public input while the
secret witness is cU , idU , σU , rU , sU .

Both proof 1 and proof 2 are Σ-protocols constructed from generic zero-
knowledge techniques as explained above. They therefore have honest verifier
simulators M1, M2 respectively. However, note that in our context, proof 1 is
not done using the normal prover algorithm, we use pseudorandom coins for
the prover, and furthermore the key for this pseudorandomness is used as input
in proof 2. Hence a proof is required that we can still use M1, M2 to simulate.
We do this by defining a series of distributions where the first is that of real
3 Of course, the latter is normally the case, the other option is included for proof-

technical reasons.

Unclonable Group Identification 563

conversations and the last is the one output by the honest verifier simulator
we propose. The result will then follow from arguing that each distribution is
computationally indistinguishable from the previous one.

The sequence of distributions are produced as follows:

1. Run the honest prover U ’s algorithm (with known secret witnesses and ran-
dom challenges).

2. Same as above, but proof 2 is replaced by running the honest verifier sim-
ulator M2(CU , DU , EU , pk, a1) for proof 2. Note that this requires that rU

is known, to do proof 1 according to the protocol. However, we will still
get something indistinguishable from the previous distribution. This is be-
cause the output of M2 is indistinguishable from a real conversation, even to
someone who knows the secret witness for proof 2. Indeed, M2 is simulating
a protocol constructed from generic techniques based on any commitment
scheme as explained earlier. This means that the simulation essentially pro-
duces a set of commitments, some of which are opened and some are not.
The unopened commitments have contents different from what would be the
case in a real conversation, however, this is the only difference. By the hiding
property of the commitments, this difference cannot be detected in polyno-
mial time, even knowing what the commitments are supposed to contain.

3. As 2., but the commitment cU is replaced by a commitment to a random
value. This is indistinguishable from 2. by the hiding property of
commitments.

4. As 3., but when doing proof 1, instead of using rU to compute pseudorandom
values for the random coins, we use oracle access to the function frU ().
We now do not know ru explicitly, but we will produce exactly the same
distribution as in 3.

5. As in 4., but the oracle access to frU () is replaced by oracle access to a
random function. This is indistinguishable from 4. by pseudorandomness of
the function frU ().

6. As in 5., but the transcript of proof 1 is now generated by running the hon-
est verifier simulator M1 for proof 1. This is indistinguishable from 5., since
there, we ran proof 1 following the prover’s normal algorithm, using real ran-
dom coins. Summarizing, this last distribution is generated by first running
M1(CU , DU , EU , pk) to get (a1, e1, z1), and running M2(CU , DU , EU , pk, a1)
to get (a2, e2, z2), and this defines the desired honest verifier simulation.

We can now proceed with the proof of the required properties.

Anonymity: if Ṽ behaves such that at least one instance of the Join protocol
completes successfully with non-negligible probability, then we can extract from
the proof of knowledge given by Ṽ a signature on R. Note that no attempts
to do Prove would occur before this point. Given this signature, it is trivial to
simulate (without rewinding) all subsequent instances of Prove knowing only
the number of instances to be done in each phase. This cannot be distinguished
from the real game by witness indistinguishability of the underlying proofs of
knowledge.

564 I. Damg̊ard, K. Dupont, and M.Ø. Pedersen

No cloning: we first describe the required Extract algorithm. It will, for each
proof Ũ had accepted in the last stage of the attack, rewind Ũ to the start
of this proof and try to extract the secret witness it is using by the standard
rewinding technique of sending random challenges to Ũ until it answers a new
challenge correctly. At this point a valid witness can be extracted. Each such
witness must include either a signature on R, or a signature σU on a pair of
form (cU , idU). Extract outputs idU in the latter case, and a random string in
the former. We put the limitation that the algorithm gives up on a proof and
outputs a random string if it rewinds more than 2k times, where k is the length
of challenges.

To estimate the running time of this, note that the probability that Ũ will
have a proof accepted, given the state it is in just before the proof, is determined
by the number T of challenges it will answer correctly. The probability that we
will have to run Extract on the proof is T 2−k, while the number of rewinds we
have to do is 0 if T = 0, 2k if T = 1 and 2k/(T − 1) if T > 1. It follows that
contribution to the total expected running time from each proof is polynomial.
The total expected running time is just the sum of these contributions since we
compose sequentially.

To finalize the argument, we need the following

Claim: we may assume that in the output of Extract, we will only see triples
(cU , idU , σU) that were obtained earlier by Ũ in some instance of Join.

Indeed, if this is false with non-negligible probability, we can break the sig-
nature scheme in a chosen message attack: we choose at random to either ask
for signatures on all pairs cU , idU or a signature on R and use this to simulate
the Join protocols done by Ũ and all proofs by honest users given to Ũ (with-
out rewinding, we just follow the protocol). Then by witness indistinguisha-
bility, Ũ ’s behaviour will be essentially the same as before, so the knowledge
extraction from Ũ will give us a signature on a new message with non-negligible
probability.

Consider now any two Prove instances where the same triple cU , idU , σU is
extracted. Let (a1, a2, e1, e2, z1, z2), (a′

1, a
′
2, e

′
1, e

′
2, z

′
1, z

′
2) be the transcripts of the

two instances.
Now, soundness of the Prove protocol implies that we could extract (except

with negligible probability) also two ways of opening cU from the two instances,
that is, two pairs (rU , sU), (r′U , s′U) such that

cU = commitPcom(rU , sU) = commitPcom(r′U , s′U),

and that

a1 = a(pk, (cU , idU , σU), frU (α)), a′
1 = a(pk, (cU , idU , σU), fr′

U
(α)).

But we must have rU = r′U , or the the binding property of the commitment
scheme is broken. This immediately implies that a1 = a′

1, and therefore, since
e1 �= e′1 with overwhelming probability, Detect will successfully extract idU , as
required in the definition.

Unclonable Group Identification 565

4 A More Efficient Solution

In this section, we present a more efficient unclonable group identification
scheme, based on two main ingredients: First a technique recently proposed by
Camenisch and Lysyanskaya [3] for digital signatures based on bilinear groups,
with protocols for proving knowledge of a signature on a committed value. Sec-
ond, a new technique for proving that an element in a group is of form gψ where
ψ is a pseudorandom value computed from a committed key. We will borrow
some notation from [3] (and several earlier papers): given a public string x, a
private witness w and a predicate pred,

PK{w : pred(x, w)}

means that we execute a Σ-protocol for the relation {(x, w)| pred(x, w) = true},
that is, a prover convinces a verifier that he knows w such that the predicate on
x and w is satisfied. We will also use the following variant:

PK(κ){w : pred(x, w)}

where κ is a bit string. This stands for the following: we execute the underlying
Σ-protocol in the normal interactive way, except that the verifier sends as the
second message a random string κ, and the challenge the prover has to answer
is determined as H(x, a, κ), where H is a hash function, modelled as a random
oracle and a is the first message in the original protocol. The point of this
construction is that it allows simulation of the protocol without rewinding, due
to the “programmability” of the random oracle, and (for the same reason) it also
allows knowledge extraction by standard rewinding. Since we will need the last
point for the proof, we cannot just use the Fiat-Shamir heuristic.

4.1 Proofs of Knowledge with Pseudorandom Exponents

In this subsection, we introduce some tools to be used in our construction. To
this end, we consider a group Gp of prime order p. We will assume p is chosen as
a safe prime, i.e., p = 2q + 1 where q is also prime. Gq will denote the (unique)
subgroup of Z∗

p of order q.
We further consider the case where a prover knows exponents x1, ..., xt ∈ Zp

such that β = αx1
1 · · ·αxt

t for publicly known β, α1, ..., αt ∈ Gp. A standard Σ-
protocol for prover P and verifier V can be used to prove knowledge of the xi’s.
That is, we want:

PK{(x1, ..., xt) : β = αx1
1 · · ·αxt

t } (1)

This Σ-protocol works as follows:

1. P chooses r1, ..., rt ∈ Zp uniformly at random and sends to V τ =
∏t

i=1 αri

i .
2. V chooses a random challenge ε ∈ Zp.
3. P responds with zi = ri + εxi mod p for i = 1..t. V checks that

∏t
i=1 αzi

i =
τβε.

566 I. Damg̊ard, K. Dupont, and M.Ø. Pedersen

It is well known (and straightforward to show) that this protocol is indeed a Σ-
protocol for the underlying relation. It is also well-known that a straightforward
variant of the protocol allows us to do the following type of proof:

PK{(x1, .., xt, x
′
1, ..., x

′
t) : β = αx1

1 · · ·αxt
t , β′ = α′x′

1
1 · · ·α′x′

t

t , x1 = x′
1}

Basically, we run the original protocol twice in parallel for the two equations.
This would normally involve two independent sets of random numbers r1, ..., rt

and r′1, ..., r′t. However, to demonstrate that x1 = x′
1 the prover must use r1 = r′1

and the verifier checks that the responses z1, ..., zt, z
′
1, ...z

′
t satisfy z1 = z′1. We will

use this variant later, but for now we stick to the basic version for simplicity. All
techniques we describe here can also be applied to the variant in a straightforward
way.

We now consider a change to the protocol where P chooses the randomness
in the first message according to a pseudorandom function ΨK(i, α, b), where
K is a key committed to by P , α is a public input, i is a number and b is a
bit. We will use a variant of the pseudorandom function of Naor and Reingold,
based on the DDH assumption in Gq, so that outputs from Ψ are in Gq. We
specify below how the function works and how the key is committed. However,
in the previous protocol, the random exponents were chosen in Zp, whereas the
pseudorandom function produces output in the subgroup Gq. To resolve this, we
let the exponents be chosen as the difference between two pseudorandom values,
which allows us to hit all of Zp. The modified protocol then works as follows:

1. P sets ri = ΨK(i, α, 0) and si = ΨK(i, α, 1) and sends to V τ =
∏t

i=1 αri−si

i .
2. V chooses a random challenge ε ∈ Zp.
3. P responds with zi = ri−si+εxi mod p for i = 1..t. V checks that

∏t
i=1 αzi

i =
τβε.

To argue that this is a Σ-protocol for the same relation, we need a result
by Perron[20]: Let QRp be the set of quadratic residues mod p. Then for any
a ∈ Zp∗, the set a + QRp contains almost as many quadratic residues as non-
residues: the difference is at most 1. Since in our case Gq = QRp, we get from
this:

Lemma 2. The distribution of ui − vi mod p where ui, vi are chosen uniformly
in Gq, is statistically close to uniform over Zp.

Lemma 3. Under the DDH assumption in Gq, the above protocol is a Σ-protocol
for the relation specified in (1).

Proof. Completeness is trivial, and special soundness follows exactly as for the
previous standard protocol. For honest verifier zero-knowledge, we argue as fol-
lows: To simulate, we will choose ε and zi at random in their respective domains
and then set τ = β−ε

∏t
i=1 αzi

i .
Now, assuming K is known only to P , pseudorandomness of Ψ implies that

our variant is indistinguishable from a protocol where ΨK(i, α, 0), ΨK(i, α, 1) are
replaced by uniformly random choice ui, vi from Gq. This creates a distribution
of zi that is statistically close to the simulated distribution by Lemma 2.

Unclonable Group Identification 567

Our goal is now to allow P to prove that he has followed the specified algorithm
for choosing the ri, si’s pseudorandomly. The first step of this is to have P
commit to each individual value under a public key chosen by a third party
(which will eventually be the group manager in our case). The public key will be
two random elements η, λ ∈ Gp, and P will make commitments comi = ηriλωi

and com′
i = ηsiλω′

i , for i = 1..t and random ωi, ω
′
i. We can now ask P to prove

that he committed to the correct values, that is, execute

PK{(ri, si, ωi, ω
′
i, i = 1..t) : τ =

t∏
i=1

αri(α−1)si ,

comi = ηriλωi , com′
i = ηsiλω′

i , i = 1..t}
The Σ-protocol for this is a standard variant of the one we presented above.

The final step is to show that each committed value was chosen according to
the pseudorandom function. For this, we need to specify in detail how it works.
We assume that input strings to Ψ all have length at most k (where k can in
principle be arbitrary). A key to the function is a number K ∈ Zq. Finally, we
will need a hash function H that take a string str of length at most k as input
and outputs an element in Gq. We will model this function as a random oracle.
The pseudorandom function is now defined as:

ΨK(str) = H(str)K mod p

We note that the function mapping y to yK mod p is a weak pseudorandom
function assuming the DDH assumption holds in Gq, i.e., as long as y is ran-
domly chosen and is not controlled by the adversary, the outputs look random.
However, in our case, and assuming the random oracle model, the function is
only used on values produced by H , and these are guaranteed to be random,
even if the adversary chooses the inputs to H . This argument is easily formalized
to prove.

Lemma 4. In the random oracle model, and assuming DDH holds in Gq, ΨK()
as defined above is a strong pseudorandom function.

We will assume that the key K is committed to by P in a somewhat non-
standard way which, however, fits nicely with the construction we will see in the
following. Concretely, we assume that d = gγKδr

hu is given, for publicly known
g, h ∈ Gp and γ, δ ∈ Gq. With this, we can summarize our goal, namely to give
a Σ-protocol implementing

PK{(K, r, u, ωi, ω
′
i, i = 1..t) : d = gγKδr

hu,

comi = ηΨK(i,α,0)λωi , com′
i = ηΨK(i,α,1)λω′

i , i = 1..t}
For this, it will be be enough to show how P can prove that some given commit-
ment com satisfies com = ηΨK(str)λω for public str. Since anyone can compute
ψ = H(str), our task reduces to:

PK{(K, r, u, ω) : d = gγKδr

hu, com = ηψK

λω} (2)

568 I. Damg̊ard, K. Dupont, and M.Ø. Pedersen

A protocol for this follows here:

1. P chooses s, w ∈ Zq, ν, φ ∈ Zp at random. He sends v1 = gγsδw

hν and
v2 = ηψs

λφ to V .
2. V selects a random bit c.
3. P sends z1 = s−cK mod q, z2 = w−cr mod q, z3 = ν−cuγs−Kδw−r mod p,

and z4 = φ − cωψs−K mod p.
V checks as follows: if c = 0, that gγz1δz2

hz3 = v1 and ηψz1
λz4 = v2. If c = 1,

that dγz1δz2
hz3 = v1 and comψz1

λz4 = v2.

Since this protocol only works with a 1-bit challenge, we need to repeat it an
appropriate number of times to have a sufficiently small soundness error.

Lemma 5. The above is a Σ-protocol for the relation specified in (2)

Proof. Completeness follows by inspection of the protocol. Special soundness: if
for given v1, v2, the prover can send satisfactory answers z1, z2, z3, z4 to c = 0 and
z′1, z

′
2, z

′
3, z

′
4 to c = 1, we have by the checks carried out by V that gγz1δz2

hz3 = v1,

ηψz1
λz4 = v2. dγz′

1δz′
2hz′

3 = v1 and comψz′
1λz′

4 = v2. Combining these equations
imply that com = ηΨz1−z′

1λ(z4−z′
4)ψ

−z′
1 and d = αγz1−z′

1δz2−z′
2 h(z3−z′

3)γ
−z′

1δ−z′
2 ,

i.e., a, d are of the required form. Finally, honest verifier ZK is argued by the
following simulator: choose z1, z2 at random in Zq, z3, z4 at random in Zp and
c as a random bit. If c = 0, set v1 = gγz1δz2

hz3 and v2 = ηψz1
λz4 . If c = 1, set

v1 = dγz1δz2
hz3 and v2 = comψz1

λz4 . This simulation is seen to be perfect by a
standard argument.

4.2 The New Scheme

Our main idea for the scheme is similar to the earlier theoretical one: the user U
will commit to a secret key K. When registering with the group manager GM
he will obtain a signature on the commitment cU , using the signature system
described in [3] (called scheme A in [3]). He can now prove membership of the
group by proving knowledge of a valid signature on cU (as well as proving knowl-
edge of this value). If he tries to clone his identity we can exploit the special
soundness property of the protocol used and extract his identity.

KeyGen. Let GM take a security parameter k and output two groups Gp = 〈g〉
and Gp = 〈g〉 of prime order p = Θ

(
2k
)

where p = 2q + 1 and q is a prime.
Let Gq denote the unique subgroup of Z∗

p of order q. Let γ, δ be random
generators of Gq. Let e : Gp×Gp → Gp be an efficiently computable bilinear
map, and η, λ be random generators of Gp.
To set up the signature scheme, GM chooses the following values at random:
x ∈ Zp, y ∈ Zp and sets X = gx, Y = gy. The secret key for the signature
scheme is Sk = (x, y) and the public key is Pk = (q, Gp,Gp, g,g, e, X, Y, η, λ).

Join. The user U chooses at random rU ∈ Zq and a key K ∈ Zq. U makes a
commitment cU = γKδrU mod p to K and sends it to GM4.

4 It is not necessary to have U prove that he can open cU , since later in the Prove
protocol, he must implicitly show he can open it to have the proof accepted.

Unclonable Group Identification 569

GM verifies that U is allowed to join the group and if so, he computes a
signature σ = (a, b, c) on cU where a is chosen at random in Gp, b = ay,
c = ax+cUxy and sends it to U . GM considers cU as the user’s id in the
following, whereas (K, rU , a, b, c) serves as the membership certificate.

Prove. Recall that the string α, denoting “the current time”, is common input to
U and V . U essentially proves that he is a member of a group by proving that
he knows a valid message and signature from GM . First U blinds his signature
σ by choosing at random μ, r′ ∈ Zp and computing σ̃ =

(
ã, b̃, ĉ

)
where ã = ar′

,

b̃ = br′
, ĉ = (cr′

)μ. Then U makes a commitment CU = ηcU λsU for random sU

and sends σ̃ and CU to V . Both compute

vx = e (X, ã) , vxy = e
(
X, b̃

)
, vs = e (g, ĉ)

V chooses a k-bit string κ at random, and U proves knowledge of a signature
on cU to V by giving the following proof:

PK(κ){(cU , ρ, sU) : CU = ηcU λsU , vs
ρ = vxvcU

xy } (3)

Here, as ρ, the honest U uses ρ = μ−1 mod p. V will accept if this proof is
correct and it holds that:

e (ã, Y) = e
(
g, b̃

)
Note that it was shown in [3] that the checks carried out by V plus the proof that
vs

ρ = vxvcU
xy together imply that U must know a valid signature on a message.

Doing the proof in (3) is a straightforward variant of the general type of proof
from lemma 3 as discussed earlier. Consider the underlying Σ-protocol for the
part relating to vs

ρ = vxvcU
xy . After specializing it to the concrete scenario here,

it will have a first message of form

τ = vr1−s1
xy vr2−s2

s ,

Furthermore, we will require that

r1 = ΨK(1, α, 0), r2 = ΨK(2, α, 0), s1 = ΨK(1, α, 1), s2 = ΨK(2, α, 1)

U must therefore prove that the values of r1, r2 and s1, s2 were generated pseudo-
randomly from K. As described earlier, U does this by making commitments

com1 = ηr1λω1 , com2 = ηr2λω2 , com′
1 = ηs1λω′

1 , com′
2 = ηs2λω′

2 ,

proving that these values are correct with respect to τ and finally using the proto-
col from Lemma 5 to show that each commitment contains a pseudorandom value
of correct form computed from K as committed to by CU . Note that CU is in fact
a commitment to K of exactly the form needed for that protocol.

All proofs to be given during Prove can be done simultaneously, using the
same challenge in all Σ-protocols.
The amount of computation required during Prove is 57 + 68r exponentiations
and 8 evaluations of the function e, where r is the number of times the protocol

570 I. Damg̊ard, K. Dupont, and M.Ø. Pedersen

from Lemma 5 is repeated. Prove also requires 29k+r(6k+1) bits sent between
U and GM , where r is the same as before and k is the security parameter.
For example with r = 16 and k = 1024, Prove requires approximately 1150
exponentiations and needs to communicate 130KB. It would be interesting
to find a protocol that solves the same problem using a constant number of
exponentiations and communication.

Detect. Look at all proofs given in a phase and find all places where two con-
versations include first messages τ, τ ′ where τ = τ ′. If the two challenge values
involved in these two conversations are different, use the special soundness prop-
erty to extract a witness for the proof in question - this will be a pair of form
(cU , ρ). Output all cU ’s found this way.

Theorem 2. Assuming security of the signature scheme from [3], the DDH as-
sumption in Gq, and Assumption 1, the scheme described above is a secure un-
clonable identification scheme in the random oracle model, with sequential secu-
rity. The Join and Prove protocols are constant-round, and have communication
complexity O(k) bits, respectively O(k2) bits.

The scheme described here is extremely similar in structure to the theoretical
solution we gave earlier, so the proof is very similar as well. We only sketch it
here. Completeness follows by inspection of the protocols. For no cloning, the
required Extract algorithm will use standard rewinding to extract witnesses for
all proofs given. By a standard argument, this will succeed for all proofs that were
accepted by the verifier, with overwhelming probability. Soundness of the proofs
means we will extract a set of user id’s and corresponding signatures, so security
of the signature scheme implies that this forms a subset of the user id’s defined
in previous Join protocols. Now, soundness of the proofs from Lemma 5 and the
binding property of the commitment schemes defined by (γ, δ), (η, λ) imply that
the adversary must have used the key involved correctly and consistently, and
hence the value of τ will be identical in all instances of subproof (3), where the
same key was used. This allows Detect to recover the required information. As
for anonymity, note that all subproofs except the one from (3) can be replaced
by (perfect) simulations without changing the view of the adversary. After this
change, the key K is only used to call the pseudorandom function, and no other
information on K is present, since the commitment cU hides K perfectly. We
can therefore use Lemma 3 to conclude that also instances of subproofs from (3)
can be replaced by simulations without this being detectable by the adversary.

5 On Concurrent Security

For both the theoretical and the more efficient solution, it holds that all the proofs
given by honest users can be simulated without rewinding. Hence, the only prob-
lem in obtaining concurrent security lies in the Extract algorithm that is required
for the no cloning property, and which requires rewinding in both solutions.

To avoid this, we can use, at a small efficiency cost, the technique of Fischlin
[11], which shows how to transform any Σ-protocol in the random oracle model

Unclonable Group Identification 571

into a new one for which there is an on-line extractor, i.e., one can extract the
secret witness from a successful prover without rewinding.

Using this transformation on the Σ-protocols underlying our Prove-protocol
immediately gives a concurrently secure solution.

6 On Membership Revocation and Framing

After discovering the identity of a dishonest user, the group manager needs to
act. In some applications it may be sufficient to take some appropriate, say, legal
action against the user in question. But it may also be necessary to remove the
user out from the group by ensuring that the value cU can never be used again.

Since the value cU is unconditionally hidden in the Prove protocol, nothing in
the above systems prevents a dishonest user from provingmembership of the group
again at a later point in time. To allow for revocation of memberships, we can ex-
tend the protocolwith an dynamic accumulator as described in [4]. An accumulator
scheme [1, 2] is an algorithm that allows one to hash large set of values into a short
value, called the accumulator such that there is a witness that a given input is in
the accumulator. A dynamic accumulator allows one to efficiently add and remove
values from the accumulator. It can be used in the following way.

When the user joins the group and sends cU , the group manager adds cU to the
accumulator. To prove membership of the group, the user is now required, in ad-
dition to the protocol we already have, to prove that the value cU is in the accu-
mulator. We will omit the details of how this is done, they can be found in [4]. The
solutions needs that cU is committed to, but this is already done in our protocol.

When the identity of a dishonest user is discovered, the group manager re-
moves cU from the accumulator, which prevents the user or any clones of the
user from proving membership of the group, as long as the verifier is aware of
the new accumulator value.

An aspect we have not been concerned with in this paper is whether the group
manager can frame an honest user, that is, create on his own a protocol transcript
where the user seems to have cloned himself. For our efficient solution, we believe
framing is not possible, since the group manager does not know the user’s secret
key K. The part of the Prove protocol where the user proves knowledge of K
can only be simulated without knowing K if one can control the outputs of
the random oracle. While we use this to show zero-knowledge in the theoretical
analysis, such control is not available to anyone in real life.

References

1. Josh Benaloh, Michael de Mare: One-Way Accumulators: A Decentralized Alterna-
tive To Digital Signatures, proc. of EUROCRYPT 1993.

2. Josh Benaloh, Michael de Mare: Collision-free accumulators and fail-stop signature
schemes without trees, proc. of EUROCRYPT 1997.

3. J. Camenisch, A. Lysyanskaya: Signature Schemes and Anonymous Credentials
from Bilinear Maps, Proc. of Crypto 04, Springer Verlag LNCS 3152.

572 I. Damg̊ard, K. Dupont, and M.Ø. Pedersen

4. J. Camenisch, A. Lysyanskaya: Dynamic Accumulators and Application to Efficient
Revocation of Anonymous Credentials, Proc. of Crypto 02, Springer Verlag LNCS
2442.

5. G.Ateniese, J.Camenisch, M.Joye, G.Tsudik: A practical and provably group sig-
nature scheme, Proc. of Crypto 00, Springer Verlag LNCS 1880.

6. S.Brands: Untraceable Off-line Cash in Wallets with Observers, proc. of Crypto 93.
7. Ronald Cramer, Ivan Damg̊ard: Fast and Secure Immunization Against Adaptive

Man-in-the-Middle Impersonation. EUROCRYPT 1997: 75-87
8. Ronald Cramer, Ivan Damg̊ard, Berry Schoenmakers: Proofs of Partial Knowledge

and Simplified Design of Witness Hiding Protocols, CRYPTO 1994: 174-187
9. Ivan Damg̊ard, Mads Jurik: Client/Server Tradeoffs for Online Elections. Public

Key Cryptography 2002: 125-140
10. Damg̊ard, Dupont and Pedersen: Unclonable Group Identification the Eprint

archive, www.iacr.org.
11. M.Fischlin: Communication-Efficient Non-Interactive Proofs of Knowledge, proc.

of Crypto 2005, Springer Verlag LNCS 3621.
12. Markus Jakobsson, Kazue Sako, Russell Impagliazzo: Designated Verifier Proofs

and Their Applications. EUROCRYPT 1996: 143-154.
13. Oded Goldreich, Shafi Goldwasser, Silvio Micali: How to Construct Random Func-

tions, FOCS 1984: 464-479.
14. Oded Goldreich, Silvio Micali, Avi Wigderson: Proofs that Yield Nothing But Their

Validity or All Languages in NP Have Zero-Knowledge Proof Systems J. ACM
38(3): 691-729 (1991).

15. Ran Canetti, Oded Goldreich, Shafi Goldwasser, Silvio Micali: Resettable zero-
knowledge (extended abstract). STOC 2000: 235-244

16. J.Kilian and E.Petrank: Identity Escrow, Proc. of Crypto 98.
17. D.Chaum, A.Fiat, M.Naor: Untraceable Electronic Cash, proc. of CRYPTO 88.
18. Moni Naor Bit Commitment Using Pseudorandomness, J. Cryptology 4(2): 151-158

(1991).
19. Pascal Paillier: Public-Key Cryptosystems Based on Composite Degree Residuosity

Classes. EUROCRYPT 1999: 223-238.
20. Perron: Bemerkungen über die Verteilung der quadratischen Reste, Math.Z. 56

(1952), pp.122-130.
21. John Rompel: One-Way Functions are Necessary and Sufficient for Secure Signa-

tures, STOC 1990: 387-394.
22. Aggelos Kiayias, Moti Yung: Group Signatures with Efficient Concurrent Join.

EUROCRYPT 2005: 198-214

Fully Collusion Resistant Traitor Tracing
with Short Ciphertexts and Private Keys

Dan Boneh1,�, Amit Sahai2,��, and Brent Waters3

1 Stanford University
dabo@cs.stanford.edu

2 U.C.L.A.
sahai@cs.ucla.edu
3 SRI International

bwaters@csl.sri.com

Abstract. We construct a fully collusion resistant tracing traitors sys-
tem with sublinear size ciphertexts and constant size private keys. More
precisely, let N be the total number of users. Our system generates ci-
phertexts of size O(

√
N) and private keys of size O(1). We first introduce

a simpler primitive we call private linear broadcast encryption (PLBE)
and show that any PLBE gives a tracing traitors system with the same
parameters. We then show how to build a PLBE system with O(

√
N)

size ciphertexts. Our system uses bilinear maps in groups of composite
order.

1 Introduction

Traitor tracing systems, introduced by Chor, Fiat, and Naor [10], help content
distributors identify pirates. Consider a content distributor who broadcasts en-
crypted content to N legitimate recipients. Recipient i has secret key Ki that
it uses to decrypt the broadcast. As a concrete example, imagine an encrypted
satellite radio broadcast that should only be played on certified radio receivers.
The broadcast is encrypted using a public broadcasting key BK. Any certified
player can decrypt using its embedded secret key Ki. Certified players, of course,
could enforce digital rights restrictions such as “do not copy” or “play once”.

The risk for the distributor is that a pirate will hack a certified player and
extract its secret key. The pirate could then build a pirate decoder that will
extract the cleartext content and ignore any relevant digital rights restrictions.
Even worse, the pirate could make its pirate decoder widely available so that
anyone can extract the cleartext content for themselves. DeCSS, for example, is
a widely distributed program for decrypting encrypted DVD content.

This is where traitor tracing systems come in — when the pirate decoder is
found, the distributor can run a tracing algorithm that interacts with the pirate
decoder and outputs the index i of at least one of the keys Ki that the pirate
� Supported by NSF and the Packard Foundation.

�� This research was supported by the NSF Cybertrust and ITR Programs, an Alfred
P. Sloan Research Fellowship, and a generous equipment grant from Intel.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 573–592, 2006.
c© International Association for Cryptologic Research 2006

574 D. Boneh, A. Sahai, and B. Waters

used to create the pirate decoder. The distributor can then try to take legal
action against the owner of this Ki.

We give a precise description of traitor tracing systems in Appendix A. For
now we give some intuition that will help explain our results. A traitor tracing
system consists of four algorithms Setup,Encrypt,Decrypt, and Trace. The setup
algorithm generates the broadcaster’s key BK, a tracing key TK, and N recipient
keys K1, . . . ,KN . The encrypt algorithm encrypts the content using BK and the
decrypt algorithm decrypts using one of the Ki. The tracing algorithm is the
most interesting — it is an algorithm that takes TK as input and interacts
with a pirate decoder, treating it as a black-box oracle. It outputs the index
i ∈ {1, . . . , N} of a key Ki that was used to create the pirate decoder.

In this paper we focus on fully collusion resistant traitor tracing systems. That
is, systems that remain secure no matter how many keys are at the disposal of
the pirate. Existing traitor tracing systems are not designed to handle arbitrary
collusions. When the collusion bound t comes close to N , most existing systems
require ciphertext size linear in the number of users, which is no better than the
trivial traitor tracing system.

Our results. We construct a practical fully collusion resistant traitor tracing
system that has sub-linear size ciphertexts. Our system has the following char-
acteristics:

ciphertext-length = O(
√

N) and private-key-length = O(1)

Furthermore, decryption time is constant (i.e. depends on the security parameter,
but not on N). Other properties of this system include: (1) the broadcaster’s
key BK is public, but the tracer’s key TK must be kept secret, (2) the system
is black-box traceable, and (3) is designed for stateless pirate decoders [18]. We
give a precise definition of these properties in Appendix A. The system uses
bilinear groups of composite order introduced in [5].

We prove security of our tracing algorithm using a tracing technique previ-
ously used in [4, 23, 18]. To formalize this technique, we introduce a new prim-
itive called Private Linear Broadcast Encryption, or PLBE for short, which is
conceptually a simpler primitive than traitor tracing. We show that any secure
PLBE gives a (black-box) traitor tracing system. Roughly speaking, a PLBE
is a broadcast encryption system [13] that can only broadcast to “linear” sets,
that is sets of the form {i, i + 1, . . . , N} for some i = 1, . . . , N + 1. Thus, a
PLBE enables the broadcaster to create ciphertexts that can only be decrypted
properly under keys Ki, Ki+1, . . . ,KN . A broadcast to everyone, for example, is
encrypted using i = 1. The main security requirement is that the system should
be private [1]: a ciphertext should reveal no non-trivial information about the
recipient set. That is, a broadcast to users {i, . . . , N} should reveal no non-trivial
information about i. We give a precise definition in the next section and show
that any secure PLBE gives a secure (black-box) traitor tracing system. In the
remainder of the paper we focus on constructing a secure PLBE.

Related work. Traitor tracing systems generally fall into two categories: com-
binatorial, as in [10, 24, 31, 32, 14, 15, 11, 28, 2, 30, 29, 23], and algebraic, as

Fully Collusion Resistant Traitor Tracing 575

in [21, 4, 25, 20, 12, 22, 34, 9]. The broadcaster’s key BK in combinatorial systems
can be either secret or public. Algebraic traitor tracing use public-key techniques
and are often more efficient than the public-key instantiations of combinatorial
schemes. Some systems, including ours, only provide tracing capabilities. Other
systems [25, 23, 17, 16, 12] combine tracing with broadcast encryption to obtain
trace-and-revoke features — after tracing, the distributor can revoke the pirate’s
keys without affecting any other legitimate decoder.

Kiayias and Yung [20] describe a black-box tracing system that achieves con-
stant rate for long messages, where rate is measured as the ratio of ciphertext
length to plaintext length. For full collusion resistance, however, the ciphertext
size is linear in the number of users N . For comparison, our new system gener-
ates ciphertexts of size O(

√
N) and achieves constant rate (rate = 1) for long

messages by using hybrid encryption (i.e. encrypting a short message-key using
the traitor tracing system and encrypting the long data by using a symmetric
cipher with the message-key).

Many traitor tracing systems, including ours, assume that the tracer is a
trusted party and require that the tracer’s key TK be kept secret. Some excep-
tions are [26, 27, 35, 19, 9]. Similarly, many traitor tracing systems, including
ours, assume that the pirate decoder is stateless. Kiayias and Yung [18] show
how to strengthen traitor tracing systems to handle stateful decoders.

Finally, we note that binary fingerprinting codes [8, 33] are closely related to
traitor tracing (binary refers to the fact that the code is defined over a binary
alphabet). In fact, it is known [6] that any binary fingerprinting code gives rise to
a fully collusion-resistant traitor tracing system with constant size ciphertexts.
The private key size, unfortunately, is quite large. Using [8] the private key size
is Õ(N3) and using [33] it is Õ(N2).

2 Traitor Tracing and Private Linear Broadcast
Encryption

In Appendix A we review the precise definition of a traitor tracing system.
However, instead of directly building a traitor tracing system we build a simpler
primitive called Private Linear Broadcast Encryption (PLBE). We first define
secure PLBEs below and then briefly explain how a PLBE is used for traitor
tracing. The resulting tracing algorithm makes explicit a tracing technique used
in [4, 23, 18]. Then in the remainder of the paper we build a secure PLBE.

2.1 Description of Private Linear Broadcast Encryption

A PLBE is comprised of the following four algorithms:

SetupLBE(N, λ). The setup algorithm takes as input N , the number of users in
the system, and the security parameter λ. The algorithm runs in polynomial
time in λ and outputs a public key PK, a secret key TK, and private keys
K1, . . . ,KN , where Ku is given to user u.

576 D. Boneh, A. Sahai, and B. Waters

EncryptLBE(PK, M). Takes as input a public key PK, and a message M and
outputs a ciphertext C. This algorithm is used to encrypt a message to all
N users.

TrEncryptLBE(TK, i, M). Takes as input a secret key TK, an integer i satis-
fying 1 ≤ i ≤ N + 1, and a message M . It outputs a ciphertext C. This
algorithm encrypts a message to a set {i, . . . , N} and is primarily used for
traitor tracing. We will require below that TrEncryptLBE(TK, 1, M) outputs
a distribution on ciphertexts that is indistinguishable from the distribution
generated by EncryptLBE(PK, M).

DecryptLBE(j, Kj , C, PK). Takes as input a private key Kj for user j, a cipher-
text C, and the public key PK. The algorithm outputs a message M or ⊥.

The system must satisfy the following correctness property:
for all i, j ∈ {1, . . . , N + 1}, where j ≤ N , and all messages M :

Let
(
PK, TK, (K1, . . . ,KN)

) R← SetupLBE(N, λ)

and let C
R← TrEncryptLBE(TK, i, M).

If j ≥ i then DecryptLBE(j, Kj , C, PK) = M .

Security. We define security of a PLBE system using three games. The first game
just captures a consistency property which says that TrEncryptLBE(TK, 1, M)
outputs a distribution on ciphertexts that is indistinguishable from the distrib-
ution generated by EncryptLBE(PK, M). The second game is a message hiding
game and says that a ciphertext created using index i = N +1 is unreadable by
anyone. The third game is an index hiding game and captures the intuition
that a broadcast ciphertext created using index i reveals no non-trivial informa-
tion about i. We will consider all these games for a fixed number of users N .

Game 1 – Indistinguishability. The first game says that the output of algo-
rithm TrEncryptLBE(TK, 1, M) is indistinguishable from EncryptLBE(PK, M).
The game proceeds as follows:

– Setup. The challenger runs the SetupLBE algorithm and gives the adversary
PK and the set of all private keys

{
K1, . . . ,KN

}
.

– Challenge. The adversary gives the challenger a message M . The challenger
flips a coin β ∈ {0, 1} and computes

c
R←

{
TrEncryptLBE(TK, 1, M) if β = 0,
EncryptLBE(PK, M) if β = 1.

It gives C to the adversary.
– Guess. The adversary returns a guess β′ ∈ {0, 1} of β.

We define the advantage of adversary A as AdvCG = |Pr[β′ = β] − 1/2|.

Fully Collusion Resistant Traitor Tracing 577

Game 2 – Message Hiding. The second game says that an adversary cannot
break semantic security when encrypting using index i = N + 1. The game
proceeds as follows:

– Setup. The challenger runs the SetupLBE algorithm and gives the adversary
PK and all secret keys {K1, . . . ,KN}.

– Challenge. The adversary outputs two equal length messages M0, M1. The
challenger flips a coin β ∈ {0, 1} and sets C

R← TrEncryptLBE(TK, N+1, Mβ).
The challenger gives C to the adversary.

– Guess. The adversary returns a guess β′ ∈ {0, 1} of β.

We define the advantage of adversary A as AdvMH = |Pr[β′ = β] − 1/2|.

Game 3 – Index Hiding. The third game says that an adversary cannot distin-
guish between an encryption to index i and one to index i + 1 without the key
Ki. The game takes as input a parameter i ∈ {1, . . . , N} which is given to both
the challenger and the adversary. The game proceeds as follows:

– Setup. The challenger runs the SetupLBE algorithm and gives the adversary
PK and the set of private keys

{
Kj s.t. j �= i

}
.

– Challenge. The adversary outputs a message M . The challenger flips a coin
β ∈ {0, 1} and computes C

R← TrEncryptLBE(TK, i + β, M). The challenger
returns C to the adversary.

– Guess. The adversary returns a guess β′ ∈ {0, 1} of β.

We define the advantage of adversary A as AdvIH[i] = |Pr[β′ = β] − 1/2|.

Now that the three games are established we are ready to define secure PLBE.

Definition 1. We say that an N -user Private Linear Broadcast System (PLBE)
is secure if for all polynomial time adversaries A we have that AdvCG, and
AdvMH, and AdvIH[i] for i = 1, . . . , N , are negligible functions of λ.

2.2 Reducing Traitor Tracing to PLBE

We briefly show that a secure PLBE gives a secure traitor tracing system. The
complete details and proofs are given in the full version of the paper [7]. Let
E = (SetupLBE,EncryptLBE,TrEncryptLBE,DecryptLBE) be a secure PLBE system.
The derived traitor tracing system is defined as follows (we use the notation of
Appendix A):

– Setup simply runs SetupLBE with the same parameters, and outputs PK as
the public encryption key, TK as the secret tracing key, and the user keys
identically to the PLBE scheme.

– Encrypt and Decrypt run algorithms EncryptLBE and DecryptLBE respectively
with the same parameters.

– TraceD(TK, ε), when called with oracle D, and inputs TK and ε > 0, does
the following:

578 D. Boneh, A. Sahai, and B. Waters

1. For i = 1 to N + 1, do the following:
(a) The algorithm repeats the following 8(N lnN)λ/ε times:

i. Sample M from the finite message space at random.
ii. Let C

R← TrEncryptLBE(TK, i, M).
iii. Call oracle D on input C, and compare the output of D to M .

(b) Let p̂i be the fraction of times that D decrypted the ciphertexts
correctly.

2. Let S be the set of all i ∈ {1, . . . , N} for which p̂i − p̂i+1 ≥ ε/(4N).
3. Output the set S as the set of guilty colluders.

Note that the running time of Trace is quadratic in N . It can be made O(N log N)
using binary search instead of a linear scan.

Security. We prove that this traitor tracing scheme is secure. We argue that the
system is semantically secure and provides secure tracing. Note that we did not
explicitly require that a PLBE be semantically secure against a chosen plaintext
attack to an outsider who possess no secret keys. Nevertheless, semantic security
does follow straightforwardly from the three games used to define PLBE using
a hybrid argument by means of the Index Hiding game.

We now briefly explain why traceability against arbitrary collusion follows
from the security of the PLBE scheme. We show that the probability of winning
the traceability game defined in Appendix A is negligible.

Let pi = Pr[D(TrEncryptLBE(TK, i, M)) = M]. We know that that p1 ≥ ε and
pN+1 is negligible. The former follows from the fact that D is a useful decoder.
The later follows directly from the PLBE message hiding game. Then there must
exist some j ∈ {1, . . . , N} such that pj −pj+1 ≥ ε/(2N). By the Chernoff bound
it follows that with overwhelming probability, p̂j − p̂j+1 ≥ ε/(4N). Hence, the
set S output by TraceD(SD, TK, ε) is non-empty.

Using the notation of Game 2 from Appendix A, it remains to show that
whenever p̂j − p̂j+1 > ε/(4N) we have that j ∈ T . For such j we know, by
Chernoff, that with overwhelming probability pj − pj+1 ≥ ε/(8N). Hence, D
is able to distinguish TrEncryptLBE(TK, j, M) from TrEncryptLBE(TK, j +1, M)
for random M . But since the PLBE is secure, the index hiding game implies
that these two distributions are indistinguishable, unless one has Kj . It follows
that the pirate who built D must have had Kj and therefore j ∈ T , as required.
We give the full proof details in the full version of the paper.

3 Background and Complexity Assumptions

3.1 Bilinear Maps

We review some general notions about bilinear maps and groups, with an em-
phasis on groups of composite order which will be used in our construction. We
follow [5] in which composite order bilinear groups were first introduced.

Consider two finite cyclic groups G and GT of same order n = pq, where p and
q are distinct primes, and in which the respective group operation is efficiently

Fully Collusion Resistant Traitor Tracing 579

computable and denoted multiplicatively. Assume the existence of an efficiently
computable function e : G × G → GT , with the following properties:

– (Bilinear) ∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab, where the product in
the exponent is defined modulo n;

– (Non-degenerate) ∃g ∈ G such that e(g, g) has order n in GT . In other words,
e(g, g) is a generator of GT , whereas g generates G.

We will use the notation Gp, Gq to denote the respective subgroups of order p
and order q of G.

We now review three assumptions we will use for proving our security. The
first two assumptions are in prime order subgroups and the last two are over a
composite group G.

3.2 Decision 3-Party Diffie-Hellman Assumption

The decision 3-party Diffie-Hellman problem is stated as follows. Given a group
Gp of prime order p and random elements gp, A = ga

p , B = gb
p, C = gc

p of G

distinguish between T = gabc
p and T = gz

p, where z is random in Zp.
We say that an algorithm A has advantage ε in solving the problem if∣∣∣∣Pr[A(gp, g

a
p , gb

p, g
c
p, g

abc
p) = 1] − Pr[A(gp, g

a
p , gb

p, g
c
p, g

z
p) = 1]

∣∣∣∣ ≥ ε

The (t, ε)-decision 3-party Diffie-Hellman assumption (D3DH) is that no t-
time adversary has advantage more than ε. Note that the decision 3-party Diffie-
Hellman assumption implies the decision Bilinear Diffie-Hellman assumption. It
also implies the standard linear assumption defined in [3].

3.3 Subgroup Decision Problem

The Subgroup Decision (SD) problem is stated as follows. Given a group G of
composite order n = pq, where p, q are distinct (unknown) primes, and generators
gp ∈ Gp and g ∈ G, distinguish between whether an element T is a random
member of the subgroup Gp or a random element of the full group G. That is
distinguish whether T is a random element of Gp or G.

We say that an algorithm A has advantage ε in solving the Subgroup Decision
Problem if∣∣∣∣Pr[A(n, gp, g, T) = 1 : T

R← Gp] − Pr[A(n, gp, g, T) = 1 : T
R← G]

∣∣∣∣ ≥ ε.

The (t, ε)-subgroup decision assumption is that no t-time adversary has advan-
tage more than ε.

3.4 Bilinear Subgroup Decision Problem

The Bilinear Subgroup Decision (BSD) problem is stated as follows. Given a
group G of composite order n = pq, where p, q are distinct (unknown) primes,

580 D. Boneh, A. Sahai, and B. Waters

and generators gp ∈ Gp and gq ∈ Gq, distinguish a random order p element in
the group GT from a uniform element in the group GT . More precisely, we say
that an algorithm A has advantage ε in solving the problem if∣∣∣∣Pr[A(n, g, gp, gq, e(T, g)) = 1 : T

R← Gp]−

Pr[A(n, g, gp, gq, e(T, g)) = 1 : T
R← G]

∣∣∣∣ ≥ ε.

The (t, ε)-bilinear subgroup decision assumption is that no t-time adversary has
advantage more than ε.

4 A
√

N Size Private Linear Broadcast Encryption
System

In this section we show how to construct a Private Linear Broadcast Encryption
(PLBE) system with O(

√
N) size ciphertext. We can then apply the results

of Section 2 and use this to build a traitor tracing scheme with O(
√

N) size
ciphertexts.

Before we describe our construction we give some intuition as to why con-
structing PLBE systems with sublinear ciphertext size is difficult and describe
the framework for which we will construct our PLBE system.

PLBE with Sublinear Ciphertext Size. The primary difficulty in constructing a
PLBE system is to provide the Index Hiding property. Using linear size cipher-
texts this is easy: each user has a unique portion of the ciphertext assigned to
them, which is used to encrypt the message (or session key) to just that user. If
an encryptor replaces the ciphertext component of user u with a random encryp-
tion, only user u can tell the difference. All other users will be associated with a
completely different portions of the ciphertext and changing u’s component has
no effect on their ability to decrypt.

To construct a PLBE system with sublinear size ciphertexts we must use a
fundamentally different approach than the one above. Since the ciphertexts are
sublinear in size, we cannot let every user have a component of the ciphertext
that is dedicated for them alone. Intuitively, ciphertext components must be
“shared” amongst users. Therefore, we cannot use the simple strategy of com-
pletely randomizing a portion of the ciphertext to prevent a particular user u
from decrypting, since this will inherently effect the ability of other users to
decrypt.

Our Framework. We now give a framework for our PLBE system. We assume
that the number of users, N in the system equals m2 for some m. If the number
of real users is not a square we can add “dummy” users to pad out to the next
square. We arrange the users in an m × m matrix. Each user is assigned and
identified by an unique tuple (x, y) where 1 ≤ x, y ≤ m.

Fully Collusion Resistant Traitor Tracing 581

Since we will be constructing a Private Linear Broadcast Encryption system,
we must have a linear ordering of the users that we can traverse. The first user in
the system will be the user at matrix position (1, 1) and from there we will order
the users by traversing one row at a time. More precisely, the user at matrix
position (x, y) will have the index u = (x − 1)m + y in our ordering. We can
think of this as a “row-major” ordering.

We can now refer to our Private Linear Broadcast Encryption scheme in terms
of positions on the matrix. An encryption to position (i, j) means that a user at
position (x, y) will be able to decrypt the message if either x > i or both x = i
and y ≥ j. With this notation, the Index Hiding game property states that:

– For j < m it is difficult to distinguish between an encryption of a message
to (i, j) from (i, j + 1) without the key of user (x = i, y = j).

– For j = m it is difficult to distinguish an encryption of a message to position
(i, j = m) to that of one to (i + 1, j = 1) without the key of user (i, j = m).

The use of pairwise notation for referring to users and encryptions will be a
purely notational convenience for describing our system.

4.1 Our Construction

Our construction makes use of bilinear maps of composite order n, where n = pq
and p and q are primes. In describing our scheme we will often use p or q in
a subscript to denote if a group element is in the subgroup of order p or order
q. The key algebraic fact that underlies our scheme is that if gp is any element
from the order p subgroup (which we call Gp) and gq is any element from the
order q subgroup (which we call Gq), then we have: e(gp, gq) = 1.

When the TrEncryptLBE algorithm encrypts to an index (i, j) it creates ci-
phertext components for every column and every row. The keys of user (x, y)
are structured in such a way that in order to decrypt he must pair the ciphertext
components from row x, with the ciphertext components from column y. The
encryption algorithm works by creating ciphertexts in the following way.

Column Ciphertext Components. (1) Ciphertexts for columns greater than
or equal to j are “well formed” in both subgroups. (2) However, for a column
that is less than j, the encryption algorithm will create a ciphertext that is well
formed in the Gq subgroup, but random in the Gp subgroup.

Row Ciphertext Components. (1) Ciphertexts for rows less than i are com-
pletely random. Therefore, any user whose row index is less than x will not be
able to decrypt. (2) The ciphertext components for row i are well formed in
both subgroups. A user with row index i will be able to decrypt if his column
index is greater than or equal to j. If it is less than j, the randomized (Gp)
part of the column ciphertext will scramble the result of pairing the row and
column ciphertexts together. (3) Finally, for rows greater than i the ciphertext
components will be well formed elements in the Gq subgroup only. A user with
row index greater than i will be able to decrypt no matter what his column is,

582 D. Boneh, A. Sahai, and B. Waters

because the pairing will “cancel out” the randomized (Gp) part of any column
ciphertext component with the row ciphertext component that lives in Gq.

The decryption algorithm for a user (x, y) will attempt to decrypt a ciphertext
in the same manner no matter what the target index (i, j) is. The structure of the
ciphertext will restrict decryption to only be successful for a user (x, y) if x > i
or x = i and y ≥ j. Additionally, since the attempted decryption procedure is
independent of (i, j) a user can only learn whether his decryption was successful
or not and the system will be private.

We describe the four algorithms that compose our PLBE system:

SetupLBE(N = m2, 1κ). The setup algorithm takes as input the number of users
N and a security parameter κ. It first generates an integer n = pq where p, q
are random primes (whose size is determined by the security parameter). The
algorithm creates a bilinear group G of composite order n. It next creates random
generators gp, hp ∈ Gp and gq, hq ∈ Gq and sets g = gpgq, h = hphq ∈ G. Next it
chooses random exponents r1, . . . , rm, c1, . . . , cm, α1, . . . , αm ∈ Zn and β ∈ Zq.

The public key PK includes the description of the group and the following
elements:[

g, h, E = gβ, E1 = gβr1
q , . . . , Em = gβrm

q , F1 = hβr1
q , . . . , Fm = hβrm

q ,

G1 = e(gq, gq)βα1 , . . . , Gm = e(gq, gq)βαm , H1 = gc1 , . . . , Hm = gcm

]

The private key for user (x, y) is generated as Kx,y = gαxgrxcy . Finally, the
authority’s secret key K includes factors p, q along with exponents used to gen-
erate the public key.

TrEncryptLBE(K, M, (i, j)). The TrEncryptLBE algorithm is a secret key algo-
rithm used by the tracing authority. The algorithm encrypts a message M to the
subset of receivers that have row values greater than i or both row value equal
to i and column values greater than or equal to j.

The encryption algorithm will take as input the secret key, a message M ∈
GT and an index i, j. The encryption algorithm first chooses random t ∈ Zn,
w1, . . . , wm, s1, . . . , sm ∈ Zn, zp,1, . . . , zp,j−1 ∈ Zp, and (v1,1, v1,2, v1,3) , . . . ,
(vi−1,1, vi−1,2, vi−1,3) ∈ Z

(3)
n .

For each row x we create four ciphertext components (Rx, R̃x, Ax, Bx) as follows:

if x > i : Rx = gsxrx
q R̃x = hsxrx

q Ax = gsxt
q Bx = Me(gq, g)αxsxt

if x = i : Rx = gsxrx R̃x = hsxrx Ax = gsxt Bx = Me(g, g)αxsxt

if x < i : Rx = gvx,1 R̃x = hvx,1 Ax = gvx,2 Bx = e(g, g)vx,3

For each column y the algorithm creates values Cy, C̃y as:

if y ≥ j : Cy = gcythwy C̃y = gwy

if y < j : Cy = gcytg
zp,y
p hwy C̃y = gwy

Note that the ciphertext contains 5
√

N elements in G and
√

N elements of GT .

Fully Collusion Resistant Traitor Tracing 583

In the above description there are three classes of rows. A row x > i will
have all its elements in the Gq subgroup, while the “target” row i will have its
components in the full group G. A row x < i will essentially have its group
elements randomly chosen. A column y ≥ j will be well formed, while a column
y < j will be well formed in the Gq subgroup, but not in the Gp subgroup.

EncryptLBE(PK, M). The EncryptLBE algorithm is used by an encryptor to en-
crypt a message such that all the recipients can receive it. This algorithm is used
during normal (non-tracing) operation to distribute content to all the receivers.
The EncryptLBE algorithm should produce ciphertexts that are indistinguishable
from TrEncryptLBE algorithm to the index (1, 1) for the same message.

The encryption algorithm first chooses random t ∈ Zn, w1, . . . , wm, s1, . . . , sm

∈ Zn, For each row x the algorithm creates the four ciphertext components
(Rx, R̃x, Ax, Bx) as follows:

Rx = Esx
x R̃x = F sx

x Ax = Esxt Bx = MGsxt
x

For each column j the algorithm creates Cy, C̃y as:

Cy = Ht
yhwy C̃y = gwy

DecryptLBE((x, y), Kx,y, C) User (x, y) uses key Kx,y to decrypt by computing:

Bx ·
(
e(Kx,y, Ax)e(R̃x, C̃y)/e(Rx, Cy)

)−1
.

We observe that if the ciphertext was created from the tracing algorithm
TrEncryptLBEwith parameters (i, j) then the result is M if x > i or x = i and
y ≥ j. Additionally, it is easy to observe that if the ciphertext was created as
EncryptLBE(PK, M) then all parties can decrypt and receive M .

4.2 Discussion

Roughly, the size of the ciphertext is 5
√

N elements in G and
√

N elements of
GT . In practice, a message will be encrypted with a symmetric key cipher under
a key K and our system will be used to transmit the key K to each user. We
note that we can actually save in ciphertext size by converting our encryption
system into a Key Encapsulation Mechanism (KEM). To do this we do not
include the Bx values in the ciphertext, but instead user (x, y) can extract a key
Kx = e(Kx,y, Ax)e(R̃x, C̃y)/e(Rx, Cy). The extraction mechanism will actually
derive

√
N different keys K1, . . . Km, so key Kx is used to encrypt K to for all

users in row x. In practice this would be more space efficient than including
√

N
group elements of GT .

The EncryptLBE algorithm requires 6
√

N exponentiations. The decryption al-
gorithm is surprisingly efficient and simple, requiring only three pairing com-
putations. Thus, decryption time is independent of the number of users in the
system.

584 D. Boneh, A. Sahai, and B. Waters

We constructed a (limited)1 broadcast encryption system in which decryptors
are oblivious as to which set of users the broadcast is targeted for. A set of
colluding users will of course be able to learn some information about the target
just by testing which one of them was able to decrypt. However, they should not
learn anything more than what can naturally be inferred. The key to keeping the
broadcast set private is that the decryption algorithm performs the same steps
to attempt decryption no matter what the broadcast set is. In the next section
we prove this intuition to be correct by showing that our scheme is secure in the
Index Hiding game.

5 Security Proof

In this section we prove our Private Linear Broadcast Encryption system secure.
We begin with the Index Hiding game, since the proof is the most interesting.

5.1 Proof of Security for Game 3 (Index Hiding)

For the Index Hiding game we must consider two cases. The first is when an
adversary tries to distinguish between an encryption to (i, j) and an encryption
to (i, j + 1) for j < m and second for when an adversary tries to distinguish
between an encryption (i, m) and one to (i + 1, 1).

In the first case we show that the difficulty of this game can be reduced to the
3-party Diffie-Hellman assumption, while the second case is more complicated
since the structure of the row ciphertexts are changed. We handle the second case
by constructing a sequence of hybrid experiments. Due to space requirements
we give the proof of the lemma for the first case in the appendix and refer the
reader to our full version of this paper [7] for the proofs of the other claims and
lemmas.

Theorem 1. Suppose that the (t, εD3DH)-decision 3-party Diffie-Hellman, (t,
εBSD)-Bilinear Subgroup Decision, and (t, εSD)-Subgroup Decision assumptions
hold. Then no t̃-time adversary A can succeed in the Index-Hiding game with
advantage greater than (2 + m)εD3DH + εBSD + εSD, where t̃ � t.

We first consider the case where an adversary A attempts to distinguish between
an encryption to (i + j) and (i, j + 1) where j < m. This is the case when
the distinguishing game does not cross rows. We prove the following lemma in
Appendix B.

Lemma 1. Suppose that the (t, εD3DH)-decision 3-party Diffie-Hellman, assump-
tion holds. Then no t-time adversary can distinguish between an encryption to (i, j)
and (i, j + 1) in the Index Hiding game for j < m with advantage > εD3DH .

1 A Private Linear Broadcast Encryption system is restricted in the sets of users it
can encrypt to — it can only encrypt to sets {i, . . . , N} for any i.

Fully Collusion Resistant Traitor Tracing 585

We now turn to the more difficult case of when the adversary A chooses to
distinguish between an encryption to (i, m) and one to (i + 1, 1) for some 1 ≤
i < m. This case becomes more complicated because the form of ciphertext rows
will change. In our proofs we will refer to the rows with ciphertexts in the Gq

subgroup as “greater than” rows and the the row with well formed ciphertexts
in G as a “target” row. Additionally, when we say we “encrypt to column j” this
means that we create ciphertexts for which Cy is well formed in the Gp subgroup
for all y ≥ j. We state our lemma and then prove it.

Lemma 2. Suppose the (t, εD3DH)-decision 3-party Diffie-Hellman, the (t, εBSD)
-Bilinear Subgroup Decision, and the (t, εSD)-Subgroup Decision assumptions
hold. Then no t̃-time adversary A can succeed in the Index-Hiding game with
advantage greater than (2 + m)εD3DH + εBSD + εSD, where t̃ � t.

We first define a sequence of hybrid experiments as follows:

– H1: Encrypt to column m, row i is target row, i+1 is a “greater than” row.
– H2: Encrypt to column m + 1, row i is target row, i+1 is a “greater than”

row.
– H3: Encrypt to column m+1, row i is less than row, i+1 is a “greater than”

row (no target row exists).
– H4: Encrypt to column 1, row i is less than row, i+1 is “greater than” row

(no target row exists).
– H5: Encrypt to column 1, row i is less than row, i+1 is target row.

We prove our lemma by giving reductions for each consecutive pair of hybrid
experiments. The proofs are given in [7].

Claim. Suppose that the (t, εD3DH)-decision 3-party Diffie-Hellman assumption
holds. Then no t-time adversary can distinguish between experiments H1 and
H2 with advantage greater than εD3DH .

In both experiments we encrypt with row i as the target row and all Cy for
y < m random in the Gp subgroup. The experiment is whether an adversary
can tell if the Gp component of Cm is well-formed without key Ki,m. This game
is exactly the same as the one we proved above and thus we apply the result of
Lemma 1. ��
Claim. Suppose that the (t, εD3DH)-decision 3-party Diffie-Hellman and the (t,
εBSD)-Bilinear Subgroup Decision assumptions hold. Then no t-time adversary
can distinguish between experiments H2 and H3 with advantage greater than
2εD3DH + εBSD .

Claim. Suppose that the (t, εD3DH)-decision 3-party Diffie-Hellman assumption
holds. Then no t-time adversary can distinguish between experiments H3 and
H4 with advantage greater than m · εD3DH .

Claim. Suppose that the (t, εSD)-Subgroup Decision assumption holds. Then no
t-time adversary can distinguish between experiments H4 and H5 with advantage
greater than εSD .

586 D. Boneh, A. Sahai, and B. Waters

Lemma 2 follows by summing the maximum adversarial advantages across
the hybrid experiments and Theorem 1 follows by observing that the bound of
Lemma 1 is included in Lemma 2. ��

5.2 Proof of Security for Game 1

Theorem 2. Suppose the (t, εSD) Subgroup Decision assumption holds. Then
for all messages M no t-time adversary can distinguish between a ciphertext
created as EncryptLBE(PK, M) and one created as TrEncryptLBE(K, M, (1, 1))
with advantage greater than εSD.

This theorem follows by simply applying the same techniques as in our proof
of Claim 5.1, so we omit the details. ��

5.3 Proof of Security for Game 2 (Message Hiding)

Theorem 3. All adversaries have advantage 0 in playing the Message Hiding
game.

The message hiding theorem is concerned with the adversaries advantage in
winning the game when we encrypt to (m + 1, 1). However, this means that
all rows will be completely random and independent of the messge, thus an
adversary has 0 advantage. Essentially, the inability of the adversary to learn
the message when he does not have any of the right keys is actually captured
in our Index Hiding experiments. This final theorem shows that at the end the
adversary learns now information about the ciphertext. ��

6 Discussion

Our traitor tracing system has a number of possible interesting extensions for
future work. In this section we discuss a few of these.

Public Traceability. In our current system the tracing key, TK, is kept secret and
only the authority is able to trace pirate boxes. In practice, it might be useful to
have a system where the tracing key is public. For example, in a large content
distribution system the capturing and tracing of pirate boxes or software will
likely be done by different several agents each of which will need the tracing key.
We would like our system to remain secure even if one of these agents and his
tracing key is compromised.

In our
√

N PLBE system the tracing algorithm would be public if a user was
able to encrypt a message to an arbitrary set of indices (i, j). Then the user
could simply run the tracing algorithm in the same way as the authority. In
order to this we would need to give the user the capability to form Cy column
ciphertext components that were well formed in its Gq subgroup, but not in
the Gp subgroup. If we simply include an element of Gp in the public key our
scheme will become insecure as an attacker could use this to determine which
row index i a broadcast was intended for. Achieving public traceability would
seem to require a more complex technique and possibly the use of a stronger
assumption.

Fully Collusion Resistant Traitor Tracing 587

Stateful Receivers. Like most other tracing traitor solutions our solution solves
the tracing traitors problem in the stateless model, where the tracer is al-
lowed to reset the pirate algorithm after each tracing query. However, there
are some applications where we would like to consider a stronger model where
a pirate box can retain state between each broadcast. In practice, a hard-
ware pirate box might keep state and shut down if it detects that it is being
traced.

Kiayias and Yung [18] showed a method which can handle stateful receivers
if it were possible to embed watermarks in the distributed content and for a
tracer to be able to observe these watermarks when interacting with a pirate
algorithm. During non-tracing operation the broadcaster encrypts two copies
of digital content, each of which has a different watermark embedded in, to
a random (and hidden) index u. The encryption is such that all users with
index less than u can decrypt the first ciphertext and all users with index
greater than u can decrypt the second ciphertext. The decryption algorithm
simply tries to decrypt both ciphertexts and uses whichever one results in a
well-formed plaintext. The tracing algorithm will create ciphertexts in an iden-
tical manner to the regular encryption algorithm. The tracer will simply ob-
serve which watermarks are embedded in every probing ciphertext and use this
information to identify the traitor. Since, the regular broadcast and tracing al-
gorithms are identical a pirate box is unable to leverage its ability to maintain
state.

In our current construction, our PLBE scheme is only secure if the pirate
constructing the pirate decoder has not seen encryptions to arbitrary indices.
However, if we were able to find a new PBLE algorithm that was secure un-
der chosen-plaintext queries to arbitrary indicies then we could implement the
techniques of Kiayias and Yung. We would simply set up two PLBE systems in
which the users were given the opposite indices in each system. The user with
index u in the first system has index N + 1 − u in the second system.

7 Conclusions and Open Problems

We constructed the first fully collusion resistant traitor tracing system with sub-
linear size ciphertexts and constant size private keys. In particular, our system
has ciphertexts of size O(

√
N) where N is the number of users in the system

and the time for decryption is independent of N . We achieve our traitor tracing
system by first introducing a simpler primitive we call private linear broadcast
encryption (PLBE) that we show can give a traitor tracing system. Then, we
built an efficient PLBE system by making novel use of bilinear groups of com-
posite order.

One interesting open problem is to create a version of our traitor system
that allows for public traceability. This would allow both for the tracer to be
untrusted and could be used to give a solution that is secure against stateful
receivers. Additionally, it is an open problem to see if one can get smaller than√

N size ciphertexts with small private keys.

588 D. Boneh, A. Sahai, and B. Waters

References

[1] Adam Barth, Dan Boneh, and Brent Waters. Privacy in encrypted content distri-
bution using private broadcast encryption. In Financial Cryptography ’06, 2006.

[2] O. Berkman, M. Parnas, and J. Sgall. Efficient dynamic traitor tracing. In
Proceedings of SODA ’00, 2000.

[3] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
Matt Franklin, editor, Proceedings of Crypto 2004, LNCS. Springer-Verlag, August
2004.

[4] Dan Boneh and Matthew K. Franklin. An efficient public key traitor tracing
scheme. In CRYPTO ’99: Proceedings of the 19th Annual International Cryptol-
ogy Conference on Advances in Cryptology, pages 338–353, London, UK, 1999.
Springer-Verlag.

[5] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on cipher-
texts. In Joe Kilian, editor, Proceedings of Theory of Cryptography Conference
2005, volume 3378 of LNCS, pages 325–342. Springer, 2005.

[6] Dan Boneh and Moni Naor. Tracing traitors with constant size ciphertext using
binary fingerprinting codes. Unpublished, 2002.

[7] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing
with short ciphertexts and private keys. In Eurocrypt ’06, 2006. Full version
available at http://eprint.iacr.org/2006/045.

[8] Dan Boneh and James Shaw. Collusion secure fingerprinting for digital data. IEEE
Transactions on Information Theory, 44(5):1897–1905, 1998. Extended abstract
in Crypto ’95.

[9] Hervé Chabanne, Duong Hieu Phan, and David Pointcheval. Public traceability
in traitor tracing schemes. In EUROCRYPT, pages 542–558, 2005.

[10] Benny Chor, Amos Fiat, and Moni Naor. Tracing traitors. In CRYPTO ’94:
Proceedings of the 14th Annual International Cryptology Conference on Advances
in Cryptology, pages 257–270, London, UK, 1994. Springer-Verlag.

[11] Benny Chor, Amos Fiat, Moni Naor, and Benny Pinkas. Tracing traitors. IEEE
Transactions on Information Theory, 46(3):893–910, 2000.

[12] Yevgeniy Dodis and Nelly Fazio. Public key trace and revoke scheme secure
against adaptive chosen ciphertext attack. In Public Key Cryptography - PKC
2003, volume 2567 of LNCS, pages 100–115, 2003.

[13] A. Fiat and M. Naor. Broadcast encryption. In Proceedings of Crypto ’93, volume
773 of LNCS, pages 480–491. Springer-Verlag, 1993.

[14] Amos Fiat and T. Tassa. Dynamic traitor tracing. In Proceedings of Crypto ’99,
volume 1666 of LNCS, pages 354–371, 1999.

[15] Eli Gafni, Jessica Staddon, and Yiqun Lisa Yin. Efficient methods for integrating
traceability and broadcast encryption. In CRYPTO ’99: Proceedings of the 19th
Annual International Cryptology Conference on Advances in Cryptology, pages
372–387, London, UK, 1999. Springer-Verlag.

[16] M. T. Goodrich, J. Z. Sun, , and R. Tamassia. Efficient tree-based revocation in
groups of low-state devices. In Proceedings of Crypto ’04, volume 2204 of LNCS,
2004.

[17] D. Halevy and A. Shamir. The lsd broadcast encryption scheme. In Proceedings
of Crypto ’02, volume 2442 of LNCS, pages 47–60, 2002.

[18] Aggelos Kiayias and Moti Yung. On crafty pirates and foxy tracers. In ACM
Workshop in Digital Rights Management – DRM 2001, pages 22–39, London,
UK, 2001. Springer-Verlag.

Fully Collusion Resistant Traitor Tracing 589

[19] Aggelos Kiayias and Moti Yung. Breaking and repairing asymmetric public-key
traitor tracing. In Joan Feigenbaum, editor, ACM Workshop in Digital Rights
Management – DRM 2002, volume 2696 of Lecture Notes in Computer Science,
pages pp. 32–50. Springer, 2002.

[20] Aggelos Kiayias and Moti Yung. Traitor tracing with constant transmission rate.
In EUROCRYPT ’02: Proceedings of the International Conference on the Theory
and Applications of Cryptographic Techniques, pages 450–465, London, UK, 2002.
Springer-Verlag.

[21] K. Kurosawa and Y. Desmedt. Optimum traitor tracing and asymmetric schemes.
In Proceedings of Eurocrypt ’98, pages 145–157, 1998.

[22] Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. A new traitor tracing.
IEICE Trans. Fundamentals, E85-A(2):481–484, 2002.

[23] Dalit Naor, Moni Naor, and Jeffrey B. Lotspiech. Revocation and tracing schemes
for stateless receivers. In CRYPTO ’01: Proceedings of the 21st Annual Interna-
tional Cryptology Conference on Advances in Cryptology, pages 41–62, London,
UK, 2001. Springer-Verlag.

[24] Moni Naor and Benny Pinkas. Threshold traitor tracing. In CRYPTO ’98: Pro-
ceedings of the 18th Annual International Cryptology Conference on Advances in
Cryptology, pages 502–517, London, UK, 1998. Springer-Verlag.

[25] Moni Naor and Benny Pinkas. Efficient trace and revoke schemes. In FC ’00:
Proceedings of the 4th International Conference on Financial Cryptography, pages
1–20, London, UK, 2001. Springer-Verlag.

[26] B. Pfitzmann. Trials of traced traitors. In Proceedings of Information Hiding
Workshop, pages 49–64, 1996.

[27] B. Pfitzmann and M. Waidner. Asymmetric fingerprinting for larger collusions. In
Proceedings of the ACM Conference on Computer and Communication Security,
pages 151–160, 1997.

[28] Reihaneh Safavi-Naini and Yejing Wang. Sequential traitor tracing. In Proceedings
of Crypto ’00, volume 1880 of LNCS, pages 316–332, 2000.

[29] Alice Silverberg, Jessica Staddon, and Judy L. Walker. Efficient traitor tracing
algorithms using list decoding. In Proceedings of ASIACRYPT ’01, volume 2248
of LNCS, pages 175–192, 2001.

[30] Jessica N. Staddon, Douglas R. Stinson, and Ruizhong Wei. Combinatorial prop-
erties of frameproof and traceability codes. Cryptology ePrint 2000/004, 2000.

[31] D. Stinson and R. Wei. Combinatorial properties and constructions of traceability
schemes and frameproof codes. SIAM Journal on Discrete Math, 11(1):41–53,
1998.

[32] D. Stinson and R. Wei. Key preassigned traceability schemes for broadcast en-
cryption. In Proceedings of SAC ’98, volume 1556 of LNCS, 1998.

[33] Gabor Tardos. Optimal probabilistic fingerprint codes. In Proceedings of STOC
’03, pages 116–125, 2003.

[34] V. To, R. Safavi-Naini, and F. Zhang. New traitor tracing schemes using bilinear
map. In Proceedings of 2003 DRM Workshop, 2003.

[35] Yuji Watanabe, Goichiro Hanaoka, and Hideki Imai. Efficient asymmetric public-
key traitor tracing without trusted agents. In Proceedings CT-RSA ’01, volume
2020 of LNCS, pages 392–407, 2001.

590 D. Boneh, A. Sahai, and B. Waters

A Definition of Tracing Traitors

Initially, we view a pirate decoder D as a probabilistic circuit that takes as input
a ciphertext C and outputs some message M or ⊥. A Traitor-Tracing system,
then, consists of the following four algorithms:

Setup(N, λ). The setup algorithm takes as input N , the number of users in the
system, and the security parameter λ. The algorithm runs in polynomial
time in λ and outputs a public key BK, a secret tracing key TK, and private
keys K1, . . . ,KN , where Ku is given to user u.

Encrypt(BK, M). Encrypts M using the public broadcasting key BK and out-
puts ciphertext C.

Decrypt(j, Kj , C, BK). Decrypt C using the private key Kj of user j. The al-
gorithm outputs a message M or ⊥.

TraceD(TK, ε). The tracing algorithm is an oracle algorithm that is given as
input the tracing key TK and a parameter ε, and runs in time polynomial
in the security parameter λ and 1/ε. Only values of ε that are polynomially
related to λ are considered valid inputs to Trace. The tracing algorithm
queries the pirate decoder D as a black-box oracle, as defined above. It
outputs a set S which is a subset of {1, 2, . . . , N}.

The system must satisfy the following correctness property:
for all j ∈ {1, . . . , N} and all messages M :

Let
(
BK, TK, (K1, . . . ,KN)

) R← Setup(N, λ) and C
R← Encrypt(BK, M).

Then Decrypt(j, Kj , C, BK) = M .

Security. We define security of the traitor tracing scheme in terms of the follow-
ing two natural game.

Game 1. The first game is the standard Semantic Security Game. It says
that the system is semantically secure to an outsider who does not possess any
of the private keys. Since this is a standard notion we do not give the game
details here. We define the advantage of adversary A in winning this game as
AdvSS = |Pr[β′ = β] − 1/2|.

Game 2. The second game captures the notion of Traceability against arbi-
trary collusion. For a given N, λ and ε (where ε = 1/f(λ) for some polyno-
mial f), the game proceeds as follows (both challenger and adversary are given
N, λ, and ε as input):

1. The adversaryA outputs a set T = {u1, u2, . . . , ut} ⊆ {1, . . . , N} of colluding
users.

2. The challenger runs Setup(N, λ) and provides BK and Ku1 , . . . ,Kut to A. It
keeps TK to itself.

3. The adversary A outputs a pirate decoder D.

Fully Collusion Resistant Traitor Tracing 591

4. The challenger now runs TraceD(TK, ε) to obtain a set S ⊆ {1, . . . , N}. Note
that Trace is only given black-box oracle access to D.

We say that the adversary A wins the game if the following two conditions hold:
– The decoder D is useful. That is, for a randomly chosen M in the finite

message space, we have that

Pr[D(Encrypt(BK, M)) = M] ≥ ε

– The set S is either empty, or is not a subset of T .
We denote by AdvT R the probability that adversary A wins this game.

Definition 2. We say that an N -user Traitor Tracing system is secure if for
all polynomial time adversaries A and any constant ε > 0 we have that AdvMH

and AdvT R are negligible functions of λ.

We emphasize that Game 2 places no limit on the size of the coalition under the
control of the adversary. Furthermore, the pirate decoder need not be perfect.
It only needs to play valid content with probability ε. Finally, note that we are
modeling a stateless (resettable) pirate decoder — the decoder is just an oracle
and maintains no state between activations. Non stateless decoders were studied
in [18].

In the full version of the paper we describe a more restrictive access model to
the pirate decoder D. PLBE enables tracing even in this more restrictive model.

B Proof of Lemma 1

For this distinguishing experiment we will show that distinguishing between
whether an encryption is to position (i, j) or (i, j + 1) is as hard as the 3-party
Diffie-Hellman assumption. Since, the assumption is in a prime order group the
simulator can know the factorization of n, the order of the group. For this game
simulator will run the core part of the simulation in the Gp subgroup and choose
all values in the Gq subgroup for itself. Our formal proof follows.

Suppose there exists a t-time adversary A that breaks the Index Hiding game
with advantage ε. Then we build a simulator as follows. The simulator receives
the 3-party Diffie-Hellman challenge from the simulator as:

gp, A = ga
p , B = gb

p, C = gc
p, T.

The challenge will be given in the subgroup of prime order p of a composite
order group n = pq. The simulator is given the factors p, q.

Next, the simulator runs the Init phase and receives the index (i, j) from A.
Since the game will be played in the subgroup Gp, the simulator can choose
for itself everything in the Gq subgroup. It chooses random generators gq, hq ∈
Gq and random exponents β, rq,1, . . . , rq,m, cq,1, . . . , cq,m ∈ Zq. Additionally, it
chooses the exponents α1, . . . , αm ∈ Zn. It then sets hp = B and picks blinding
factors r′p,1, . . . , r

′
p,m, c′p,1, . . . , c

′
p,m ∈ Zp.

592 D. Boneh, A. Sahai, and B. Waters

The simulator is now able to create the public and secret keys as follows. It
first publishes g = gqgp and h = hqB. It creates the public keys:

E = gβ
q Ex = g

βrq,x
q Fx = h

βrq,x
q

Gx = e(gq, gq)βαx Hy =

{
g

cq,y
q g

c′
p,y

p : y �= j

g
cq,y
q Cc′

p,y : y = j

Next, it creates the private keys for all users except (i, j) as:

Kx,y =

⎧⎪⎨⎪⎩
gαxg

rq,xcq,y
q g

r′
p,xc′

p,y
p : x �= i, y �= j

gαxg
rq,xcq,y
q Br′

p,xc′
p,y : x = i, y �= j

gαxg
rq,xcq,y
q Cr′

p,xc′
p,y : x �= i, y = j

We note that all the simulator creates public and private with the same dis-
tribution as the real scheme.

In the challenge phase the adversary first gives the simulator a message M ∈
GT . The simulator then chooses exponents (v1,1, v1,2, v1,3), . . . , (vi−1,1, vi−1,2,

vi−1,3) ∈ Z
(3)
n , and exponents sq,i, . . . , sq,m ∈ Zq and tq ∈ Zq. Additionally,

it chooses random s′p ∈ Zp, zp,1, . . . , zp,j−1 ∈ Zp, w′
1, . . . , w

′
m ∈ Zn.

It then creates the ciphertext as:

if x > i : Rx = g
sq,xrq,x
q R̃x = h

sq,xrq,x
q

Ax = g
sq,xtq
q Bx = Me(gq, gq)αxsq,xtq

if x = i : Rx = g
sq,xrq,x
q g

s′
pr′

p,x
p R̃x = h

sq,xrq,x
q Bs′

pr′
p,x

Ax = gsq,xtq As′
p Bx = Me(gq, gq)αxsq,xtq,xe(gp, A)αxs′

p

if x < i : Rx = gvx,1 R̃x = hvx,1

Ax = gvx,2 Bx = e(g, g)vx,3

if y > j : Cy = g
cq,ytq
q hw′

y C̃y = A−c′
p,ygw′

y

if y = j : Cy = g
cq,ytq
q Thw′

y C̃y = gw′
y

if y < j : Cy = g
cq,ytq
q g

zp,y
p hw′

y C̃y = gw′
y

If T forms a 3-party Diffie-Hellman tuple then the ciphertext is a well-formed
encryption to the indices (i, j), otherwise if T is randomly chosen it is a en-
cryption to (i, j + 1). The simulator will receive a guess γ from A and it will
simply repeat this guess as its answer to the 3-party Diffie-Hellman game. The
simulator’s advantage in the Index Hiding game will be exactly equal to A’s
advantage. ��

Simplified Threshold RSA with Adaptive and
Proactive Security

Jesús F. Almansa, Ivan Damg̊ard�, and Jesper Buus Nielsen��

BRICS���, Department of Computer Science
University of Aarhus, Denmark
{jfa, ivan, buus}@brics.dk

Abstract. We present the currently simplest, most efficient, optimally
resilient, adaptively secure, and proactive threshold RSA scheme. A main
technical contribution is a new rewinding strategy for analysing threshold
signature schemes. This new rewinding strategy allows to prove adaptive
security of a proactive threshold signature scheme which was previously
assumed to be only statically secure. As a separate contribution we prove
that our protocol is secure in the UC framework.

Keywords: Proactiveness, Adaptive Security, Threshold RSA, Uni-
versal Composability.

1 Introduction

The concept of threshold cryptography was first introduced by Desmedt [Des87].
In threshold cryptography n servers run a service in such a way that even if some
t servers are corrupted, the service is still available and secure. In a threshold
signature the servers implement a service for signing messages under a signature
key shared between the servers with some threshold t.

The first RSA based threshold signature was given independently by
Boyd [Boy89] and Frankel [Fra89]. In both protocols the signing key d is shared
additively among the servers. The first RSA threshold scheme was published
by Santis et al. [SDFY94], and although the key sharing is polynomial, it does
not tolerate actively cheating servers. This restriction was later removed inde-
pendently by Frankel et al. [FGY96] and Gennaro et al. [GJK96]. All of these
protocols are only proved secure against static adversaries, i.e., the set of corrupt
parties is fixed before the protocol starts.

In [OY91], Ostrovsky and Yung introduced the notion of proactive security,
in which the life span of a protocol is divided into separate time periods and
we assume that the adversary can corrupt at most t players in each period.
However, the set of corrupted players may change from one period to the next,

� Supported by FICS, Foundations in Cryptography and Security, financed by the
Danish Research Council.

�� Supported by FICS and ECRYPT, European Network of Excellence for Cryptology.
��� Basic Research in Computer Science (www.brics.dk), funded by the Danish National

Research Foundation.

S. Vaudenay (Ed.): EUROCRYPT 2006, LNCS 4004, pp. 593–611, 2006.
c© International Association for Cryptologic Research 2006

594 J.F. Almansa, I. Damg̊ard, and J.B. Nielsen

so the protocol must remain secure, even though every player may have been
corrupt at some point. This can, for instance, be achieved for a protocol based
on secret sharing by having players re-randomize the shares they hold between
periods, and erase the old shares. This is called refreshment.

In [FGMY97b] Frankel et al. published the first proactive threshold RSA signa-
ture, as a generalization of an unpublished protocol by Jakobsson et al. [JJKY95].
This protocol, does not scale up well: even for a moderately large number of
servers it is either highly inefficient or does not tolerate the optimal thresh-
old t < n/2, and it is only statically secure. Next, in [FGMY97a] Frankel et
al. achieved optimal threshold. Later, Rabin [Rab98] gave a simplified static
proactive protocol by combining the best of the linear and polynomial sharing
techniques. The protocol from [Rab98] was later optimized and simplified by
Jarecki and Saxena [JS05], still obtaining a static proactive protocol.

In [CGJ+99] Canetti et al. add mechanisms to the protocol from [Rab98], to
obtain an adaptively secure protocol, and even though adaptive security is only
claimed for the non-proactive version of [Rab98], the protocol in [CGJ+99] seems
to be the first adaptive proactive threshold RSA signature.

Later Frankel et al. [FMY01] gave an adaptively secure version of the protocol
from [FGMY97b]. The protocols from [CGJ+99, FMY01] seem to be the only pub-
lished adaptive proactive threshold RSA signatures. Unfortunately both protocols
have some practical drawbacks. The linear-sharing based protocol in [FMY01] in-
herits the problem from [FGMY97b] that it is inefficient or non-optimally secure
unless the number of servers is small. The protocol [CGJ+99] modifies the proto-
col from [Rab98] such that before each signature generation the signing-key shares
are refreshed. This adds a considerable performance overhead.

Our contributions. The paper has three main contributions.

1. The first contribution is a novel analysis technique which allows to prove that
the protocol from [Rab98] is – with minor modifications – adaptively secure,
contrary to what was previously believed. Indeed, as mentioned above, the
authors of [CGJ+99] add an expensive mechanism to the protocol to make it
adaptively secure. Our first contribution shows that this mechanism is unnec-
essary. The technical problem we need to solve to do this is explained below.

2. Our second contribution is a technique for avoiding so-called key-share ex-
posure. In the protocol from [Rab98], if a server fails to contribute correctly
to the signature generation, the key share of that server is reconstructed
and thus exposed in public. Such key-share exposure can degrade security in
practice. For instance, if a server fails to contribute only because it is tem-
porarily down, this error will be made worse if the remaining servers expose
its key share. Our second contribution shows that key-share exposure is not
necessary to make the protocol from [Rab98] actively and adaptively secure.

3. Our final contribution consists of two definitions for security of threshold sig-
nature schemes. One is cast in the universally composable (UC) framework,
the other one is a more standard definition similar to the one from [CGJ+99].
We show that the two are equivalent. This allows simplified proofs that our
protocols – and other protocols as well – are secure in the UC framework.

Simplified Threshold RSA with Adaptive and Proactive Security 595

The technical problem we solve with our first contribution is the following: In
[CGJ+99] a useful technique known as the Single Inconsistent Player technique
was introduced. It facilitates proving adaptive security of threshold signature
schemes using simulation arguments as follows: we typically want to show that
a successful adversary against the protocol can be used to break security of an
underlying single server signature scheme. To this end, we build a simulator
which does a chosen message attack on the underlying signature scheme while
simulating the adversary’s view of the protocol with the aim of having him
forge a signature. The simulator initially chooses among the currently honest
players a single inconsistent player (SIP) and arranges matters such that it knows
valid-looking secret keys of all players except the SIP. It can therefore simulate
successfully even against adaptive corruption, as long as the SIP is not corrupted.
If there is a non-negligible chance that the SIP stays honest, there is also a non-
negligible chance that the adversary produces a forged signature.

It is natural to try using the SIP technique for doing also proactive adaptive
security. However, in this scenario we must choose a new SIP every time keys
are refreshed, since under a proactive attack no single party can hope to stay
honest throughout the protocol. But even this will not work: the probability that
a single SIP remains honest in a single phase cannot be made arbitrarily close to
1, whence the probability that we are lucky in every phase is negligible. Thus,
already with as few as a super-logarithmic number of proactive phases, a simple
straight-line simulation will not work. A potential solution is to use rewinding,
i.e., every time the SIP is corrupted, rewind back to the last refreshment, choose
a new SIP and try again. This turns out to work, if one is willing to refresh keys
every time a message is about to be signed (as shown in [CGJ+99]).

If we are not willing to pay the price this costs in efficiency, a further tech-
nical problem emerges: if we rewind past a point where a message m was given
as input, we risk that when we go forward again, the adversary asks us to gen-
erate signatures on different messages than before, in particular different from
m. The net result of this is that we may end up with a simulated transcript
where the adversary apparently breaks the scheme by producing a valid sig-
nature on message m, which he did not ask to have signed. But in reality,
the simulator had to ask for the signature on m somewhere in the rewinding
process, so we did not break the underlying signature scheme after all. In con-
nection with the proof of Theorem 2 we give an example adversary to show
that this really is a problem and we show how to solve it. The basic idea is
to guess the point in the simulation where the simulator asks for a signature
on the “fatal” message, and simply refrain from asking. One then has to show
that this does not bias the distribution of the simulation. More details are given
later.

How to read this paper. In Section 2.3 we give a sketch of the UC defi-
nition of security, and in Section 3 a formal specification of secure threshold
signatures as an ideal functionality. Readers who are more interested in the
protocol constructions can skip this without loss of continuity, as all protocols
are proved according to the more standard definition from Section 3.1, which is

596 J.F. Almansa, I. Damg̊ard, and J.B. Nielsen

equivalent to UC security. However, to read the protocol descriptions and proofs,
the notation introduced in Sections 2.2 and 2.1 is necessary.

2 Proactive UC Security

In this section we describe our computational and adversarial model. Our
work utilizes the Universal-Composability framework by Canetti, introduced in
[Can01], and last revised in [Can]. Among the upgrades in the last revision that
are relevant to us, it is now possible to model erasures, by allowing a party to
leak only partial internal state upon a corruption. Since the composition theo-
rem remains valid, we can cast proactiveness in the framework and make proofs
of security, while still being able to use the composition theorem. Likewise, it is
also shown that w.l.o.g., one may assume that a single entity (the environment)
models all activity external to the protocol, including adversarial activity. We
use this technical simplification.

Finally, it is possible to specialize [Can] to the case of synchronous networks,
which we will do here. Thus we do not need to define a new synchronous model
and reprove the composition theorem as was done in [DN03] and [Nie04].

We now give a brief description of our instance of the UC framework. For a
more detailed description of the proactive UC framework, see [Alm05].

2.1 Computations

All entities are PPT Interactive Turing machines (ITM). An n-party protocol
π in the G-hybrid model is a set of n ITMs, whose identities P1, . . . , Pn are all
different, and an ideal functionality G to which parties are granted use.

In general, G = (G1, . . . ,Gm), 1 < m, may include one or more ideal functionali-
ties, and we will assume G1 = Faut provides authenticated transmission, to be used
for communication between parties. In some cases, we will use instead a function-
ality FSMT modeling secure point-to-point channels. These abstractions allow us to
focus on the high-level properties of our protocols, yet they can be implemented us-
ing well known techniques. Note, however, that for proactive security, care should
be taken with refreshing the key material used for message transmission.

The protocol runs while interacting with an environment, an ITM Z that
models external (adversarial) activity, and which provides inputs to honest par-
ties and receives their corresponding outputs. We use HYBGπ,Z to denote the entire
process of running π while interacting with Z and G.

The execution proceeds in communication rounds, thatwe denote by r=0, 1,. . ..
A proactive protocol proceeds in phases. A phase consists of a number of

consecutive rounds, and every round belongs to exactly one phase. There are two
kinds of phases, refreshment and operational, which occur alternately. Finally,
a stage consists of an opening refreshment phase, an operational phase in the
middle and a closing refreshment phase. Thus, each refreshment is the closing
of one stage and the opening of another. We use u = 0, 1, . . . to denote stages.

The intuition is that during the operational phases, the protocol provides
whatever service it was designed for, whereas refreshment phases are used to

Simplified Threshold RSA with Adaptive and Proactive Security 597

rerandomize various representations of data so that attacks in different phases
will not be able to benefit from each other.

We allow Z to decide when refreshment starts (equivalently, when a new stage
begins), by sending a command to each party. Refreshment ends when all honest
parties have output a special symbol indicating end of refreshment.

2.2 Adversaries

As mentioned, Z also models the adversary. As such, Z may corrupt parties
adaptively throughout the protocol, subject to the limitation that no more than
t parties can be corrupt in every stage. In particular, this means that if a party
is corrupt during a refreshment phase, he is considered to be corrupt in both
of the two stages to which the phase belongs. After corruption, Z acts on behalf
of the corrupted player. Corruption may be passive, where Z internally executes
the correct protocol on behalf of the corrupted player, or active where Z decides
on its own the actions of the corrupted player.

If player Pi is corrupted during an operational phase, Z is given the view
of Pi starting from his state at the beginning of the current operational phase.
This models the assumption that all randomness and data used in the previous
refreshment phase is erased, except for the information that the protocol specifies
should be used afterwards.

If the corruption is made during a refreshment phase, say, the closing refresh-
ment of stage u, Z receives the view of Pi starting from his state at the beginning
of the operational phase of stage u, and Pi is assumed to be corrupt for stage u+1.

If Pi is corrupt when a refreshment begins, Z may decide to leave him, which
may allow Z to corrupt new parties, subject to the bound of t corruptions per
stage. In this case, we say Pi is decorrupted.

A decorrupted player immediately starts taking part in the protocol as any
honest player. In the passive corruption case, he starts from the correct state
specified by the protocol at this point. In the active corruption case, he starts
from a default state after round r. This state is application-dependent in general.

2.3 UC Security

Security is defined by comparing protocol π’s execution with an ideal protocol
execution. There, instead of parties, an ideal functionality F is used to specify
the desired input/output behavior of π. It also specifies the information allowed
to be leaked from π to the environment.

Security loosely speaking means that whatever Z could achieve by attacking
π, it could also achieve by interacting with F . To make this precise, a special
ITM T is introduced. The goal of T is to simulate the adversary’s view of π,
based only on the information F is willing to exchange with the environment.

We declare π secure in the G-hybrid model if no environment can distinguish
interactions with π from those with F and T . More formally:

The environment is assumed to always end by outputting a bit which we think
of as its guess at whether it works in the ideal or the hybrid scenario. When Z

598 J.F. Almansa, I. Damg̊ard, and J.B. Nielsen

interacting with π in the G-hybrid model, on security parameter k, auxiliary
input z to Z, and the random coins of all machines are uniformly chosen, this
output of Z is a random variable denoted HYBGπ,Z(k, z). We denote by HYBGπ,Z()
the ensemble {HYBGπ,Z(k, z)}k∈N,z∈{0,1}∗ .

Similarly, IDEALF ,T ,Z(k, z) and IDEALF ,T ,Z() are the random variable and
ensemble produced when Z interacts with F and T in the ideal process.

Using
c≈ to denote computational indistinguishability, we then have:

Definition 1 (UC Security). A protocol π proactively t-realizes a functionality
F in the G-hybrid model, if there exists a simulator T such that for all environments
Z corrupting at most t parties per stage it holds that IDEALF ,T ,Z()

c≈ HYBGπ,Z().

3 Defining Proactive Threshold Signatures

We define threshold signatures by giving a functionality, FThSig, that is a version
of Canetti’s signature functionality[Can04], adapted for the threshold case.

Functionality FThSig

Key Generation, initiate Having received the same message (KeyGen , sid)
from all honest parties in a set S = {S1, . . . , Sn} in the same round, and
sid = (S, sid′) for some sid′, send (KeyGen , sid) to Z.

Key Generation, finalize Upon receiving (KeyGen , sid, v) from Z, if
(KeyGen , sid) was sent earlier, record v and send (sid, v) to all Si ∈ S. All
further commands that do not contain the sid established here are ignored.

Signature Generation, initiate Having received (Sign, sid, m) from all honest
Si ∈ S in the same round, store (Sign, sid, m) and send it to Z. There might
be several identical (Sign, sid, m) stored.

Signature Generation, finalize Upon receiving (Signature , sid, m, σ) from Z,
if (Sign, sid, m) is stored and an entry of the form (m, σ, 0) was not
recorded, delete an entry (Sign, sid, m), record the entry (m, σ, 1) and send
(Signature , sid, m, σ) to all Si ∈ S.

Signature Verification Upon receiving a message (Verify , sid, m,σ, v′)
from some party P , give (Verify , sid, m,σ, v′) to Z. Upon receiving
(Verified , sid, m, σ, φ) from Z, send (Verified , sid, m, σ, f) to P , where f is
determined as follows:
1. If v′ = v and the entry (m,σ, 1) is recorded, then set f = 1 (guarantees

that if v′ is the registered public key and σ is legitimately generated, then
verification succeeds).

2. Else, if v′ = v and no entry (m, σ, 1) is recorded, set f = 0 (guarantees
that if v′ is the registered public key and m was not legitimately signed,
then verification fails). Record the entry (m, σ, 0).

3. Else, if v �= v′, set f = φ.
Refreshment On input signaling that a refreshment phase starts in this round,

record this and signal end of refreshment in the next round (this reflects
that our protocol implementing the functionality takes one round to do the
refreshment).

Simplified Threshold RSA with Adaptive and Proactive Security 599

Note that all our functionalities receive initially a session id sid = (S, sid′)
where S is the set of players who participate in realizing the functionality and
sid′ is a number identifying this particular instance of the functionality.

The functionality defines a player set S called the servers and a verification key
v. Only the servers can ask FThSig to sign messages, but any player with the cor-
rect key v can use FThSig to verify a signature. For simplicity we also assume some
external mechanism for the servers to agree on which message to sign and in which
round. We model this by assuming throughout that all our environments behave
such that if an honest player gets a message to sign as input, all honest players get
the same message as input in the same round.

We note that the logic in Canetti’s signature functionality is slightly more com-
plicated than ours because it has to deal with the case where the signer is corrupted.
In our case the single signer is replaced by the set of servers, and hence we can de-
mand by bounding the number of corrupted servers that things will always work
as if “the signer” is honest.

For a protocol π (in the G-hybrid model) we can then say it is a secure UC
threshold signature scheme for the class Z if π realizes FThSig when quantifying
over Z ∈ Z in the definition of security.

3.1 Equivalence to a More Standard Notion

In [Can04] it was proved that for a (non-threshold) signature scheme, implement-
ing the signature functionality in [Can04] is equivalent to the scheme being correct
(i.e. signed messages are accepted by the verification algorithm), consistent (two
verifications of the same message and signature give the same result) and unforge-
able under chosen message attack.

Threshold Signature Scheme FThSig

Key Generation (well-formed) If all honest Si ∈ S receive the same mes-
sage (KeyGen , (S, sid′)) in the same round, then after some rounds all honest
parties Si ∈ S output one common message (sid, v).

Signature Generation (well-formed) If all honest Si ∈ S receive the same
message (Sign, sid, m) in the same round, then after some rounds all honest
Si ∈ S output one common message (Signature , sid, m, σ).

Signature Verification (well-formed) If an honest party Pi receives input
(Verify, sid, m, σ, v′) in round r, then Pi outputs one corresponding message
of the form (Verified, sid, m, v′, f) in round r.

No other messages (well-formed) No honest party outputs a message not de-
scribed above.

Signature Verification (correct) If an honest party Pi receives input
(Verify, sid, m, σ, v) in round r and some honest party once output
(Signature , sid, m, σ), then Pi outputs (Verified, sid, m, v, 1) in round r.

Signature Verification (consistent) If two honest parties Pi and Pj

(not necessarily distinct) outputs (Verified, sid, m, σ, v, fi) respectively
(Verified, sid, m,σ, v, fj), then fi = fj .

Signature Verification (unforgeable) If an honest party Pi outputs
(Verified, sid, m, v, 1) in round r, then in some round r′ ≤ r an honest
party received the input (Sign, sid, m).

600 J.F. Almansa, I. Damg̊ard, and J.B. Nielsen

In this section we do a similar “sanity check” of our definition of a UC thresh-
old signature scheme, by giving a property based definition of what it means for
a protocol to be a secure threshold signature scheme and then proving that this
notion is equivalent to the UC notion.

Let Z be a set of environments. We say that π has one of the properties in the
figure above (relative to Z) if for all Z ∈ Z , the probability that the property
fails when executing HYBGπ,Z is negligible.

Theorem 1. If π is well-formed, correct, consistent and unforgeable relative to
Z , then π is a secure UC threshold signature scheme for Z .

Briefly, this result is shown by constructing a UC simulator T , which will gener-
ate on its own a set of keys for the signature scheme by executing internally an
instance of π. Then, using the private key(s), it can trivially simulate Z’s view of
π by simply following the protocol to generate signatures. One then observes that
the only way this could differ from actual executions is if Z can produce a valid
signature that was not legally generated. Such a signature would be accepted in
the hybrid process, but rejected in the ideal one. However, the unforgeability of
π ensures that such events occur with negligible probability. The (tedious but
straightforward) details can be found in [Alm05].

4 Passive Security

In this section we give a UC threshold signature scheme under the class Z of
passive, adaptive environments which corrupts at most t = n− 1 players in each
stage. In Section 5 we describe how to obtain active security. To simplify matters,
we will assume a trusted dealer who distributes keys to the servers initially. The
dealer is modeled as an ideal functionality FKeyGen, in other words, we operate
in the FKeyGen-hybrid model.

Functionality FKeyGen

Key Generation, initiate Having received the same message (KeyGen , sid)
from all honest parties in the same round, parse sid as (S, sid′), perform
RSA key generation with security parameter k to obtain modulus N and
exponents e, d. Next, for i = 1, . . . , n, where n is the size of the set S,
choose at random di in [−nN2..nN2] and set dpublic = d − i di. Then send
(KeyGen , sid, v, dpublic) to Z, where v is the RSA public key (N, e).

Key Generation, finalize (To avoid having to specify how many rounds key
generation will take, we let the environment decide when to return results)
Upon receiving (KeyGenFinish , sid) from Z, send (KeyGen , sid, v, dpublic, di)
to each Si ∈ S.

The keys generated will be used in an RSA signature scheme, where we assume
(as usual) that binary strings of length up to some polynomial in the security
parameter k can be signed, where the signature on m is of form H(m)d mod N ,

Simplified Threshold RSA with Adaptive and Proactive Security 601

and where H is some preprocessing that typically involves a hash function. The
details of this are left out of scope here.

We also assume secure point-to-point channels, i.e., we assume a functionality
FSMT for secure message transmission. This functionality will accept inputs con-
taining message and sender/receiver id, and will in the next round deliver the
message to the intended receiver, revealing only the message length to the ad-
versary. Whenever we speak about sending a message privately in the following,
this refers to calling FSMT.

Protocol π

All parties in the protocol run the following code:

Key Generation, initiate On input (KeyGen , sid), parse sid as (S, sid′) and
send (KeyGen , sid) to FKeyGen .

Key Generation, finalize Wait to receive (KeyGen , sid, v, di, dpublic) from
FKeyGen , store this information, and output (sid, v). Here v is the RSA public
key (N, e).

Signature Generation, initiate On input (Sign, sid, m), send
(sid, m,H(m)di mod N) to all Sj ∈ S.

Signature Generation, finalize Upon receiving (sid,m, H(m)dj mod N) from
all Sj ∈ S (i.e. for j = 1, . . . , n), compute the signature

σ = H(m)d1H(m)d2 · · ·H(m)dnH(m)dpublic mod N,

and output (Signature , sid, m, σ).
Signature Verification On input (Verify, sid,m, σ, v′), where v′ is an RSA key

(N ′, e′), define f ∈ {0, 1} by f = 1 iff σe′
mod N ′ = H(m), and output

(Verified , sid, m, σ, v′, f).
Refreshment For each decorrupted Pi, his default state after round r is di, i.e.,

his actual share. Each Si ∈ S reshares di, i.e., chooses di,j at random in
[−N2..N2], sets di,public = di − j di,j , sends di,public to all Sj ∈ S and di,j

privately to Sj . In the next round, each Si ∈ S computes dnew
i = j dj,i.

Finally, all Si ∈ S compute dnew
public = dpublic + i di,public. Everyone signals

end of refreshment. Only dnew
public and the private dnew

i are remembered in the
next phase.

By Theorem 1 it is sufficient to show the following:

Theorem 2. If the underlying signature scheme is unforgeable under chosen
message attack, then the protocol π is well-formed, correct, consistent and un-
forgeable relative to the class Z of environments which corrupt, passively and
adaptively, at most n − 1 players in each proactive stage.

Proof. It is straight-forward to verify that the protocol is well-formed, correct
and consistent (in fact these properties hold unconditionally). What remains is
to prove that it is unforgeable. So, assume for the sake of contradiction that there
exists Z ∈ Z such that with some non-negligible probability P (Z) it happens
in HYB

(FSMT,FKeyGen)
π,Z that an honest party Pi outputs (Verified, sid, m, σ, v, 1) in

602 J.F. Almansa, I. Damg̊ard, and J.B. Nielsen

round r without m being signed in some round r′ ≤ r (in the following we
say that m was signed in round r′ if (Sign, sid, m) was input to all honest
parties). We use this to construct a PPT reduction Red′(Z) which breaks the
underlying signature scheme with some non-negligible probability P ′ related to
P (Z). It is given a random RSA verification key (N, e) and is given an oracle
O(N, d) : m �→ H(m)d mod N . It then tries to compute a forgery, i.e. a value
(m, σ) where σe mod N = H(m) and where O(N, d) was not queried on m. The
algorithm Red(Z) described on the next page is used as a sub-routine.

The strategy of Red(Z) is to run Z while simulating its view of the protocol.
More precisely, Red(Z) runs HYB(FSMT,FKeyGen)

π,Z , but it simulates itself the actions of
(FSMT,FKeyGen) and the (currently) honest players, using the verification key and
oracle it is given, but of course without knowing the secret RSA key. The hope
is that Z will behave (approximately) as in a real attack and will hence produce
a forgery that can help us break the signature scheme.

The reduction Red(Z) uses the single inconsistent player (SIP) technique ex-
plained in the introduction. A new SIP is chosen at random after every refresh-
ment phase. We use Sju to denote the SIP chosen after the opening refreshment
of stage u. If the current SIP Sju is corrupted, Red(Z) rewinds to the beginning
of stage u and tries again.

We now analyze Red(Z): Let an attempt for stage u be a run of Red(Z) from
state Stateu−1 at the beginning of the opening refreshment of u, until Sju is cor-
rupted or the closing refreshment of u begins. Let a failed attempt (successful at-
tempt) be an attempt where Sju is (not) corrupted. Notice that Red(Z) is trying
to create a sequence of successful attempts, closing with Z terminating or the un-
forgeability property being violated. Call such a sequence a successful sequence.
Let d denote the signing key corresponding to the input verification key (N, e),
and let du

1 , . . . , du
n, du

public be the shares used by Red(Z) in successful attempt u,
and similarly du

i,j , d
u
i,public the values used in the refreshment in successful attempt

u. These are called the real shares in the following.We first prove:

Claim 1: the view of Z in a successful sequence is statistically indistinguishable
from its view in HYB

(FSMT,FKeyGen)
π,Z .

Note that Red(Z), when it creates and updates the shares di, follows exactly
the protocol, except that the secret is zero, instead of the correct d. We now
want to argue that if we modify the shares generated by Red(Z) so they are
consistent with d, Z will still see essentially the same view. To this end, define a
new set of shares d′u1 , . . . , d′un, d′upublic, d

′u
i,j , d

′u
i,public that are equal to the shares

generated by Red(Z), except

d′uju
= du

ju
+ d, d′ju,ju+1 = dju,ju+1 + d .

We call these the virtual shares. Note that the new set of values is consistent with
secret exponent d, but if we restrict to the subset seen by Z the virtual shares
equal the real ones. Moreover, except with negligible probability, the virtual
shares are legal, i.e., all shares are in the intervals specified in the protocol. This
follows immediately from the fact that the size of the intervals is larger than

Simplified Threshold RSA with Adaptive and Proactive Security 603

d by an exponential factor. Note also that when signatures are generated, the
contribution from the SIP, σju , as generated by Red(Z) satisfies σju = H(m)d′u

ju ,
since σ = H(m)d and −du

public =
∑

i∈S du
i . In other words, Red(Z) already

generates signatures consistently with the virtual shares.

Reduction Red(Z)

Run a copy of HYB(FSMT,FKeyGen)
π,Z while simulating (FSMT,FKeyGen) and the honest parties

as follows:

Key Generation, initiate On input v = (N, e) and a set of players S, choose di

at random in [0..nN2] for all Si ∈ S and set dpublic = − i di. Then, choose
a player Sj0 at random among the honest players in S and call Sj0 the single
inconsistent party (SIP) for stage 0.

Key Generation, finalize When Z gives the command to generate keys, send
(KeyGen , sid, v, di, dpublic) to each Si on behalf of FKeyGen . Store the current
state State0 of HYB(FSMT,FKeyGen)

π,Z .
Refreshment On a signal that opening refreshment of u starts in this round,

record state Stateu−1 of HYB
(FSMT,FKeyGen)
π,Z and set Stateu := Stateu−1. Then

execute the refreshment on behalf of the honest players according to the pro-
tocol, using as input the current di. This results in a new set of di’s for all the
players, and a new dpublic.a Update and record Stateu. Finally Red(Z) picks
a new SIP Sju among the Si ∈ S still honest after the refreshment phase.

Signature Generation, initiate When Z inputs (Sign, sid, m) to all honest
Si ∈ S, call O(N, d) to obtain σ = H(m)d mod N .

Signature Generation, finalize In the next round, for each Si ∈ S \{Sjp}, set
σi = H(m)di mod N , and for the SIP Sjp , compute

σjp = σ ·H(m)−dpublic ·
Si∈S\{Sjp}

σ−1
i .

Then for all honest Si ∈ S, send σi to all parties in S.
Corruption When Z corrupts a server Si, Red(Z) sends the di it holds for Si to

Z, or both di and its older share if corruption is made in opening refreshment
of u. If Si = Sju (where Sju denotes the current SIP for stage u), then Red(Z)
gives up this attempt to simulate stage u and restarts the simulation from
the recorded state Stateu at the beginning of the appropriate phase, using
fresh randomness (notice that this involves choosing a new random SIP). To
ensure that Red(Z) runs in PPT it will rerun each operational phase at most
kn times and then give up the reduction completely.

Signature Verification Red(Z) does not need to do anything special here, since
verification is just done as in the protocol using v′.

Termination If it ever happens that the unforgeability property is violated by
some party Pi outputting (Verified, sid, m, σ, v, 1), then Red(Z) terminates
with output (m, σ). If Z terminates first, then Red(Z) terminates with an
empty output.

a Notice that by inspecting the messages that Z sends privately on behalf of
the corrupted parties in HYB

(FSMT,FKeyGen)
π,Z , Red(Z) can also compute the di of all

corrupted Si ∈ S.

604 J.F. Almansa, I. Damg̊ard, and J.B. Nielsen

This means that the mapping from real to virtual shares creates (except for a
negligibly small set of cases) a 1-1 correspondence between successful sequences
generated by Red(Z) and executions of HYB

(FSMT,FKeyGen)
π,Z . Since Z’s view is un-

changed under this correspondence, Claim 1 follows.

Since no SIP is even defined in HYB
(FSMT,FKeyGen)
π,Z it follows from Claim 1 that

all ju are statistically independent of the view of Z in any attempt until Sju is
corrupted. Since ju is chosen uniformly at random and Z corrupts at most n−1
parties, it follows that in any given attempt, with probability at least statistically
close to 1/n the environment Z does not corrupt Sju . From this it easily follows
that after kn reruns we get a successful attempt except with negligible probabil-
ity. Since the number of operational phases is polynomial it follows that Red(Z)
also gets a successful sequence, except with negligible probability. From Claim 1
it also follows that the unforgeability property fails with probability statistically
close to P (Z) in this successful sequence. Now, every time the unforgeability
property fails in Red(Z), by some party Pi outputting (Verified, sid, m, σ, v, 1),
it by definition holds that σe mod N = H(m) and that m was not signed in the
the successful sequence. Therefore Red(Z) never queried O(N, d) on m in the
successful attempts used to produce the successful sequence.

It is tempting to believe that Red(Z) could just output (m, σ) and break the
signature scheme with probability statistically close to P (Z). However, this may
not work as Red(Z) also makes queries to O(N, d) in the failed attempts. If m
was queried in a failed attempt, Red(Z) does not break the signature scheme
by outputting (m, σ). Below we will say that a message on which the simulator
queried O(N, d) during a failed attempt and for which Z did not request a
signature generation in the successful sequence is a dirty message. When the
environment outputs a forgery on a dirty message m in the final state, then
we have a situation where Z produced a successful forgery, but where Red(Z)
cannot use this forgery as its own. Accordingly, successful forgeries by Z on dirty
messages are called useless forgeries.

To see that useless forgeries are a real problem, consider the following en-
vironment Z: it runs for k operational phases and in phase i picks a random
message mi from the set {0, 1, . . . , k} which was not signed already, and then
inputs (Sign , sid, mi) to all parties. After the signature is generated, Z cor-
rupts all parties except one (at the end of any operational phase, it leaves all
parties). After k phases it outputs a forgery (mk+1, σ) on the single message
mk+1 ∈ {0, 1, . . . , k} which was not signed yet. It is easy to see that Red(Z)
will have to rerun each operational phase an expected n times, and that the
probability that mk+1 was not signed in any failed attempt thus is negligible.
This shows that the reduction Red does not work for all Z. So, we must come
up with a better simulation strategy.

First of all we can assume that Red(Z) never queries O(N, d) on the same
message m twice by having it remember previous queries (here we use that RSA
signatures are unique). For a run of Red(Z) we then use (m1, . . . , mL) to denote
the distinct messages on which Red(Z) queried O(N, d), in the order of query.
Furthermore, when Red(Z) produces a useless forgery on some dirty message

Simplified Threshold RSA with Adaptive and Proactive Security 605

m we define l0 by ml0 = m, and when Red(Z) produces a useful forgery or no
forgery we let l0 = 0. Clearly, given Z and the randomness r used by Red(Z),
the value l0 is uniquely defined by some function l0 = l0(Z, r).

Consider now the following reduction Redl0(Z) which has access to an oracle
for the function l0. When running with randomness r, Redl0(Z; r) runs Red(Z; r),
but tries to keep ml0 clean. First it queries l0 = l0(Z, r) and proceeds as follows:
When l0 = 0 it just runs Red(Z; r) (so, Redl0(Z; r) = Red(Z; r) when l0 = 0).
When l0 > 0 it runs Red(Z; r) with the following changes: initially it just counts
on how many distinct messages it queried O(N, d), until it is about to query on
the l0’th message ml0 . Then it remembers ml0 and does not query O(N, d) on
ml0 . After ml0 is defined Redl0(Z) still runs Red(Z; r), except that in addition to
rerunning when the SIP Sju is corrupted it also reruns when it is about to query
on ml0 , so that it never queries O(N, d) on ml0 . Notice that by definition of l0 > 0
the message ml0 would be dirty in Red(Z; r). So, if Red(Z; r) was run, the message
ml0 would by definition not be requested signed by Z in the successful sequence.
So, all requests by Z to signed ml0 would occur in failed attempts, because
the SIP was corrupted. Therefore the modification in Redl0(Z; r) of aborting
when ml0 is requested signed only aborts attempts which would also have been
aborted by Red(Z; r). In particular, the successful sequence of Redl0(Z; r) is
identical to the successful sequence of Red(Z; r) (so, Redl0(Z; r) = Red(Z; r)
when l0 > 0). It follows that independent of l0, Redl0(Z; r) = Red(Z; r). However,
since Redl0(Z) by construction never queries O(N, d) on ml0 it follows that
Redl0(Z) produces no useless forgeries, so Redl0(Z) outputs a forgery (m, σ)
with probability statistically close to P (Z).

Consider finally the algorithm Red′(L,Z) which runs as follows: It first sam-
ple a uniformly random number l′0 ∈ [L]. Then it runs Redl0(Z; r) with uniformly
random r, except that when Redl0(Z) queries the oracle l0, Red′(L,Z) replies with
l′0. If L > l0, then l′0 = l0(Z, r) with probability 1/L. Since Redl0(Z) outputs a
forgery with probability statistically close to P (Z), it follows that when L > l0,
the algorithm Red′(L,Z) outputs a forgery with probability statistically close to
P (Z)/L. Assume then that there exists a PPT environment Z which violates the
unforgeability property in HYB

(FSMT,FKeyGen)
π,Z with non-negligible probability P (Z).

Then there also exists a polynomial bound L(k) on the running time of Z and thus
there exists a PPT algorithm Red′ = Red′(L(k),Z) which breaks the unforgeabil-
ity under chosen message attack of the RSA signature scheme with probability P ′

statistically close to the non-negligible P (Z)/L, a contradiction. ♦

5 Active Security

In this section we sketch how to make the protocol robust. We follow the approach
from [Rab98] and [CGJ+99] with some modifications to avoid share exposure.

5.1 The Protocol

Preliminaries. We need a statistically hiding integer commitment scheme com,
where a commitment to integer a is denoted by com(a) (we suppress here the

606 J.F. Almansa, I. Damg̊ard, and J.B. Nielsen

random coins need to produce the commitment). We assume that the initial key
setup generates parameters for such a scheme. We require that the scheme is
linear. Informally this means that there exists a method to compute from two
commitments com(a) and com(b) and an integer c a new commitment com(a)+
c · com(b), and if one can open com(a) to a and com(b) to b, one can compute an
opening of com(a)+c·com(b) to z = a+cb. This opening should reveal essentially
no information about a and b except that z = a + cb. A commitment scheme
with these properties exists, where binding is based on the factoring assumption
[FD02].

Using this commitment scheme we can construct a statistically private VSS
scheme as follows. Given a secret integer s ∈ [0..B] in some known interval, pick
a degree t polynomial f with f(0) = sL by letting a0 = sL, picking integer
coefficients a1, . . . , at as in [Rab98] and letting f(x) =

∑t
j=0 ajx

j . Then for
j = 0, 1, . . . , t compute a commitment cj = com(aj) and broadcast c0, c1, . . . , ct.
Then for i = 1, . . . , n compute di =

∑t
j=0 ijcj . Then compute an opening of

di to f(i) and send this opening to Pi. If Pi does not receive an opening of∑t
j=0 ijcj it complains and the dealer must broadcast an opening of

∑t
j=0 ijcj .

If the dealer fails to do so, the VSS is rejected. It is straight-forward to verify
that this is a secure integer VSS scheme that hides the shared value information
theoretically.

A VSS to a secret s is given by the commitments di and we use
[s] = (com(f(1)), . . . , com(f(n))) to denote a VSS to s. Given a VSS
[a] = (com(f(1)), . . . , com(f(n))) and a VSS [b] = (com(g(1)), . . . , com(g(n)))
and an integer c we can compute a VSS [a] + c · [b] = (com(f(1)) + c ·
com(g(1)), . . . , com(f(n)) + c · com(g(n))). Clearly, from openings of [a] and
[b] the parties can compute an opening of [a] + c · [b].

Generation of Challenges. We will be using several interactive proofs of the
standard public coin 3-move form (Σ-protocols), where the prover must answer
a challenge. For us, it will always be the case that all players have to give proofs
simultaneously. After the opening messages of the proofs have been sent, the
challenges are generated as follows: each party picks uniformly random k-bit
values ai, bi ∈ {0, 1}k, deals a VSS of ai and then broadcasts bi. The parties
open all the VSS’s (that were successfully generated) and compute the k-bit
values ci = bi ⊕

⊕
j aj . The string ci is used as challenge in the proof given by

Pi. The rationale for this method is that, although a corrupt Pi will not be able
to predict the challenge ahead of time, a simulator can put itself in a position
where it knows all aj before bi is chosen, and can therefore force ci to be any
desired value.

Key Setup. We have the following requirements on the key setup. First, let
p = 2p′ + 1 and q = 2q′ + 1 be safe primes and let N = pq and let SQN be the
subgroup of squares in ZN (which has order p′q′). We let L = n! and require
that gcd(e, L) = 1.

The key generator now additionally broadcasts a random element g of order
p′q′, for i = 1, . . . , n broadcasts the value hi = gdi mod N , broadcasts public

Simplified Threshold RSA with Adaptive and Proactive Security 607

parameters for a commitment scheme as described above, and finally deals a
VSS αi = [di].

In the following, let EDLN be the language for equality of discrete logarithms,
where (a, A, b, B) ∈ EDLN iff a, A, b, B ∈ SQN and there exists w such that
A = aw mod N and B = bw mod N .

Signature Generation, with Share Exposure. The only difference from
the passive protocol is that after generating an alleged signature σ′, the parties
check whether σ′e mod N = H(m). If this is not the case, then each party Pi has
to prove that (σ2

i mod N, H(m)2 mod N, hi, g) ∈ EDLN . This is done using the
same standard Σ-protocol that was used in [Rab98], but with the above method
for generating the challenges. The protocol requires that the inputs are in SQN ,
but this is guaranteed by the key setup and the squarings done.

Let I be the set of i for which Pi failed this proof. The parties then compute
the VSS αI =

∑
i∈I αi and opens it to some value dI . We have that dI =

∑
i∈I di.

Therefore, the correct signature σ satisfies σ2 = H(m)2(dpublic+dI) ∏
i	∈I σ2

i mod
N . Finally, from σ2 mod N, H(m) = σe mod N , we can easily compute σ, since
2 and e are relatively prime.

Refreshment. At the beginning of refreshment, decorrupted parties may not
have reliable information determining their key shares. Therefore, each party Pj

sends to each other party all the public information he holds on αi, for all i.
In other words, the commitments to the shares of di are sent. This means each
player receives n suggestions for αi, but since a majority will be correct, we may
assume that all honest parties now agree on each αi. Then for each Pi the key
share di is privately reconstructed from the VSS αi, i.e., players send the opening
information for the commitments in αi privately to Pi. Decorrupted players may
not be able to send correct opening information, but a majority will be able to
do so, and this is sufficient.

Next, the refreshment protocol proceeds as in the passive case, with the fol-
lowing changes:

1. In addition to sending di,j to Pj , party Pi will also broadcast hi,j = gdi,j mod
N , deal a VSS αi,j = [di,j] and give a zero-knowledge proof that αi,j can be
opened to a value di,j for which hi,j = gdi,j mod N . The details of this proof
is given below.

2. If any of the proofs fails or hi �= gdi,public
∏n

j=1 hi,j mod N , then Pi is de-
tected as a cheater. Also, if hi,j �= gdi,j mod N , then Pj broadcasts a com-
plaint. Then Pi must broadcast di,j such that hi,j = gdi,j mod N , and Pj

adopts this values. If Pi fails to do so, then Pi is detected as a cheater.
3. For each party Pi which was detected as a cheater, the other parties simulate

Pi, as follows. They define di,i = di and let di,j = 0 for j �= i and let
di,public = 0. Notice that di = di,public +

∑n
j=1 di,j and that Pj knows di,j , as

desired. Then they let hi,i = hi and let αi,i = αi, and let hi,j = g0 mod N
and let αi,j be a default secret sharing of 0. Notice that hi,j = gdi,j mod N
and αi,j is a secret sharing of di,j , for j = 1, . . . , n, as desired.

608 J.F. Almansa, I. Damg̊ard, and J.B. Nielsen

4. Finally each Pi computes dnew
i =

∑n
j=1 dj,i and all parties compute hnew

i =∏n
j=1 hi,j and αnew

i =
∑n

j=1 αi,j .

The proof mentioned above proceeds by having each party run the following (in
the role of prover) k times in parallel1.

1. The prover knows some secret s ∈ [0..B] and has broadcast h = gs mod N
and dealt a VSS α = [s].

2. The prover broadcasts H = gr mod N for a uniformly random r ∈R [0..(B +
2k)] and deals a VSS β = [r].

3. The prover is given a challenge c ∈ {0, 1}, generated as described earlier.
4. The parties open the VSS cα+β to some value z. If hcH mod N = gz mod N ,

then the parties accept the proof.

Using standard techniques, one can argue that this protocol is honest verifier
zero-knowledge, and sound relative to the binding property of the commitments
used.

5.2 Analysis

We give a sketch of the security analysis. We want to reprove Theorem 2 for
the class of actively cheating adversaries. Except for unforgeability, the required
properties are straight-forward to verify. In particular, the correctness follows
directly from the binding property of the commitment scheme, the soundness
of the applied proof systems and the observation that for a decorrupted party
Pi, by virtue of the VSS αi, there is always sufficient backup information at the
beginning of refreshment in order to reconstruct the correct value di to Pi as
his share. Formalizing this requires a rewinding argument to demonstrate that
an adversary breaking correctness can break the binding property of the com-
mitments. This rewinding does not cause any problems since first, the reduction
is not part of the UC simulator and second, we may assume that we know the
factorization of N (but not the trapdoor for the commitment scheme), and so we
can simulate perfectly the actions of honest players in all cases, by just following
the protocol.

The proof of unforgeability follows the proof from the passive case, with a few
additions to the reduction to unforgeability of the signature scheme, as detailed
below.

The key generation is simulated as in the passive case with the following
addition. Pick a random square h mod N (which will have order p′q′ except
with negligible probability, by choice of N). Let g = he mod N . Then g is also a
random element of order p′q′, as desired. Notice that h = gd mod N . Now, for the
consistent parties Pi, let hi = gdi mod N and let αi = [di], and for the SIP Pj0 ,
let hj0 = h(

∏
i	=j0

hi)−1 mod N and let αj0 = [dj0], such that hj0 = gd′
j0 mod N

1 We use parallel repetition of a standard protocol with a 1-bit challenge since this
gives us soundness with no extra assumptions. If one is willing to make the strong
RSA assumption, 1 repetition with a k-bit challenge is sufficient, this follows from
results in [FD02].

Simplified Threshold RSA with Adaptive and Proactive Security 609

where d′j0 is the virtual share of the SIP. It can be seen that all additional values
introduced in the simulation have the same distribution as in the protocol, except
that αi is a VSS of the incorrect share dj0 instead of the virtual share d′j0 ; This
is however unnoticeable as long as the SIP is honest, as the VSS is statistically
hiding.

The refreshment protocol is simulated as in the passive case. Additionally, all
parties broadcast the values hu

i,j = gdu
i,j mod N and deal VSS’s αu

i,j = [du
i,j]. The

value hu
ju−1,ju

= g
d′u

ju−1,ju mod N is computed using the virtual contribution.
Since d′uju−1,ju

is defined to be d′uju−1,ju
= du−1

ju−1
− ∑

i	=ju−1
du

ju−1,i, this can be
computed as hu

ju−1,ju
= hu−1

ju
(
∏

i	=ju
hu

ju−1,i)
−1 mod N .

Notice that αu
ju−1,ju

= [du
ju−1,ju

] is still computed using the incorrect contri-
bution. This means that the simulator does not know a witness for the proof that
αu

ju−1,ju
can be opened to a value x such that hu

ju−1,ju
= gx mod N . Therefore

this proof is simulated, as follows. Using the honest verifier zero-knowledge prop-
erty, the first message in the k proofs are set up such that there exists exactly
one string of challenges cju−1 ∈ {0, 1}k which the simulator can answer. Then the
simulator waits for the VSS’s of the ai values to be dealt, and using the shares of
the honest parties it computes each ai and broadcasts bju−1 = cju−1⊕

⊕
i ai. Note

that this simulation introduced no new rewinding. As a consequence of αu
ju−1,ju

being incorrect, the VSS αu
ju

will be incorrect. Again this is not a problem as
long as the SIP Pju is not corrupted.

The signature generation is simulated as in the passive protocol. Addition-
ally, for the consistent parties a proof that (σi, H(m), hi, g) ∈ EDLN is sim-
ulated by following the protocol (as di is known). Notice that the signature
share of the SIP is computed as to make it σju = H(m)−d′u

ju mod N . Therefore
(g, hu

ju
, H(m)2, σ2

ju
) ∈ EDLN . So we can run the honest verifier simulator for the

proof of membership in EDLN , and in this way generate an opening message for
which we can answer one challenge value. As above, we can make the challenge
equal this value without rewinding, and hence complete the simulation. As long
as the SIP is not corrupted this will give Z a view statistically close to that of
the protocol. As for simulating the value αI , notice that it is not a problem that
the VSS αu

ju
is not correct, as it will never enter the sum αI when the SIP Pju

is honest.
As in the passive case, the simulation is statistically close to the protocol until

the SIP is corrupted, and as argued during the description, we introduced no
more rewinding. Therefore the reduction goes through as in the passive case,
using the same rewinding technique.

As for efficiency, note that although we introduced some changes compared
to Rabin’s original protocol, to make our proof go through, the performance is
essentially the same: signature generation is constant round and requires broad-
casting O(n(k + log n)) bits.

5.3 Signature Generation, Without Share Exposure

Because of the model it is considered secure to open the VSS αI to reveal the
value dI in the signing protocol, as the parties Pi for i ∈ I are considered

610 J.F. Almansa, I. Damg̊ard, and J.B. Nielsen

corrupted. In practice a party Pi might, however, end up in I just because a
network plug was pulled or its network was congested because of a denial of
service attack. In such a situation it might not be such a good idea to reveal di,
as it constitutes a value which the ’adversary’ does not know already. We can
indeed do better.

Instead of opening the VSS αI to the value dI the parties notice that this
VSS defines a polynomial f of degree at most t such that f(0) = dIL and the
party Pi is holding an opening of a public commitment com(f(i)).

Each party Pi can therefore broadcast the value hi = H(m)f(i) mod N and
prove (using standard techniques similar to what we described above) that
com(f(i)) can be opened to a value f(i) such that hi = H(m)f(i) mod N .

This gives the parties at least t + 1 of the values H(m)f(i) mod N . There-
fore the parties can use interpolation as described in [Sho00] to com-
pute H(m)f(0)L mod N = H(m)dIL2

mod N . Then they compute σ′ =
H(m)dpublicL2

H(m)σIL2 ∏
i	∈I(σi)L2

mod N = H(m)dL2
mod N . Using that

gcd(e, L) = 1 they then compute H(m)d mod N from H(m)dL2
mod N .

It might seem puzzling that this is adaptively secure, given the similarity
to the protocol from [Sho00] which is not known to be adaptively secure. The
crucial point is that we applied the technique to compute H(m)dIL2

mod N and
not H(m)dL2

mod N . Since the value dI can be computed from the shares di of
the corrupted parties, dI is known to the simulator in the reduction (as opposed
to d). Therefore it can ’simulate’ the computation of H(m)dIL2

mod N by simply
running the protocol honestly.

References

[Alm05] Jesús F. Almansa. A Study for Cryptologic Protocols. PhD thesis,
BRICS, University of Aarhus, Department of Computer Science, IT-
parken, Aabogade 34, DK-8200 Århus N, Denmark, 2005.

[Boy89] C. Boyd. Digital multisignatures. In Oxford University Press, editor,
Cryptography and Coding, pages 241–246, 1989.

[Can] R. Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive.

[Can01] R. Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In Proceedings of the 42nd IEEE Symposium on
Foundations of Computer Science, page 136, 2001. FOCS’01.

[Can04] R. Canetti. Universally composable signature, certification, and authen-
tication. Cryptology ePrint Archive, August 2004. Corrected version of
the paper in Proceedings of the 17th IEEE Computer Security Founda-
tions Workshop, pages 219–235, 2004.

[CGJ+99] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive
security for threshold cryptosystems. In LNCS, volume 1666, pages 98–
115, 1999. CRYPTO’99.

[Des87] Yvo Desmedt. Society and group oriented cryptography: A new concept.
In LNCS, volume 293, pages 120–127, 1987. CRYPTO’87.

Simplified Threshold RSA with Adaptive and Proactive Security 611

[DN03] Ivan Damg̊ard and Jesper Buus Nielsen. Universally composable efficient
multiparty computation from threshold homomorphic encryption. In
LNCS, volume 2729, pages 247–264, 2003. CRYPTO’03.

[FD02] E. Fujisaki and I. Damg̊ard. A statistically-hiding integer commitment
scheme based on groups with hidden order. In Proceedings of Asiacrypt
2002: 125-142, pages 125–142, 2002. ASIACRYPT’02.

[FGMY97a] Y. Frankel, P. Gemmell, P. Mackenzie, and Moti Yung. Optimal re-
silience proactive public-key cryptosystems. In Proceedings of the 38th
IEEE Symposium on Foundations of Computer Science, page 384, 1997.
FOCS’97.

[FGMY97b] Y. Frankel, P. Gemmell, P. Mackenzie, and Moti Yung. Proactive RSA.
In LNCS, volume 1294, pages 440–454, 1997. CRYPTO’97.

[FGY96] Yair Frankel, Peter Gemmell, and Moti Yung. Witness-based crypto-
graphic program and robust function sharing. In 28th Annual ACM
Symposium on Theory of Computing, pages 499–508, 1996. STOC’96.

[FMY01] Yair Frankel, Philip D. MacKenzie, and Moti Yung. Adaptive security
for the additive-sharing based proactive RSA. In LNCS, volume 1992,
pages 240–263, 2001. PKC’01.

[Fra89] Yair Frankel. A practical protocol for large group oriented networks. In
LNCS, volume 434, pages 56–61, 1989. EUROCRYPT’89.

[GJK96] Rosario Gennaro, Stanislaw Jarecki, and Hugo Krawczyk. Robust and
efficient sharing of RSA functions. In LNCS, volume 1109, pages 157–
172, 1996. CRYPTO’96.

[JJKY95] M. Jakobsson, S. Jarecki, H. Krawczyk, and Moti Yung. “proactive RSA
for constant-size thresholds”. Unpublished manuscript, 1995.

[JS05] Stanislaw Jarecki and Nitesh Saxena. Further simplifications in proactive
RSA signature schemes. In LNCS, volume 3378, pages 510–528, 2005.
TCC’05.

[Nie04] Jesper Buus Nielsen. On Protocol Security in the Cryptographic Model.
PhD thesis, BRICS, University of Aarhus, Department of Computer Sci-
ence, IT-parken, Aabogade 34, DK-8200 Århus N, Denmark, 2004.

[OY91] R. Ostrovsky and M. Yung. How to withstand mobile virus attack. In
Proceedings of the 10th ACM Symposium on Principles of Distributed
Computing, pages 51–59, 1991. PODC’91.

[Rab98] T. Rabin. A simplified approach to threshold and proactive RSA. In
LNCS, volume 1462, pages 89–104, 1998. CRYPTO’98.

[SDFY94] Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to
share a function securely. In 26th Annual ACM Symposium on Theory
of Computing, pages 522–533, 1994. STOC’94.

[Sho00] Victor Shoup. Practical threshold signatures. In LNCS, volume 1807,
pages 207–220, 2000. EUROCRYPT 2000.

Author Index

Almansa, Jesús F. 593
Armknecht, Frederik 147

Bellare, Mihir 409
Berbain, Côme 109
Boneh, Dan 573
Boyen, Xavier 427

Carlet, Claude 147
Chang, Ee-Chien 59
Cheon, Jung Hee 1
Contini, Scott 165
Crépeau, Claude 201, 538

Damg̊ard, Ivan 555, 593
Dent, Alexander W. 289
Dupont, Kasper 555
Dwork, Cynthia 486

Faugère, Jean-Charles 30

Gaborit, Philippe 147
Gama, Nicolas 233
Gentry, Craig 445
Gilbert, Henri 109
Gouget, Aline 129
Gratzer, Vanessa 48
Groth, Jens 339

Hofheinz, Dennis 504
Howgrave-Graham, Nick 233

Ishai, Yuval 308

Joux, Antoine 254

Katz, Jonathan 73
Kelsey, John 183
Kenthapadi, Krishnaram 486
Kohno, Tadayoshi 183
Künzli, Simon 147

Lenstra, Arjen K. 165
Lercier, Reynald 254
Li, Qiming 59
Lu, Steve 465

Maurer, Ueli 391
McCurley, Kevin S. 359

McSherry, Frank 486
Meier, Willi 147
Mironov, Ilya 486
Moran, Tal 88
Müller-Quade, Jörn 504

Naccache, David 48
Naor, Moni 88, 486
Nguyen, Phong Q. 233, 271
Nielsen, Jesper Buus 593

Østergaard Pedersen, Michael 555
Ostrovsky, Rafail 339, 465
Oswald, Yvonne Anne 391

Patarin, Jacques 109
Paterson, Kenneth G. 12
Perret, Ludovic 30
Pietrzak, Krzysztof 328, 391
Prabhakaran, Manoj 308

Regev, Oded 271
Rogaway, Phillip 373, 409
Ruatta, Olivier 147

Sahai, Amit 308, 339, 465, 573
Savvides, George 201, 538
Schaffner, Christian 538
Schoenmakers, Berry 522
Shacham, Hovav 465
Shin, Ji Sun 73
Shrimpton, Thomas 373
Sibert, Hervé 129
Sjödin, Johan 391
Steinfeld, Ron 165

Tuyls, Pim 522

Unruh, Dominique 504

Wagner, David 308
Waters, Brent 427, 465, 573
Wolf, Stefan 222
Wullschleger, Jürg 222, 538

Yau, Arnold K.L. 12

	Frontmatter
	Cryptanalysis
	Security Analysis of the Strong Diffie-Hellman Problem
	Cryptography in Theory and Practice: The Case of Encryption in IPsec
	Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects

	Invited Talk I
	Alien {\itshape vs.} Quine, the Vanishing Circuit and Other Tales from the Industry's Crypt

	Cryptography Meets Humans
	Hiding Secret Points Amidst Chaff
	Parallel and Concurrent Security of the HB and HB<Superscript> + </Superscript> Protocols
	Polling with Physical Envelopes: A Rigorous Analysis of a Human-Centric Protocol

	Stream Ciphers
	QUAD: A Practical Stream Cipher with Provable Security
	How to Strengthen Pseudo-random Generators by Using Compression
	Efficient Computation of Algebraic Immunity for Algebraic and Fast Algebraic Attacks

	Hash Functions
	VSH, an Efficient and Provable Collision-Resistant Hash Function
	Herding Hash Functions and the Nostradamus Attack

	Oblivious Transfer
	Optimal Reductions Between Oblivious Transfers Using Interactive Hashing
	Oblivious Transfer Is Symmetric

	Numbers and Lattices
	Symplectic Lattice Reduction and NTRU
	The Function Field Sieve in the Medium Prime Case
	Learning a Parallelepiped: Cryptanalysis of GGH and NTRU Signatures

	Foundations
	The Cramer-Shoup Encryption Scheme Is Plaintext Aware in the Standard Model
	Private Circuits II: Keeping Secrets in Tamperable Circuits
	Composition Implies Adaptive Security in Minicrypt
	Perfect Non-interactive Zero Knowledge for NP

	Invited Talk II
	Language Modeling and Encryption on Packet Switched Networks

	Block Ciphers
	A Provable-Security Treatment of the Key-Wrap Problem
	Luby-Rackoff Ciphers from Weak Round Functions?
	The Security of Triple Encryption and a Framework~for~Code-Based~Game-Playing~Proofs

	Cryptography Without Random Oracles
	Compact Group Signatures Without Random Oracles
	Practical Identity-Based Encryption Without Random Oracles
	Sequential Aggregate Signatures and Multisignatures Without Random Oracles

	Multiparty Computation
	Our Data, Ourselves: Privacy Via Distributed Noise Generation
	On the (Im-)Possibility of Extending Coin Toss
	Efficient Binary Conversion for Paillier Encrypted Values
	Information-Theoretic Conditions for Two-Party Secure Function Evaluation

	Cryptography for Groups
	Unclonable Group Identification
	Fully Collusion Resistant Traitor Tracing with Short Ciphertexts and Private Keys
	Simplified Threshold RSA with Adaptive and Proactive Security

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

